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Direct numerical simulations of forced homogeneous rotating stratified turbulence are
carried out with the same Rossby number and different Froude numbers. We investigated
the effects of different stratification on energy transfers across scales and kinetic-potential
energy exchange in Fourier space in the inverse energy cascade range. When the strat-
ification is weak, almost all the kinetic energy flux in the inertial range comes from
two-dimensional and three-dimensional (2D-3D) coupling interactions and 2D dynamics
dominates at very large scales, which are similar to those in the purely rotating case.
However, compared with the purely rotating case, the inverse cascade is weakened through
the kinetic-potential energy exchange induced by 3D wave-vortical interactions. The total
kinetic-potential energy exchange is found to oscillate at later times, which is produced
by 2D inertia-gravity waves with fixed wave numbers. When the stratification is strong,
the distributions of decomposed kinetic fluxes are different from those in purely rotating
case. The magnitude of 2D-3D coupling energy flux becomes small and 3D-mode energy
flux is important near the forcing scales. Besides, homo- and heterochiral energy fluxes
are different in the inverse cascade. The kinetic-potential energy exchange under strong
stratification mainly comes from 3D modes and wave-vortical interactions. Strengths of
stratification negligibly affect properties of locality of the kinetic energy cascade, which is
infrared local and ultraviolet nonlocal.

DOI: 10.1103/PhysRevFluids.5.124804

I. INTRODUCTION

Rotation and stratification play important roles in many geophysical and industrial turbulent
flows [1–3]. In rotating stratified turbulence, both stable and oscillatory modes, the latter closely
related to dispersive waves, are introduced to the relevant linear dynamics by Coriolis and buoyancy
forces (see, e.g., Ref. [4]). There are two important dimensionless numbers, Rossby number Ro =
U/ f l and Froude number Fr = U/Nl , where U and l are the characteristic velocity and length
respectively, f is the Coriolis parameter, and N is the Brunt-Väisälä frequency. Ro (or Fr) signifies
the ratio of inertial term to Coriolis force (or buoyancy force). As Ro (or Fr) gets smaller, the strength
of the rotation (or stratification) becomes stronger.
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Extensive researches indicate that an inverse cascade of energy could be sustained in rapidly
rotating turbulence [5,6], which leads to the formation of 2D large-scale vortical structures parallel
to the rotation axis. Classical Taylor-Proudman theorem displays that strong rotation makes the
flow quasi-two-dimensional (quasi-2D) [7,8]. However, it is not applicable to explain the quasi-
two-dimensionalization observed in experiments [9–14] and numerical studies [15–19], where Ro
is moderate or the secular nonlinear dynamics is considered. To get a better asymptotic solution, the
resonant wave theory [20,21] should be taken into account. Chen et al. [16] verified the resonant
wave theory with direct numerical simulations. They also revealed that as the rotation rate increases,
the vertically averaged horizontal velocity field of 3D Navier-Stokes (NS) equations converges
to the velocity field of 2D NS equations. Buzzicotti et al. [22] further investigated interactions
between the quasi-2D turbulence and the 3D background. They found that increasingly dominant
homochiral interactions, which couple the 3D bulk and the two-dimensional three-component
(2D3C) plane, generated the inverse cascade near the forcing scale. It was also shown that the
energy in the 2D3C plane is transferred to large scales due to interactions between 2D modes.

The system is more complex when stratification is taken into account. Inertial waves in the purely
rotating system become inertia-gravity waves, the frequencies of which depend on the rotation and
stratification. For purely stratified turbulence without rotation, Herring and Métais [23] showed the
existence of a weak inverse cascade for two-dimensional forcing when Froude number is sufficiently
small. Smith and Waleffe [24] reported the generation of vertically sheared horizontal winds after a
long integration time in forced stratified turbulence with a Froude number smaller than some critical
value. The present paper aims to address effects of different stratification on energy transfers in the
inverse cascade range of rotating stratified turbulence. Marino et al. [25] found that in the range
1/2 � N/ f � 2, where the transfer of energy from 3D to 2D modes is most efficient, the inverse
cascade of kinetic energy is faster than that in the purely rotating case. Oks et al. [26] then showed
that in this range slow quasigeostrophic modes are dominant, while fast inertia-gravity waves are
weaker in the flow dynamics. However, there is still a lack of a systematic study of interactions
between modes from different decompositions under different stratification.

Our present work also investigate the spectral property of kinetic-potential energy exchange in
rotating stratified turbulence. In a previous study, we investigated the connection of kinetic-potential
energy exchange with flow structures in physical space [27]. It is important to note that kinetic-
potential energy exchange does not produce any transfer across scales. It modifies the properties of
the energy flux through acting as source or sink at different wave numbers. Inertia-gravity waves,
ones of linear modes for rotating stratified turbulence [28–30], are closely relevant to kinetic-
potential energy exchange. Therefore, investigating kinetic-potential energy exchange is important
to understand the wave characteristics of the system, such as the breakdown of balance [31–33].

Another question of interest in rotating stratified turbulence is the locality of the energy cascade.
For isotropic turbulence, Kolmogorov [34] assumed that the energy transfer across scales is local.
The locality of cascades has been extensively investigated in hydrodynamic turbulence [35–37] and
magnetohydrodynamic turbulence [38,39]. In rotating turbulence at intermediate Rossby number,
Bourouiba, Straub, and Waite [40] showed that the dominant energy transfers to the large-scale
2D columnar vortices are nonlocal. However, the issue of locality has not been studied in rotating
stratified turbulence, which is investigated in present work.

The remainder of this paper is arranged as follows. In Sec. II, we present the numerical setup
of the simulations. We introduce the different decompositions for analysis of the energy flux in
Sec. III. Section IV gives the simulation results, focusing on how different stratification impacts
energy transfers across scales and the kinetic-potential energy exchange. Finally, we summarize our
conclusions in Sec. V.

II. NUMERICAL SETUP

Consider turbulent flows in the presence of vertical system rotation and stable stratification with
gravity g in the z direction, and the density is given by ρ = ρ0 + σ z + ρ ′(x, t ), where σ indicates

124804-2



SPECTRAL ENERGY TRANSFERS AND …

TABLE I. Simulation parameters: np, number of collocation points per spatial direction; k f , the forced
wave number; Re(q), Reynolds number based on hyperviscosity; Ro = (ε f k2

f )1/3/(2�), Rossby number defined
in terms of the energy injection properties; Fr = (ε f k2

f )1/3/N , Froude number (Fr = ∞ indicates the purely
rotating case) defined in terms of the energy injection properties; Reb,(q) = Re(q)Fr2, buoyancy Reynolds
number; lb = U/N , the buoyancy length scale at 480τ0, where U is the r.m.s. velocity; te, overall integration
time; τ0 = l0/u0, the initial large-eddy turnover time.

Run np k f Re(q) Ro Fr Reb,(q) lb te

1 256 48 2100 0.033 ∞ ∞ ∞ 496τ0

2 256 48 2100 0.033 0.42 368 0.14 496τ0

3 256 48 2100 0.033 0.052 6 0.011 496τ0

the mean stratification. We assume a mechanical forcing fucntion f that forces the flow. In the limit
|ρ − ρ0| � ρ0, we obtain the Boussinesq equations in the rotating frame of reference:

∂t u + u · ∇u + 2�ez × u = −Nezφ − ∇P + ν
u + f , (1)

∂tφ + u · ∇φ = Nez · u + κ
φ, (2)

∇ · u = 0. (3)

Here � is the rotation rate, N = √
gσ/ρ0 is the bouyancy (Brunt-Väisälä) frequency, and φ(x, t ) =√

g/σρ0ρ
′(x, t ) has the dimension of velocity. ν is the kinematic viscosity and κ is the diffusivity.

Rossby and Froude numbers are defined as

Ro = u f

2�l f
, Fr = u f

Nl f
, (4)

where u f = (ε f l f )1/3 is the rms velocity at the forcing scale l f and ε f is the kinetic energy input
rate.

The velocity field is initialized with homogeneous isotropic turbulence and φ(x, 0) = 0. By a
parallelized pseudospectral code, Eqs. (1)–(3) have been integrated for the transient flow state.
Note that all the conclusions are robust according to the results from different initial conditions
and forcing scales. We adopted an intermediate forcing wave number k f and focused on the
inverse-cascade range k < k f . To extend the inertial range, the normal viscous term ν
u has
been replaced with the hyperviscous term (−1)q+1νq(∇)2qu where q = 8 and Reynolds number
based on hyperviscosity is defined as Re(q) = ε1/3/(νqk2(q−1/3)

f ). Similarly, the hyperdiffusive term
(−1)q+1κq(∇)2qφ is adopted to replace the normal diffusive term κ
φ. For more details of the
numerical setup, please refer to our previous paper [27].

Simulation parameters are shown in Table I. To study the effects of stratification, we conducted
three simulation cases with the same Rossby number Ro = 0.033, but with different Froude
numbers Fr = ∞ (for the purely rotating case), Fr = 0.42, and Fr = 0.052. We adopted sufficiently
long integration time, since it is necessary for the generation of slow large scales [24]. Therefore, a
moderate resolution with 2563 grid was used and a grid independence study showed that our results
do not change with further grid refinement.

III. ANALYTICAL METHODS

In this section, we give a brief introduction of analytical methods adopted in our simulations, in-
cluding 2D-3D decomposition, helical decomposition, and linear-eigenmode decomposition. They
have been widely used in analyzing the energy transfer in rotating and rotating stratified turbulence
[22,24,29,41,42].
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A. 2D-3D decomposition

Marino et al. [25] showed that the efficiency of the energy transfer from 3D to 2D modes is
closely relevant to inverse cascades in rotating stratified turbulence. To numerically assess the
energy transfer inside the 2D/3D modes and mutual interactions between 2D and 3D modes, we
use the 2D-3D decomposition, which divides the total wave-number space into two subsets [43]

V = {k | kx, ky and kz = 0},
W = {k | kx, ky and kz �= 0}. (5)

The 2D-3D decomposition is the slow-fast decomposition for purely rotating turbulence [22].
Any scalar or vector field can be separated into the 2D and 3D components by applying this
decomposition. Take velocity field û(k) as an example, we have

û(k) =
{

û2D(k) if k = k2D ∈ V,

û3D(k) if k = k3D ∈ W.
(6)

Projecting the momentum equation on the two submanifolds V and W derives evolution equations
of u2D and u3D including nonlinear interactions between 2D and 3D modes:

∂t u2D + u2D · ∇u2D = −P2D(u3D · ∇u3D) − Nezφ2D − P2D(∇P) + ν
u2D + f 2D, (7)

∂t u3D + P3D(u3D · ∇u3D) = −u2D · ∇u3D − u3D · ∇u2D

−Nezφ3D − P3D(∇P) + ν
u3D + f 3D. (8)

Here, P2D and P3D are the projectors on the wave-number subsets V and W , respectively. Equations
of kinetic energy in 2D and 3D modes can be written by multiplying Eq. (7) by u2D and Eq. (8) by
u3D:

∂t
1
2 u2

2D + u2D · (u2D · ∇u2D) = −u2D · (P2D[u3D · ∇u3D])

− N (u2D · ez )φ2D − u2D · P2D(∇P) + νu2D · 
u2D + u2D · f 2D,

(9)

∂t
1
2 u2

3D + u3D · (P3D[u3D · ∇u3D]) = −u3D · (u2D · ∇u3D) − u3D · (u3D · ∇u2D)

− N (u3D · ez )φ3D − u3D · P3D(∇P) + ν(u3D · 
u3D)

+ u3D · f 3D. (10)

We Fourier transform Eqs. (9) and (10), and obtain the equation of kinetic energy in Fourier space:

k∑
k′=1

∂t E (k′, t ) = �K (k, t ) − �KP(k, t ) + D(k, t ) + F (k, t ), (11)

where �K is the kinetic energy flux, and �KP is the conversion rate of kinetic energy to potential
energy. D and F are the dissipation and the energy input rate in the Fourier-space sphere with a
radius k, respectively.

�K comes from three different contributions:

�K (k) = �2D�2D(k) + �3D�3D(k) + �3D�2D(k), (12)

where

�2D�2D(k) = −
∑
k∈V
|k|�k

ik j û
∗
i (k)

∑
p,q∈V

ûi(p)û j (q)δ(p + q − k) (13)
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and

�3D�3D(k) = −
∑
k∈W
|k|�k

ik j û
∗
i (k)

∑
p,q∈W

ûi(p)û j (q)δ(p + q − k) (14)

are energy fluxes transferring energy only among the 2D and the 3D modes, respectively. �3D�2D

represents the energy flux through the 2D-3D coupling interactions:

�3D�2D(k) = �a
3D�2D(k) + �b

3D�2D(k) + �c
3D�2D(k), (15)

where

�a
3D�2D(k) = −

∑
k∈W
|k|�k

ik j û
∗
i (k)

∑
p∈V
q∈W

ûi(p)û j (q)δ(p + q − k), (16)

�b
3D�2D(k) = −

∑
k∈V
|k|�k

ik j û
∗
i (k)

∑
p∈W
q∈W

ûi(p)û j (q)δ(p + q − k), (17)

and

�c
3D�2D(k) = −

∑
k∈W
|k|�k

ik j û
∗
i (k)

∑
p∈W
q∈V

ûi(p)û j (q)δ(p + q − k). (18)

Both �a
3D�2D and �c

3D�2D come from Eq. (10), and �b
3D�2D comes from Eq. (9). They quantify

contributions from different classes of triadic interactions.
�KP produces no transfer across scales, being composed of the 2D and the 3D contributions:

�KP(k) = �KP,2D(k) + �KP,3D(k), (19)

where

�KP,2D(k) =
∑
k∈V
|k|�k

Re[Nû∗
z (k)φ̂(k)], (20)

and

�KP,3D(k) =
∑
k∈W
|k|�k

Re[Nû∗
z (k)φ̂(k)]. (21)

B. Helical decomposition

The well-known helical decomposition [44,45] projects the Fourier components of the
divergence-free velocity field onto the two eigenvectors of the curl operator:

ûk(t ) = û+
k (t ) + û−

k (t ) = û+
k (t )h+(k) + û−

k (t )h−(k), (22)

where h± satisfies ik × h± = ±kh± and has a sign-definite helicity.
Recent researches [41,42] have shown that homochiral triadic interactions lead to a reverse en-

ergy transfer from small to large scales in homogeneous isotropic turbulence. Moreover, homochiral
and heterochiral triadic interactions have also been investigated in purely rotating turbulence [22].
The homochiral energy flux is

�HO(k) = −
∑
|k|�k

∑
s∈{+,−}

ûs∗
k

∑
q=k−p

(
ik · ûs

p

)
ûs

q, (23)

and the heterochiral energy flux is

�HE(k) = �K (k) − �HO(k). (24)
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FIG. 1. (a) Kinetic energy EK and (b) kinetic energy flux from 3D modes to 2D modes �K,3D→2D as
functions of time for all simulations. The solid horizontal line in panel (b) indicates �K,3D→2D = 0 for
reference.

C. Linear-eigenmode decomposition

Three eigenmodes of the linearized Eqs. (1)–(3) when ν = κ = f = 0 have the form of
Zs(k)eiσ s (k)t , where s ∈ {+,−, 0}. Z+ and Z− are wave modes with

σ±(k) = ±
√

f 2
k2

z

k2
+ N2

k2
h

k2
, (25)

where kh =
√

k2
x + k2

y . Z0 is the vortical mode and has a zero frequency. We can normalize the

modes and expand the Fourier-transformed velocity and buoyancy as(
ûk

φ̂k

)
(t ) = a+

k (t )Z+(k) + a−
k (t )Z−(k) + a0

k(t )Z0(k). (26)

For the purely rotating case where N = 0, Z0 is trivial, while Z+ and Z− are also called inertial
waves which have the same form as helical waves. More detailed description of the linear modes
can be found in Refs. [24,29,30].

IV. RESULTS

A. Kinetic energy, potential energy, and their conversion rate

Figure 1(a) shows the time evolution of the kinetic energy EK for all three simulations, where the
time is normalized by the initial large-eddy turnover time τ0. For the three values of Fr considered,
a stable growth of EK is obtained after t = 40τ0, and the growth rate decreases as Fr decreases. To
understand the effect of different stratification on the growth of EK , we consider the flux of kinetic
energy from 3D modes to 2D modes [25]

�K,3D→2D = �b
3D�2D(∞). (27)

A positive �K,3D→2D indicates the amount of kinetic energy transferred from 3D modes to 2D
modes and a negative �K,3D→2D represents a reverse transfer direction. The time evolution of
�K,3D→2D for all cases is plotted in Fig. 1(b). For Run1 and Run2, �K,3D→2D reaches a stationary
state after t = 20τ0, with a little larger value in Run1, where the kinetic energy grows fastest.
However, �K,3D→2D fluctuates dramatically around a value close to zero for Run3.

Figures 2(a) and 2(b) display potential energy EP and the conversion rate of kinetic energy to
potential energy EKP = �KP(∞) for Run2 and Run3. For both cases, EP reaches a stationary state,
which is different from the behavior of EK . For Run2, we observe that EKP begins to oscillate when
t ≈ 200τ0 with an increasing magnitude and a period of 37τ0. The magnitude does not increase
infinitely when we continue the integration. However, in Run3 EKP fluctuates violently around a
positive value, indicating a continuous conversion from kinetic energy to potential energy.
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FIG. 2. (a) Potential energy EP and (b) the conversion rate of kinetic energy to potential energy EKP as
functions of time for Run2 and Run3.

To further understand �K,3D→2D and EKP in Run2 and Run3, we calculate the fluxes from
kinetic energy to potential energy through 3D modes and 2D modes, �KP,3D→3D = �KP,3D(∞)
and �KP,2D→2D = �KP,2D(∞), respectively. When positive, �KP,3D→3D (or �KP,2D→2D) gives the
amount of kinetic energy transferred to potential energy through 3D modes (or 2D modes) per unit
of time, and represents a reverse transfer when it is negative. As shown in Fig. 3 (left), for Run2,
�KP,3D→3D reaches a stationary state after t = 20τ0, holding a small positive value. This means that
there is a small amount of kinetic energy transferring to potential energy continuously through 3D
modes. �KP,2D→2D is close to zero at early times and oscillates around zero with an increasing mag-
nitude after t ≈ 200τ0. Therefore, �KP,3D→3D and �KP,2D→2D are responsible for the mean value
and the oscillation of �KP, respectively. Figure 3 (left) also shows that �K,3D→2D + �KP,3D→3D in
Run2 is close to �K,3D→2D in Run1. This indicates that compared with Run1 (the purely rotating
case), the weak stratification in Run2 does not change the time behavior of �K,3D→2D but weakens
�K,3D→2D by transferring a small amount of kinetic energy to potential energy in 3D modes. For
Run3, �KP,2D→2D is close to zero at all times and �KP,3D→3D fluctuates around a value comparable
with �K,3D→2D in Run1, as displayed in Fig. 3 (right). Note that although �K,3D→2D + �KP,3D→3D

in Run3 fluctuates around the value of �K,3D→2D in Run1, the time behavior of �K,3D→2D in Run3
is totally different from that in Run1. The strong stratification significantly modifies the flow at this
point. More detailed analysis will be displayed in Sec. IV C.

FIG. 3. Time evolutions of different energy fluxes for Run2 (left) and Run3 (right): the kinetic flux from
3D modes to 2D modes, �K,3D→2D; the flux from kinetic energy to potential energy in 3D modes and in 2D
modes, �KP,3D→3D and �KP,2D→2D. Note that �K,3D→2D for Run1 is shown for reference.
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FIG. 4. Fluxes from kinetic energy to potential energy by interactions among different linear eigenmodes
obtained from (a) Run2 and (b) Run3.

To understand the evolution of kinetic-potential energy exchange EKP, here we consider the
contribution to EKP from the interaction among different linear eigenmodes

�KP,s1s2 = 〈
Nus1

z φs2
〉
, (28)

where s1, s2 ∈ {+,−, 0} (see Sec. III C). �KP,s1s2 represents the conversion of kinetic energy
to potential energy by the interaction of the s1 eigenmode with the s2 eigenmode. Note that
�KP,+− = �KP,−+ and �KP,0s2 = 0 because u0

z (x) = 0. For Run2 and Run3, we found that �KP,++
and �KP,−− are negligible and plotted �KP,+−, �KP,+0, �KP,−+ and �KP,−0 in Fig. 4. Figure 4(a)
shows that for Run2 �KP,+0 and �KP,−0 have nearly equal positive values, and �KP,+− (�KP,−+)
with a zero mean value is responsible for the oscillation of EKP. This indicates that the mean
conversion of kinetic energy to potential energy is realized through the wave-vortical interactions
and the oscillation is attributed to the interactions between different inertia-gravity waves. For Run3,
the interactions between different inertia-gravity waves give small contributions to EKP and the
wave-vortical interactions lead to the main part of EKP [Fig. 4(b)].

B. Energy spectra

Figure 5 shows the evolution of 3D kinetic energy spectra for all the simulations. Kinetic
energy is transferred to the large scales after the addition of rotation and stratification [Figs. 5(a),
5(c), and 5(e)], which is consistent with previous studies [16,24]. The large-scale kinetic energy
grows faster for Run1 and Run2 than for Run3. Figures 5(b), 5(d), and 5(f) show the spectra of
kinetic energy EK (k), 2D-mode kinetic energy EK (kh, kz = 0) and kinetic energy from vertically
averaged horizontal velocity Ek,xy(kh, kz = 0) at t = 480τ0. EK (kh, kz = 0) and Ek,xy(kh, kz = 0) are,
respectively, defined as

EK (kh, kz = 0) =
∑
kz=0

k�kh<k+1

1

2
|û(k)|2 (29)

and

EK,xy(kh, kz = 0) =
∑
kz=0

k�kh<k+1

1

2
[|ûx(k)|2 + |ûy(k)|2]. (30)

These three spectra all collapse together at large scales, indicating the two-dimensionalization of
the flow. For Run3, the wave-number range where the three types of spectra collapse together is
narrower than that for Run1 and Run2. Therefore, the degree of the two-dimensionalization of
velocity field decreases when strong stratification exists.

Figure 6 plots the evolution of 3D potential energy spectra for Run2 and Run3. Figures 6(a) and
6(c) show that the variation of the potential energy concentrates on large scales. Figures 6(b) and
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FIG. 5. (a), (c), (e) The time evolution of the kinetic energy spectrum for (a) Run1, (c) Run2, and (e) Run3
at different times. (b), (d), (f) Three types of kinetic energy spectra from one realization at time t = 480τ0 for
(b) Run1, (d) Run2, and (f) Run3.

6(d) show the spectra of potential energy EP(k) and 2D potential energy EP(kh, kz = 0) at t = 480τ0,
where EP(kh, kz = 0) is defined as

EP(kh, kz = 0) =
∑
kz=0

k�kh<k+1

1

2
|φ̂(k)|2. (31)

These two spectra are widely different at all scales for Run2 and Run3, indicating that the potential
energy widely distributes in 3D modes.

We further study the spectra of the conversion rate of kinetic energy to potential energy

EKP(k) =
∑

k�|k|<k+1

Re[Nû∗
z (k)φ̂(k)]. (32)
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FIG. 6. (a), (c) The time evolution of the potential energy spectrum for (a) Run2 and (c) Run3 at different
times. (b), (d) Two types of potential energy spectra from one realization at time t = 480τ0 for (b) Run2 and
(d) Run3.

As shown in Fig. 7, for Run2, the magnitude of the spectra is small for all wave numbers at early
times. When t � 200τ0, the fluctuation of EKP(k) with a large magnitude concentrates on 5 � k �
10 [Fig. 7(a)]. For Run3, Fig. 7(c) shows that EKP(k) fluctuates at almost all scales. Figures 7(b)
and 7(d) show the 3D and 2D spectra of the conversion rate of kinetic energy to potential energy,
EKP(k) and EKP(kh, kz = 0), at t = 480τ0. Here, EKP(kh, kz = 0) is defined as

EKP(kh, kz = 0) =
∑
kz=0

k�kh<k+1

Re[Nû∗
z (k)φ̂(k)]. (33)

The collapse of these two spectra for Run2 indicates that nearly all kinetic-potential energy ex-
change comes from certain 2D modes after t ≈ 200τ0. Those 2D modes are relevant to coherent
flow structures [27]. For Run3, EKP(kh, kz = 0) is negligible compared with EKP(k), indicating
that the kinetic-potential energy exchange is totally 3D. To further investigate the difference
between EKP(k) in Run2 and that in Run3, we consider the vortical-mode energy spectrum and
the wave-mode energy spectrum

EV (k) =
∑

k�|k|<k+1

1

2
a0,∗

k a0
k (34)

and

EW (k) =
∑

k�|k|<k+1

1

2
(a+,∗

k a+
k + a−,∗

k a−
k ), (35)
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FIG. 7. (a), (c) The time evolution of the spectrum of the conversion rate of kinetic energy to potential
energy for (a) Run2 and (c) Run3 at different times. (b), (d) Two types of spectra of the conversion rate from
one realization at time t = 480τ0 for (b) Run2 and (d) Run3.

as shown in Fig. 8. Figures 8(a) and 8(b) display that in Run2 and Run3 EV evolves similarly with
time and is responsible for almost all the inverse cascade. However, EW has an obvious bump at
k ≈ 10 when t = 480τ0 in Run2. The bump does not exist at early times in Run2 and at all times in
Run3 [Figs. 8(c) and 8(d)]. The bump probably corresponds to the concentration of EKP(k) at later
times. Therefore, the oscillation of kinetic-potential energy exchange in Run2 is due to 2D wave
modes with k ≈ 10.

C. Energy fluxes and transfer

Kinetic and potential energy fluxes are given by

�K (k, t ) = −
∑
|k|�k

û∗(k) · û × ω(k) (36)

and

�P(k, t ) = −
∑
|k|�k

φ̂∗(k) · ̂u · ∇φ(k). (37)

In Figs. 9 and 10, we show the evolution of kinetic and potential energy fluxes. For Run1 and Run2,
the kinetic energy flux is nearly constant where 20 < k < 40 [Figs. 9(a) and 9(b)], indicating that
there exists a conservative inverse cascade in kinetic energy. However, in Run3 the kinetic energy
flux increases slowly with k where 10 < k < 40 and its magnitude in the inertial range is smaller
than those in Run1 and Run2. Figure 10 displays that the potential energy flux changes negligibly at
different times, and its shapes are similar in Run2 and Run3. There does not exist any conservative
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FIG. 8. The time evolution of (a), (b) the vortical-mode energy spectrum and (c), (d) the wave-mode energy
spectrum for (a), (c) Run2 and (b), (d) Run3 at different times.

cascade in potential energy. Potential energy flux is positive at almost all wave numbers, which
indicates that potential energy is transferred from large scales to small scales.

To investigate the effect of different stratification on the kinetic energy flux in detail, we analyze
the different contributions based on the 2D-3D decomposition and the helical decomposition.
Figs. 11(a), 11(c), and 11(e) present the kinetic energy flux with decomposed energy fluxes obtained
from the 2D-3D decomposition, namely energy fluxes only among the 2D and the 3D modes
[Eqs. (13) and (14)] and the energy flux from the 2D-3D coupling interactions Eq. (15); Figs. 11(b),
11(d), and 11(f) show �3D�2D(k) with its three different contributions Eqs. (16)–(18). All the results
come from one realization at t = 480τ0. For Run1 and Run2, in the inertial range almost all the
negative �K (k) is due to �b

3D�2D(k), which comes from Eq. (10), the equation of kinetic energy
in 2D modes. Only at very small wave numbers, 2D interactions dominate the dynamics with large
negative values of �2D�2D(k) [Figs. 11(a)–11(d)]. For Run3, Fig. 11(e) shows that 2D-3D coupling
energy flux has small negative values where 10 < k < k f , and the energy flux among 3D modes
is more important in the range k � k f . The large-scale dynamics is dominated by 2D energy flux
�2D�2D(k) and 2D-3D coupling energy flux �3D�2D(k). The three contributions of �3D�2D(k)
are quite different from those in Run1 and Run2. As shown in Fig. 11(f), �b

3D�2D(k) has a negative
value where k > 10 and �a

3D�2D(k) has positive values where 10 < k < k f . They cancel each other,
resulting small values of �3D�2D(k).

For all the cases at t = 480τ0, Fig. 12 compares the total kinetic energy flux �K (k) with homo-
and heterochiral energy fluxes, �HO(k) and �HE(k). For Run1 and Run2, homo- and heterochiral
energy fluxes are nearly equal at k < k f , both of which contribute to the inverse energy transfer. For
Run3, the two fluxes are not constant in the inverse transfer range and do not equal at different
scales. The analysis above shows that in rotating turbulence with weak stratification, only the
inverse cascade is weakened and the distributions of different decomposed kinetic fluxes do not
change, compared with the purely rotating case. However, the distributions of different decomposed
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FIG. 9. The time evolution of the kinetic energy flux for (a) Run1, (b) Run2, and (c) Run3 at different times.

kinetic fluxes are totally different from those in purely rotating turbulence. This can be further
demonstrated by the kinetic energy transfer functions

TK (kh, kz ) =
∑

S(kh ),I (kz )

Re[û∗ · û × ω], (38)

where S(kh) denotes a circular shell of horizontal wave numbers with central radius kh and I (kz ) is
an interval of vertical wave numbers with midpoint kz. Figure 13 plots these functions at different
times for Run2 and Run3, normalized by their largest absolute values. The results for Run2 are
almost identical to those for Run1 (not shown), which are consistent with [16]. Initially, the kinetic
energy transfer concentrates on the forcing scale k f . After the addition of rotation and stratification,
the intense transfer area is quickly carried to the kz = 0 plane and then moves towards smaller kh

with time [Figs. 13(a) and 13(b)]. For Run3, the kinetic energy is quickly transferred to the kz = 0
plane with small kh, and compared with Run2, more areas where kz �= 0 have nonzero TK (kh, kz )
[Figs. 13(c) and 13(d)].
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FIG. 10. The time evolution of the potential energy flux for (a) Run2 and (b) Run3 at different times.

To present how kinetic-potential energy exchange occurs among different horizontal and vertical
wave numbers, we calculate the kinetic to potential energy transfer functions,

TKP(kh, kz ) =
∑

S(kh ),I (kz )

Re[Nû∗
z φ̂]. (39)

FIG. 11. (a), (c), (e) Total kinetic energy flux �K (k) and fluxes decomposed on the different 2D-3D
interactions �2D�2D(k), �3D�3D(k) and �3D�2D(k) [Eqs. (13)–(15)] and (b), (d), (f) �3D�2D(k) and its three
contributions of different classes of triads [Eqs. (16)–(18)] for (a), (b) Run1, (c), (d) Run2, and (e), (f) Run3.
All the results come from one realization at time t = 480τ0.
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FIG. 12. Total kinetic energy flux �K (k), homochiral energy flux �HO(k), and heterochiral energy flux
�HE(k) for (a) Run1, (b) Run2, and (c) Run3 from one realization at time t = 480τ0.

For Run2, Fig. 14 plots these kinetic to potential energy transfer functions at different times,
normalized by their largest absolute values. Before rotation and stratification are added, there is
no kinetic-potential energy exchange because φ(x) = 0. At early times, the energy transfer occurs
at almost all wave numbers near the kz = 0 plane [Figs. 14(a) and 14(b)]. The most intense modes
then tend to have smaller kh in the kz = 0 plane and at later times their kh are fixed around 5 ∼ 10
[Figs. 14(c) and 14(d)]. This is consistent with the above conclusion that the oscillation of the
conversion rate of kinetic energy to potential energy is due to interactions of 2D inertia-gravity
waves with kh ≈ 10. We note that the peak of TKP with kh around 5 ∼ 10 might be caused by the 2D
large-scale cyclone in the system, which is associated with an intense large-scale kinetic-potential
energy exchange [27].
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FIG. 13. Normalized kinetic energy transfer functions TK (kh, kz )/|TK |max at different times for (a), (b) Run2
and (c), (d) Run3.

D. Locality of kinetic energy cascade

To investigate the locality of kinetic energy flux, we adopt a filtering approach [46–48] which
can resolve turbulent fields both in space and in scale. A “coarse-grained” field, which only contains
large-scale (>l) information, is defined by using a smooth low-pass filter,

ul (x) =
∫

drGl (r)u(x + r), (40)

where Gl (r) = l−3G(r/l ) is a filtering kernel and G is chosen to be a Gaussian function G(r) =
(6/π )3/2 exp(−6r2) in our study. In this framework, the large-scale kinetic energy density ek

l =
1/2|ul |2 satisfies

∂t e
k
l + ∇ · qk

l = −�k
l − �l − Tl + Pk

l − Dk
l , (41)

where qk
l ≡ (ek

l + pl )ul represents the spatial transport of large-scale kinetic energy. �k
l =

−Sl (x, t ) : τ l (x, t ) is the local kinetic energy flux across scale l , where “:” is a double dot product,
Sl = 1/2[(∇ul ) + (∇ul )T] is the large-scale strain tensor and τ l = (uu)l − ulul is the subscale
Reynolds stress tensor coming from the small-scale (< l) velocity field which has been filtered
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FIG. 14. Normalized kinetic to potential energy transfer functions TKP(kh, kz )/|TKP|max at different times
for Run2.

out. The local kinetic energy flux induced by the rotation �l = f (η̂ × ul ) · ul = 0 is trivial. Tl =
Nφl (ez · ul ) represents the exchange of large-scale kinetic energy and potential energy. Pk

l = f l · ul

is the production term of large-scale kinetic energy and Dk
l is the dissipation term. Note that Tl , Pk

l
and Dk

l only involve large-scale (>l) information. Therefore, they are insensitive to small-scale
(<l) flow fields and irrelevant with the energy transfer across scale l . In contrast, �k

l depends on
fluctuations at small scales lesser than l and therefore contributes to the energy transfer across scales.

Eyink [49] presented a complete theoretical analysis about the scale locality. There is infrared (or
ultraviolet) locality, if the contribution coming from the scale 
 
 l (or δ � l) to the energy flux
across the scale l is negligible. To acquire a quantitative description of the locality, the stress is de-
composed as in previous studies of two-dimensional turbulence [37,50] and magnetohydrodynamic
turbulence [39]. Two discrete sequences of lengths 
(n) = λnl and δ(n) = λ−nl are introduced for
λ = 1.25 and n = 0, 1, 2, · · · . The stress from scales > 
(0) = l can be decomposed as

τ l =
∞∑

n=0

τ
(n)

l , (42)
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where τ
(n)

l = τ l (u
(n) , u
(n) ) − τ l (u
(n+1) , u
(n+1) ) is calculated as the stress due to u
(n) minus the

stress due to u
(n+1) . Therefore, �k,
(n)

l = −Sl : τ
(n)

l represents the contribution to kinetic energy
flux from scales [
(n),
(n+1)). There are two ways to decompose the stress from scales < δ(0) = l
as follows:

τ l =
∞∑

n=0

τδ(n)

l,1 =
∞∑

n=0

τδ(n)

l,2 , (43)

where τδ(n)

l,1 = τ l (uδ(n+1) , uδ(n+1) ) − τ l (uδ(n) , uδ(n) ), τδ(n)

l,2 = τ l (u′
δ(n) , u′

δ(n) ) − τ l (u′
δ(n+1), u′

δ(n+1) ), and u′
l =

u − ul is the high-pass filtered field. Both decompositions have been adopted in previous studies
[37,39,50] and their corresponding contributions to kinetic energy flux are �k,δ(n)

l,1 = −Sl : τδ(n)

l,1 and

�k,δ(n)

l,2 = −Sl : τδ(n)

l,2 , respectively. �k,δ(n)

l,1 and �k,δ(n)

l,2 represent contributions from scales [δ(n+1), δ(n) )

but from different subsets of triads. Given that l is an edge of the triads, �k,δ(n)

l,1 quantifies the
contribution from triads with one edge in [δ(n+1), δ(n) ) and another edge smaller than δ(n), while
�k,δ(n)

l,2 quantifies the contribution from triads with one edge in [δ(n+1), δ(n) ) and another edge larger
than δ(n+1).

Using a filter length l = π/15 in the inertial range, we calculated the contribution fractions to
the kinetic energy flux across scale l from different scale intervals 〈�k,
(n)

l 〉/〈�k
l 〉, 〈�k,δ(n)

l,1 〉/〈�k
l 〉

and 〈�k,δ(n)

l,2 〉/〈�k
l 〉. Their distributions are nearly unchanged when t � 320τ0 and Fig. 15 shows

the averaged contribution fractions. For all present simulations 〈�k,
(n)

l 〉/〈�k
l 〉 is vanishingly small

[Fig. 15(a)], indicating that there is negligible contribution from large scales to the kinetic en-
ergy flux in the inertial range, thus there exists infrared locality of the kinetic energy cascade.
Figure 15(b) shows that the smallest scales (largest n) make the most significant 〈�k,δ(n)

l,1 〉/〈�k
l 〉.

Bands n = 4 ∼ 6 corresponding scales 2.4l ∼ 3.8l generate most of the kinetic flux. In contrast,
〈�k,δ(n)

l,2 〉/〈�k
l 〉 shows weak ultraviolet locality of the kinetic energy cascade in Fig. 15(c). Most of the

kinetic flux results from bands n = 2 ∼ 4, i.e., scales 1.6l ∼ 2.4l . Differences between Figs. 15(b)
and 15(c) emerge from the different subsets of triads considered and this indicates that different
scale decompositions of fluxes can suggest different results of the locality. In summary, the kinetic
energy cascade is ultraviolet nonlocal. Figures 15(b) and 15(c) also show that 〈�k,δ(n)

l,1 〉/〈�k
l 〉 and

〈�k,δ(n)

l,2 〉/〈�k
l 〉 change negligibly with strengths of stratification, thus stratification does not change

the locality of kinetic energy cascade in rotating stratified turbulence.

V. SUMMARY

We investigated simulations of forced homogeneous rotating stratified turbulence for long inte-
gration times, focusing on the energy transfers across scales and kinetic-potential energy exchange
in the inverse energy cascade range. Three simulations with intermediate forcing scales have been
conducted with the same angular rotation rate and different stratification. Fourier space fluxes based
on the 2D-3D decomposition and the helical decomposition have been measured to quantify the
effects of stratification.

In rotating turbulence under weak stratification, we found that the distributions of different
decomposed kinetic fluxes are similar to those in the purely rotating turbulence. The second
contribution of 2D-3D coupling flux, coming from the 2D-kinetic-energy evolution equation, holds
almost all the negative kinetic energy flux in the inertial range. At very small wave numbers, 2D
interactions become important, which produce large negative fluxes among 2D modes. Homo- and
heterochiral energy fluxes are equal in the backward transfer range. Compared with the purely
rotating case, the weak stratification only weakens the magnitude of the inverse energy fluxes
through the 3D kinetic-potential energy exchange. For rotating turbulence with strong stratification,
the distributions of different decomposed kinetic fluxes are totally different from those in the purely
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FIG. 15. Contribution fractions to the kinetic energy flux across scale l = π/15: (a) from scales
[
(n), 
(n+1) ); (b), (c) from scales [δ(n+1), δ(n) ) based on different decomposition methods.

rotating case. The negative values of 2D-3D coupling energy flux are small and the energy flux
among 3D modes becomes significant near the forcing scales. Besides, the large-scale dynamics
is dominated by kinetic energy fluxes from 2D interactions and 2D-3D coupling interactions.
Moreover, homo- and heterochiral energy fluxes are not equal at different scales.

A systematic analysis of the kinetic-potential energy exchange has been conducted using the
2D-3D decomposition and the linear-eigenmode decomposition. Under weak stratification, 3D
wave-vortical interactions induce a small constant conversion of kinetic energy to potential en-
ergy, and this conversion weakens the inverse cascade of kinetic energy. At later times, there is
an oscillation of the total kinetic-potential energy exchange, which is produced by interactions
between 2D inertia-gravity waves with fixed wave numbers. When the stratification is strong, the
kinetic-potential energy exchange mainly exists in 3D modes and is dominated by wave-vortical
interactions.
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Finally, the locality of kinetic energy flux was investigated. The kinetic energy cascade is infrared
local, while results of the ultraviolet locality depend on decompositions of the flux, which consider
contributions from same scales but from different subsets of triads. The first kind of decomposition
shows that most of the contribution occurs at the smallest scales, while the second indicates that
the kinetic energy cascade is weakly ultraviolet local. Considering both of the decompositions
indicates that the kinetic energy cascade is ultraviolet nonlocal. It was also found that strengths
of stratification does not change the locality of the kinetic energy cascade.

We note that the Ro and Fr used in our work do not directly apply to typical geophysical flows on
earth. Ro for atmospheric and oceanic flows at synoptic scales is about 0.1 and atmospheric flows
on the earth have Ro > Fr. Therefore, readers should be careful when applying our conclusions
to real atmospheric or oceanic flows. Stationary-state simulations are performed with a large-scale
damping, and their results are similar as present study, which indicates that our conclusions are
independent of confinement effects (periodicity effects).
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