
PHYSICAL REVIEW FLUIDS 5, 124802 (2020)
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We report on an instability arising in subsurface, laterally sheared geostrophic flows.
When the lateral shear of a horizontal flow in geostrophic balance has a sign opposite to
the Coriolis parameter and exceeds it in magnitude, embedded perturbations are subjected
to inertial instability, albeit modified by viscosity. When the perturbation arises from the
surface of the fluid, the initial response is akin to a Stokes problem, with an initial flow
aligned with the initial perturbation. The perturbation then grows quasi-inertially, rotation
deflecting the velocity vector, which adopts a well-defined angle with the mean flow,
and viscous stresses, transferring horizonal momentum downward. The combination of
rotational and viscous effects in the dynamics of inertial instability prompts us to call this
process “Ekman-inertial instability.” While the perturbation initially grows superinertially,
the growth rate then becomes subinertial, eventually tending back to the inertial value.
The same process repeats downward as time progresses. Ekman-inertial transport aligns
with the asymptotic orientation of the flow and grows exactly inertially with time once the
initial disturbance has passed. Because of the strongly superinertial initial growth rate, this
instability might compete favorably against other instabilities arising in ocean fronts.

DOI: 10.1103/PhysRevFluids.5.124802

I. INTRODUCTION

When wind blows over the ocean surface over long periods of time, momentum diffuses down in
a very different manner from Stokes first problem. Instead, the Coriolis acceleration balances down-
ward diffusion of momentum to form Ekman spirals [1]. According to its simplest description [2],
horizontal velocity at the surface forms a 45◦ angle with the direction of the wind and, within the
Ekman layer (EL), spirals down to zero over a depth ∼√

2ν/ f , where ν is the kinematic viscosity
(hereafter viscosity), in practice the vertical eddy viscosity, and f is the Coriolis parameter. In spite
of its simplicity and notorious difficulty to directly observe in the ocean, this solution has allowed
some significant advances in our understanding of ocean dynamics. For example, the predicted
cumulative mass transport of ELs provides a relatively accurate explanation of how winds set up
ocean gyres (Refs. [1,3] and references therein). Since then, Ekman layer theory has been amended
to include weak vorticity effects [4–6], variability of the wind and eddy diffusivity in both space [7]
and time [8], or other features of the upper ocean [9].

EL theory has seen a renewed interest in the context of submesocale studies [10,11]. Subme-
soscale flows are defined by a vertical vorticity field ζ = (∇ × v) · ẑ with a magnitude comparable
to the planetary vorticity f , i.e., Rossby number of order unity [Ro = ζ/ f = O(1)] [12]. Near
the ocean surface, submesoscale flows and their associated vertical velocities could be important
for ecosystems [13–15], for atmosphere-ocean exchanges [16,17], and as a kinetic energy sink
that could help close the energy budget of the ocean [11,18]. Recent studies have expanded our
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understanding of submesoscale ELs and their impacts by incorporating interactions with Ro = O(1)
vortical flows [3], surface waves and Langmuir circulation [9,19], and modifications due to baro-
clinic pressure torques [9,16,20,21].

In the present study, our goal is to contribute to this effort by describing what we hereafter refer
to as “Ekman-inertial instability” (EII), which can be seen as the unstable counterpart of an EL that
occurs in anticyclonic flows for which Ro < −1. In the oceanic regime, and independent of the
results we are about to present, such flows can undergo inertial instability (InI), in which a particle
slightly displaced across a geostrophic jet will find itself in a region where the imbalance between
ambient pressure gradient and the Coriolis force tends to amplify its displacement [22,23]. The main
features of InI are well described by linear stability analysis, i.e., by the growth of a plane-wave-like
mode at a rate of f

√−1 − Ro in the inviscid limit, constant in time and space.
EII, on the other hand, originates from a change in wind stress at the surface of the ocean, and the

vertical extent over which it impacts the fluid increases downward due to viscous stresses, eventually
following a typical

√
νt scaling. When Ro < −1, it replaces the Ekman layer spin up, which occurs

for Ro > −1. In the first phase, which we will refer to as “viscous-inertial peeling,” tangential
viscous stresses act to set the fluid in motion much faster than the expected exponential growth
of InI. In this first phase, the problem is mathematically equivalent to Stokes first (or Rayleigh)
problem, albeit for the vertical shear. In particular, in the case of a sudden wind change, it inherits its
initially infinite growth rate. Past this initial phase, the flow keeps accelerating in a quasiexponential
manner and draws its energy from the lateral shear of the geostrophic current, akin to InI, albeit
slowed down by downward diffusion of momentum by viscosity. Originating at the surface, these
processes repeat at later times at greater depths.

In the next section, we derive the expressions of the velocity field under EII, followed in Sec. III
by a description of how EII physically manifests itself. In Sec. IV, we discuss how EII would insert
itself in the dynamical landscape of an unstable front, and in particular, we compare EII with the
classical theory of InI in order to predict how they would compete and attempt to predict how EII
would play out in a front of finite width. Finally, we offer a summary and conclusions in Sec. V.

II. MATHEMATICAL DESCRIPTION

We present here the solution for the most idealized version of EII. We mirror this derivation with
its “stable” counterpart, i.e., the establishment of an EL accompanied by near-inertial oscillations,
in the Appendix.

A. Posing the problem

We start with the equations of motion of an incompressible, homogeneous flow, with a traditional
f -plane approximation, i.e.,

ṽt + ṽ · ∇ṽ + f ẑ × ṽ + ∇ p̃/ρ = ν∇2ṽ, ∇ · ṽ = 0, (1)

where ṽ = (ũ, ṽ, w̃) is the full velocity field in a direct Cartesian coordinate system (x̂, ŷ, ẑ), with
ẑ pointing upward. Subscripts denote partial derivatives, p̃ are the deviations from hydrostatic
pressure, and ρ is the constant fluid density.

We next decompose our flow into a component, denoted by bars, that flows in the y direction and
is in geostrophic balance with the pressure force in the x direction and deviations from it, namely,

ṽ = v̄(x, z)ŷ + (u, v,w), p̃ = p̄ + p, such that f v̄ = p̄x/ρ. (2)

The geostrophic balance above neglects viscous diffusion of momentum, which we justify by
assuming that the spatial scales of the geostrophic flow are too large for it to act over the timescales
of EII. We let the velocity vary in the across-jet direction, which defines a local Rossby number

Ro = v̄x/ f . (3)
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We treat Ro as a constant; that is, we focus on the case of linear lateral shear for v̄: a strong sim-
plification in the submesoscale regime, but one that captures the essential physics of EII. Note that
this assumption enforces the geostrophic current’s expressions of the form v̄(x, z) = f Rox + ϕ(z),
where ϕ is a function of only z. Also note that by treating Ro as a constant, we are effectively setting
up an infinite reservoir of energy EII can grow from. We then complete our initial setup by adding
boundary conditions at the surface, located at z = 0, namely, a rigid lid and an initial wind stress in
only the y direction, defined as T y

I = ρνv̄z|z=0, such that ṽ = v̄ŷ is a steady solution of our initial
system (1) and the boundary conditions above. The deviations from this initial state, i.e., u, v, w,
and p, are initially zero. A change (i.e., an increase, decrease, and/or change in direction) in the
wind stress, starting at t = 0, will initiate EII.

B. EII derivation

Like in ELs and InI, a constant Ro allows us to ignore all of the horizontal derivatives in the u,
v, w, and p fields. Doing so, along with using the incompressibility (1) and the top rigid-lid con-
ditions, yields w ≡ 0. Collecting everything, the only remaining advective term in the momentum
equations (1) is ũṽx ŷ = f Rouŷ, while all others are exactly zero. The equations of motion (1) then
reduce to

ut − f v = νuzz, vt + (1 + Ro) f u = νvzz, (4)

with the other components of Eqs. (1) being trivially satisfied.
EII starts at t = 0 with wind stress that evolves as T y(t ), following

vz|z=0 = a(t ) = [
T y(t ) − T y

I

]/
(νρ), t > 0. (5)

EL boundary conditions close the system, i.e.,

uz|z=0 = 0, lim
z→−∞(u, v) = 0. (6)

Note that we could include wind stress in the x direction at a relatively modest analytical cost. The
solution would change only quantitatively, and the expressions of the solution would be almost the
same as the ones we are about to derive (not shown).

Classically, i.e., for Ro > −1, we would see a transient adjustment, including the radiation of
near-inertial waves and/or the spin up of an EL, if T y(t ) were to reach a constant value (we explicitly
compute such a case in the Appendix). However, for Ro < −1, EII replaces this adjustment and does
not feature either waves or an EL. Instead, as we will show, the flow will grow monotonically.

In order to decouple Eqs. (4), we introduce

U = u + v/α, V = −u + v/α, (7)

with α2 = −1 − Ro. In scaled coordinates

τ = Ft, Z = z/δ, (8)

where F = α f and δ = √
2ν/F , Eqs. (4) become

Uτ − U = UZZ/2, Vτ + V = VZZ/2. (9)

Introducing U † = Ue−τ in the first equation above reduces it to the mere diffusion equation

2U †
τ = U †

ZZ , U †
Z |Z=0 = A(τ )e−τ , (10)

with A(τ ) = a(τ )δ/α, together with boundary conditions (6). The solution to this system is

U † =
∫ τ

0

A(τ ′)e−τ ′

√
2π (τ − τ ′)

exp

(
− Z2

2(τ − τ ′)

)
dτ ′. (11)
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After multiplying by eτ and the change of variables θ 
→ τ − τ ′,

U =
∫ τ

0

A(τ − θ )√
2πθ

exp

(
θ − Z2

2θ

)
dθ. (12)

A similar derivation, using V ‡ = Veτ instead of U † = Ue−τ in Eq. (9), yields

V =
∫ τ

0

A(τ − θ )√
2πθ

exp

(
−θ − Z2

2θ

)
dθ, (13)

from which we can deduce the solutions to the original Eqs. (4), namely,[
u
v

]
= 1

2

[
U − V

α(U + V )

]
=

∫ τ

0

A(τ − θ )√
2πθ

[
sinh θ

α cosh θ

]
exp

(
−Z2

2θ

)
dθ. (14)

The expressions above do not make it immediately clear that the flow represents an instability.
This fact will become apparent in the step response to a surface disturbance, which we will derive
after we introduce our numerical validation strategy.

C. Validation strategy

To independently validate our findings, we solve Eqs. (4)–(6) in the case of an abrupt change in
boundary conditions (constant a and A) with the spectral code Dedalus [24,25]. The depth of our
domain is 15δ, and we use 256 Chebyshev modes. We integrate the equations over 15/F , which is
long enough to see EII mature but short enough that it does not reach the bottom of the domain, in
agreement with the condition at infinity in Eqs. (6). Because the one-dimensional equations (4) are
linear, Dedalus integrates them implicitly in time with a fourth-order Runge-Kutta scheme. At the
start of the simulation, u and v vary more strongly. To account for it, we progressively increase the
time step from 10−5F−1 in the beginning, to 10−2F−1 at infinity, over a duration F−1. However, we
did not attempt to optimize the time steps because the integrations complete within seconds on a
personal computer.

Simulations shown here are seeded with noise, meaning that EII and InI compete. However,
noise-free simulations (not shown) behave virtually identically. As expected from linear calcula-
tions, outcomes of numerical simulations and analytical solutions are practically indistinguishable.
We present both below for abrupt wind change.

D. Solution following an abrupt wind change

We now focus on the case when wind starts abruptly, i.e., for constant A(τ ) = A0. Note that
Eqs. (10) are formally identical to Stokes first (or Rayleigh) problem for U †

Z . Therefore, any change
in wind stress will imply an infinitely fast adjustment of the vertical shear at the surface, which will
later translate into an initially infinite growth rate of EII. Physically speaking, this means that EII
will initially respond as fast as the wind evolves, before taking on a life of its own. We numerically
tested moderate departures from this case, e.g., an exponential approach to different, constant
wind stress values over timescales similar to 1/F or shorter, and found behavior qualitatively and
quantitatively similar to the abrupt-change case. Should the wind evolve over longer timescales, EII
would likely initiate and saturate before said timescales have time to impart their signature on the
flow.

Under this condition, Eq. (12) can be cast in the following closed forms:

U = A0√
2

Im

[
eZi

√
2erfc

(
−i

√
τ − Z√

2τ

)]
(15a)

= A0√
2

eτ−Z2/(2τ )Im

[
W

(√
τ + iZ√

2τ

)]
, (15b)
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FIG. 1. Evolution of the profiles of U † and V after an abrupt change in boundary conditions. Solid lines:
analytical solutions derived in Sec. II D; crosses: independent numerical integration of Eqs. (4), described in
Sec. II C. We display only one cross every eight grid points.

where erfc is the complementary error function, Im denotes the imaginary part, and W is the
Faddeeva function,

∀ ξ ∈ C, W (ξ ) = e−ξ 2
erfc(−iξ ).

We plot U † corresponding to this solution in Figs. 1 (left panel) and 2 (top panel).
Equation (15b) highlights the long-term behavior of the solution. First, eτ is the only factor that

exhibits a persistently growing behavior, while the rest, namely, U †, is bounded at all times, which
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FIG. 2. Same as Fig. 1, presented as time series at a few depths. We display only one cross every ten time
steps.
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is why we plot only the latter in Figs. 1 and 2. In fact, U grows indefinitely, albeit at a rate that
keeps evolving, which we will discuss in Sec. II E. Second, for τ 
 1, W (· · · ) ≈ W (

√
τ ), and the

Z dependence mostly manifests itself in the e−Z2/(2τ ) factor. Therefore, the bell-shaped profile of U †

found at Ft ≈ 15 in Fig. 1 is a weakly modulated Gaussian, whose vertical extent scales as
√

νt in
dimensional coordinates.

Similarly, Eq. (13) becomes

V = A0

2
√

2

[
eZ

√
2erfc

(
−√

τ − Z√
2τ

)
− e−Z

√
2erfc

(√
τ − Z√

2τ

)]
, (16)

which we plot in Figs. 1 (right panel) and 2 (bottom panel). Contrary to U , the error functions above
have real arguments, bounding V at all times and depths. In particular, for τ 
 1, V ≈ A0/

√
2eZ

√
2

and does not extend deeper than O(δ).
Figures 1 and 2 show that EII is most pronounced at the surface. There, Eqs. (15) have simple

analytical expressions, namely,

U |Z=0 = A0√
2

erfi(
√

τ ) =
√

2

π
A0eτ D(

√
τ ), (17a)

V |Z=0 = A0√
2

erf(
√

τ ), (17b)

where erfi is the imaginary error function and,

∀ ξ ∈ R, D(ξ ) =
√

π

2
e−ξ 2

erfi(ξ )

is the Dawson integral. The latter is bounded, with D(
√

τ ) ≈ √
τ for τ � 1, then going through a

maximum at τ ≈ 0.92, before decaying monotonically to zero, eventually as 1/(2
√

τ ).

E. Growth rate

The general expression for the growth rate of U is

σU (t, Z ) = 1

U

∂U

∂t
= F + 1

U †

∂U †

∂t
. (18)

We hereafter refer to periods of time when σU > F (σU < F ) as “superinertial” (“subinertial”) in
reference to the growth rate of inviscid InI.

The growth rates of U and V can be readily obtained from Eqs. (12) and (13) and the Leibniz
integral rule. We explicitly plot σU in the case of a sudden wind change in Fig. 3. In accordance
with Eq. (18), periods of U † increasing (decreasing) in Fig. 2 correspond to phases over which U
grows superinertially (subinertially). Qualitatively, the growth rate behaves similarly at all depths.
Thus, we focus on the surface behavior, which also has the strongest impact on the dynamics of a
front. There,

σ0 = σU |Z=0 = [2
√

τD(
√

τ )]−1, (19)

which we can break down following the discussion at the end of Sec. II D. That is, for τ � 1,
σ0 ≈ 1/(2τ ), and the growth rate goes from infinity to unity within a duration τ ≈ 0.854. It then
decreases and reaches a minimum of σ0 ≈ 0.778F at τ ≈ 2.26. The growth rate then monotonically
increases and asymptotically tends to F .

At depth, the flow qualitatively goes through the same series of steps, with quantitative differ-
ences. As Z decreases, the initial growth rate increases in absolute value due to lower values of U .
It reaches the σU = F mark, then its minimum value, which is closer to F at greater depth, at later
times.
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FIG. 3. Same as Fig. 2 for growth rates σU . Note the change in the vertical log scale at σU = 2F ; curves
would appear infinitely differentiable otherwise.

III. INSTABILITY DYNAMICS

This section presents a more qualitative description of EII, namely, the physical mechanisms
involved, the morphology of the induced flow, and the implication for mass transport.

A. Dynamics through the lens of energetics

The individual mechanisms involved in EII can be better traced by investigating their energetic
signatures. From Eqs. (4), the evolution equation of the kinetic energy density of the flow K =
(u2 + v2)/2 is

Kt = −� − �z − ε, (20)

where � = Ro f uv stands for lateral shear production, i.e., the transfer of kinetic energy from
perturbations to the mean shear (negative here); � = −νKz is the viscous diffusive flux of kinetic
energy; and ε = ν[(uz )2 + (vz )2] is the irreversible dissipation.

Figure 4 shows that �z plays a role that depends on the phase of EII. In the first phase, which
we refer to as “viscous-inertial peeling” (VIP), −�z is the dominant energy source at the leading
edge of the instability, setting the fluid in motion, with −� being the secondary energy source. This
phase (Fig. 4, right panel) coincides with the superinertial growth we described in Sec. II E. Near
the surface, it lasts O(F−1), too short for rotation to influence the dynamics significantly. VIP is
therefore a Rayleigh-like problem, with rotation acting as a perturbation.

After the instability front has passed, however (Fig. 4, z/δ > −1.5), −� becomes the dominant
source of energy, as in InI, and −�z acts to reduce the growth of the instability. Physically,
rotation is now acting, and the flow set in motion during VIP is inertially unstable, a phase we call
“inertial-viscous instability” (InVI). Upper layers of the fluid begin going unstable earlier than lower
layers, and their velocity proceeds to grow quasiexponentially. The result is a persistent horizontal
momentum imbalance between upper and lower layers, which viscosity diffuses downward. InVI
therefore behaves like a viscously dragged InI. As time progresses, EII behaves more and more
like inviscid InI: relatively speaking, the vertical gradients diminish (see Fig. 1), �z becomes less
important, and the growth rate approaches F .
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FIG. 4. Kinetic energy budget at Ft = 2 [see Eq. (20)]. Both panels display the same data, but the right
panel is a magnification of the left panel around the edge of the EII propagation. These plots are of the numerical
simulation.

B. Hodograph

EII induces a peculiar velocity field, with some features reminiscent of the Ekman spiral (see
Fig. 5), with a caveat that we address in the next paragraph. During the early phases of VIP and near
the surface, e±τ ≈ 1, and Eqs. (12) and (13) show that U and V both initially grow at similar rates.
Rotation is not acting yet, and the motion is along the original wind perturbation direction (Fig. 5,
left panel). Later, as VIP transitions into InVI near the surface, V settles to a constant value, while
U keeps growing quasiexponentially (recall Sec. II D). The near-surface velocity vector therefore
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FIG. 5. Scaled hodographs at two different depths as time progresses. Left: short-term behavior. Right:
long-term behavior. Annotated arrows indicate the time stamps on the last point of a given line. Solid lines are
the theoretical prediction, and crosses are the numerical simulation, with one cross displayed every time step.
The axes are scaled equally, showing true angles in (u, v/α) coordinates.
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adopts an angle of 45◦ with the mean flow in u, v/α coordinates (Fig. 5, right panel). For Z � −1,
however, V ≈ 0 at all times, and the velocity vector adopts this 45◦ angle immediately (Fig. 5,
z = −5δ lines).

We urge caution, however, in the analogy with ELs: the angle we just mentioned is with the
direction of the mean flow, not that of the wind direction. Indeed, the appearance of this angle traces
its roots back to Eqs. (9) and to U and V being the solutions of unstable and stable partial differential
equations, respectively. Incorporating a wind disturbance along x in Eq. (6) would change A(τ ) but
not the final orientation of the velocity vector.

C. Transport

Contrary to the EL case and its spiraling hodograph, the vertically integrated volume transport
due to EII is mostly aligned with the direction of the velocity field. When wind changes abruptly,
we have, in EII coordinates,[

M (U )

M (V )

]
= δ

∫ 0

−∞

[
U
V

]
dZ ′ = A0δ

2

[
eτ − 1

1 − e−τ

]
, (21)

or, in across- and along-front coordinates,

M =
[

M (u)

M (v)

]
= A0δ

[
cosh τ − 1
α sinh τ

]
. (22)

Also note that unlike σU , the growth rate of the mass transports reaches F quickly, i.e., over a
duration of O(F−1).

IV. DISCUSSION

A. Comparison with InI

Unlike many instabilities, the features of EII did not reveal themselves via traditional normal
mode analysis. That is, while our initial flow v̄, p̄ was the solution of a geostrophic balance and
appropriate wind stress at the surface, we did not superpose wavelike perturbations, which is
traditionally done, for example, for InI, to compute the linear growth rate and determine whether
the perturbations may grow. Instead, we added a finite deviation from the top boundary condition by
adding some wind stress. In this case, the initial “kick” did not consist of instantiating perturbations
in the volume that may or may not grow but resulted from a finite, albeit persistent, change in
boundary conditions, which in turn created deviations that may or may not have grown. We also
recall that this kick can be any change in wind stress, namely, an increase, a decrease, or a change
in direction. We have demonstrated that for Ro < −1, once triggered, the induced flow deviation
eventually grows in the runaway fashion that is the hallmark of hydrodynamic instabilities and
extracts its energy from the lateral shear of the flow at a rate that eventually converges to that of InI.
This similarity in phenomenology, especially when compared to the finite nature of the boundary
perturbations, led us to classify this phenomenon as a hydrodynamic instability.

EII exhibits further differences with InI. For InI, −� is the sole source of energy of the unstable
perturbations. Velocities grow as part of spatially global wavelike modes, as opposed to the local
(i.e., stress-driven) nature of EII expansion. In InI, the viscous flux divergence �z and kinetic
energy dissipation ε have passive roles. That is, they are enhanced where InI creates stronger
vertical shear and decrease the growth rate everywhere by a constant amount νm2, where m is
the vertical wave number of the growing mode. Moreover, because −� is not scale selective, InI
occurring in a comparable horizontally invariant domain tends to select larger scales to minimize
the importance of viscous effects, while the vertical scale of the EII flow constantly increases
with

√
νt .

Viscosity induces another major practical difference between InI and EII, namely, that a large
value of (eddy) viscosity can only prevent the former from growing, while it can aid the latter’s
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expansion. Indeed, InI modes grow at a rate F − νm2, and viscosity’s only role is that of damping
and scale selection. In EII, however, a larger viscosity has two consequences: (1) it speeds up the
vertical propagation of EII via a larger δ, and (2) it decreases its magnitude since A0 ∝ ν−1/2.
However, because EII grows fast during VIP, we can reasonably anticipate it will rapidly become
detectable even in a highly turbulent environment and impart its signature at depth. Therefore, we
argue that regardless of the value of eddy viscosity, EII is likely to always manifest itself, be it as an
intense, near-surface current or as a slower, slablike motion of a significant vertical fraction of the
front or as some intermediate behavior.

One point of convergence between InI and EII refers to the 45◦ angle in stretched coordinates
between mean and EII flow. Recall, however, that we cautioned in Sec. III B against likening it
to the surface deviation from the wind direction of the EL solution. On the other hand, a volume
disturbance triggering InI would also induce flow that quickly aligns with the same angle as that of
EII by virtue of Eqs. (9), which both EII and InI share.

B. Finite width of currents

As with all instabilities, EII induces a flow that will mix stable and unstable fluids, eventually
extinguishing itself. Our solution does not include this effect because we kept Ro, i.e., ζ , constant,
effectively providing an endless supply of unstable fluid. In an actual front, however, ζ varies in
space. In that case, M (u), the cross-jet volume flux induced by EII, will eventually provoke its
extinction: the front is indeed surrounded by stable, Ro > −1, fluid, which would cap the unstable
region and stop EII from growing any further.

Furthermore, EII will grow at different rates depending on the location within a front because Ro
varies in space. As a consequence, a horizontal velocity divergence ux will develop, compensated
by a vertical velocity divergence wz, a process called Ekman pumping for ELs. We can compute
the vertical velocity w∞ well below the region where EII occurs by vertically integrating the
mass continuity equation, yielding w∞ = −M (u)

x . A comprehensive treatment of the corresponding
“Ekman-inertial pumping” will require at least a two-dimensional study, and its complexity will
be compounded by the fact that Ro = O(1), meaning that the x and z directions will be strongly
coupled [26]. We defer this study to future work.

V. CONCLUSIONS

Oceanic flows with anticyclonic vertical vorticity that overcompensates planetary vorticity (i.e.,
Ro < −1) are unstable to perturbations in surface boundary conditions. These perturbations rapidly
propagate down via tangential viscous stress, at a rate that far supersedes that of InI if the wind
changes rapidly enough, at least initially so. We called this regime viscous-inertial peeling. After
the instability is “primed” by the viscous stress, however, the instability behaves like a slightly
modified InI. In the simplest possible mathematical description we can make of it, namely, a
columnar model, the vertical shear, compensated for inertial exponential growth, essentially follows
a Rayleigh problem and inherits its infinite initial growth rate. Assuming an abrupt change in wind
conditions allowed us to write closed forms for the solutions and therefore to make some of this
behavior more explicit. After VIP, mass transport grows exponentially, at a rate F .

Not only does this instability share several of its features with InI, but the behavior of viscous
stresses inevitably brings up features more common to an Ekman spiral superposed with inertial
oscillations. In fact, we mirror our derivation to that for the Ro > −1 case in the Appendix,
which highlights striking similarities and which prompted us to call this instability Ekman-inertial
instability. In particular, the viscous top-down momentum flux is common to both, and its formal
ties with the Stokes first problem provide EII with a fast growth rate that may make it competitive
with other instabilities such as InI, its baroclinic generalizations within the framework of centrifugal
or symmetric instability, and baroclinic instability.
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Whether this instability is novel or a mere flavor of InI is up for interpretation. More important,
however, is recognizing EII’s peculiar behavior, which may manifest itself in peculiar ways in actual
ocean fronts. The geostrophic balance above neglects viscous diffusion of momentum, which we
justify by assuming that the spatial scales of the geostrophic flow are too large for it to act over the
timescales of EII. Investigating more realistic, i.e., two- and three-dimensional configurations, will
be the topic of future work. The points we raised in Sec. III C would be a good start, which would
raise new questions. In particular, how EII behaves in the presence of vertical and cross-jet buoyancy
variations promises interesting discussions. Our one-dimensional model can easily incorporate an
evolution equation for the buoyancy fluctuations b, namely,

bt − ub̄x = κbzz, (23)

where b̄ is the mean buoyancy field and κ is the buoyancy diffusivity coefficient. For EII to be an
instability of the geostrophic flow, thermal wind balance has to apply, namely, b̄x = v̄z/ f . In that
case, in order for the initial condition to be a steady solution of the equations of motion, the wind
stress has to be T y(t < 0) ≡ ρν f b̄x|z=0; that is, it has to maintain the surface thermal wind shear,
as in previous studies [e.g., 27]. In our one-dimensional model still, b does not feed back into the
momentum equations (4). Therefore, EII can advect water masses of different densities across the
front, which could directly modify the potential energy of a density front. Grisouard [26] observed
that with similar boundary conditions, contrary to predictions from symmetric instability theory,
a horizontal flow was advecting buoyancy laterally immediately under the surface and extracting
potential energy from the front. Moreover, minimal potential energy exchanges were found between
the front and fluctuations when the minimum anticyclonic Rossby number was large, which would
have suppressed EII, and the Richardson number of the thermal wind shear was small, which would
have favored symmetric instability. At the time, these behaviors had no complete explanations.
In light of our results, however, they are consistent with EII out-competing symmetric instability
whenever Ro is sufficiently anticyclonic.

Finally, the stability of EII to along-jet and other three-dimensional disturbances such as con-
vection, surface wave effects [28,29], and nontraditional effects [30] should be investigated. Also,
the simple viscosity we have used here is only a placeholder for turbulent momentum diffusion,
whose effects are far from understood [e.g., 31,32]. We could also include a more complete
description of the competition with the transient growth of centrifugal, symmetric, and/or baroclinic
instability [33]. One possible avenue is to compare EII with the large-eddy simulations of frontal
evolution [34,35]. In particular, Skyllingstad et al. [34] simplified the dynamics of an unstable
submesoscale density filament subjected to varying winds by neglecting all lateral geostrophic
gradients and retaining only lateral buoyancy gradients. In their model, sufficiently strong EL and
thermal wind shears couple to give rise to an Ekman instability. On the contrary, EII requires a
sufficiently strong anticyclonic shear, and it is not directly affected by lateral buoyancy gradients, as
we mentioned previously. In a follow-up work [36], the authors add sharp lateral gradients to their
front but do not include considerations of the Rossby number. It might be worthwhile to combine
both descriptions to obtain more a complete description of submesoscale instabilities.
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APPENDIX: COMPARISON WITH THE ESTABLISHMENT OF AN EKMAN SPIRAL

When Ro > −1, redefining F = β f , with β = √
1 + Ro, better reveals the setup of an EL. In

doing so, Eqs. (8) and (9) apply, albeit with the new definition of F . Note that we do not need to
solve for both U and V anymore since u and v derive from the real and imaginary parts of either
of them. In line with the traditional presentation of ELs, we solve for Ṽ = u + iv/β and introduce
the counterrotated field Ṽ ‡ = Ṽ eiτ to obtain the same diffusion equations such as the one in (10),
and the counterrotated boundary condition Ṽ ‡

Z |Z=0 = iA(τ )eiτ , with A = vz|z=0/β. The solution is
formally identical to Eq. (13), with the exception of ie−iθ replacing e−θ . When surface boundary
conditions change abruptly,

Ṽ = A0eiπ/4

2
√

2

[
eZ

√
2ierfc

(
−√

iτ − Z√
2τ

)
− e−Z

√
2ierfc

(√
iτ − Z√

2τ

)]
. (A1)

As τ → ∞, Ṽ → A0eZ+i(π/4+Z )/
√

2, which is the classical Ekman spiral solution. To obtain this
result, we used the identities

eiπ/4

√
2

erf(
√

iτ ) = S(
√

τ̂ ) + iC(
√

τ̂ ) → 1 + i

2
, (A2)

where S and C are the normalized Fresnel integrals, τ̂ = 2τ/π , and the last arrow implies limτ̂→∞.
At the surface,

Ṽ |Z=0 = A0[S(
√

τ̂ ) + iC(
√

τ̂ )]. (A3)

For τ � 1, C(
√

τ̂ ) ≈ √
τ̂ , i.e., exhibits a growth rate singularity similar to that of EII. In the other

limit τ 
 1, C(
√

τ̂ ) − 1/2 ≈ sin τ/
√

2πτ , with S behaving similarly. That is, the convergence to
the EL solution manifests itself as near-inertial, or near-F frequency, pseudo-oscillations. Note
that their envelope decays as 1/

√
2πτ , identical to that of

√
2/πD(

√
τ ), the compensated EII

magnitude. The time evolution of the surface hodograph resembles that of a Cornu spiral, albeit
one that converges more slowly towards its attractor and with a constant quasifrequency F .

Like EII, this solution highlights two phases: first, that of a rapid adjustment (singular growth
rate), followed by a slow (∼τ−1/2) and oscillatory convergence towards constant values u/A0 =
v/(βA0) = −1/2, which is the surface expression of the EL. These two phases are, of course, the
stable counterparts to EII’s VIP and InVI stages. In fact, because we defined VIP as the phase during
which rotation has not affected the motion yet, it appears natural that VIP is shared by both EII and
EL.

Contrary to EII, however, a wind disturbance of arbitrary orientation corresponds to a surface
boundary condition for Ṽz that is not purely imaginary and whose phase encodes the disturbance
direction. As a result, the orientation of u and v is with respect to the wind direction, not the mean
flow.
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