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Scale-by-scale kinetic energy budget near
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A scale-by-scale kinetic energy budget is analyzed near the turbulent/nonturbulent
interfacial (TNTI) layer with direct numerical simulations (DNSs) of a local turbulent front
evolving without mean shear (shear-free turbulence). A local volume average is used to
decompose the flow variables into their large-scale and small-scale components near the
TNTI layer. The kinetic energy and interscale energy flux from large to small scales of
motion are shown to be severely depleted for small scales within the viscous superlayer.
The forward interscale energy transfer from large to small scales near the TNTI layer is
mostly caused by the velocity gradient in the interface normal direction while the velocity
gradient in the tangential direction transfers, on average, the energy from small to large
scales. The velocity gradients that cause the forward energy transfer near the TNTI layer
are associated with a compressive motion in the interface normal direction and a shearing
motion due to the velocity in the tangential direction. The pressure diffusion increases
the kinetic energy near the interface except at small scales within the TNTI layer. The
averaged pressure diffusion term at the small scales within the TNTI layer has negative
values, which are consistent with the presence of small-scale vortices within the TNTI
layer. The transports by turbulent diffusion and interaction between large and small scales
are negatively correlated even near the TNTI layer, and their effects are locally canceled
by each other as also observed in other turbulent flows.
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I. INTRODUCTION

Turbulent flow regions in engineering applications and the natural environment are often sur-
rounded by regions of irrotational flow, where the separation occurs across a very thin layer, the
so-called turbulent/nonturbulent interfacial (TNTI) layer [1]. This layer plays an important role
in the mechanism of turbulent entrainment, in which regions of nonturbulent fluid become part of
the turbulent flow region [2]. Understanding the flow dynamics near this TNTI layer is crucial for
modeling, predicting, and controlling turbulent entrainment in many engineering flows. For this
reason, the TNTI layer has been extensively studied using direct numerical simulations (DNSs) and
experiments in free shear flows [2–10] and boundary layers [11–15].

Since turbulent flows are characterized by a wide range of scales of motion, studying the scale
dependence of several flow variables has been of great interest in turbulence research. The most
direct method of analysis typically involves studying the turbulent motions in the wave number
space. The key quantities of interest here are the kinetic energy spectrum and the energy transfer
function, which are both related in the Lin equation [16,17]. In contrast, a similar analysis in the
physical space is often based on the second-order velocity structure function, which can be seen
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as a measure of the cumulative kinetic energy held below a given length scale. In this context,
the Karman-Howarth equation is the counterpart of the Lin equation, and inhomogeneous and
anisotropic forms of the Karman-Howarth equation [18] have been used for the interscale analysis
of turbulent flows [19–21].

Cimarelli et al. [22] employed two-dimensional Fourier transforms to assess the TNTI layer
characteristics in the wave number space in DNSs of shear-free turbulence, which resulted in
statistics that contain contributions both from the turbulent and nonturbulent regions. It is, however,
crucial to rigorously separate the turbulent and nonturbulent flow regions in any credible analysis
of the turbulence near the interface because of the very different nature of the two flow regions
[3]. Unfortunately, when the classical methods developed for studying interscale energy transfers
in turbulent flows are employed to analyze the turbulent flow dynamics near the TNTI layer,
information from the turbulent flow region is necessarily contaminated by that from the nonturbulent
flow region, and, similarly, nonturbulent statistics invariably contain some information from the
turbulent flow region. The conditional statistics that have been developed to study the TNTI layer
since [3] allow for a clear separation between the two flow regions by calculating the statistics
conditioned on the distance from the TNTI layer. However, they do not provide any information
regarding the active scales of motion in the two flow regions.

In a recent work [23], we developed a new procedure that allows a clear separation of the flow
variables in the physical space as well as in the space of scales. This approach is based on a local
volume average combined with the conditional statistics taken on the local interface coordinate,
where the volume average acts as a low-pass filter decomposing a variable into their large-scale and
small-scale contributions. This method was used to estimate the integral length scale near the TNTI
layer [23]. The filtering approach has been used to investigate the local properties of turbulent energy
cascade [24–26]. In the present procedure, the turbulent and nonturbulent flow regions use local
volume averages containing only turbulent and nonturbulent fluids, respectively, thus enabling the
resulting statistics to reveal the detailed scale dependence of any turbulent fluid variables within the
TNTI layer. The kinetic-energy transfer near the TNTI has been studied by using one-point statistics
both in experiments [27] and DNS [28]. In the present work, we use the scale decomposition based
on the volume average to evaluate the scale-by-scale kinetic energy budgets near the TNTI layer.

II. DIRECT NUMERICAL SIMULATION DATABASE OF SHEAR-FREE TURBULENCE

A DNS database of shear-free turbulence [23] is used for studying the scale-by-scale transport of
kinetic energy near the TNTI layer. The shear-free turbulence is a localized turbulent front bounded
by a nonturbulent flow region, where the turbulent region spreads in one direction with time, while
the flow is statistically homogeneous in the other directions (details of the DNS can be found in
Ref. [29]). The direction in which the turbulence spreads is denoted by y while the homogeneous
directions are denoted by x and z. Velocity components in x, y, and z directions are denoted by u, v,
and w, respectively. The DNS code uses classical pseudospectral methods for spatial discretization
and the third-order Runge–Kutta method for temporal advancement. The simulation is performed in
a periodic box with size (2π )3, using N3 (collocation) points. The TNTI layer is analyzed with three
different DNS of the shear-free turbulence summarized in Table I. Here, the statistics are calculated
from a single instantaneous data point in each case. Table I shows the statistics obtained on the center
plane of the shear-free turbulence (y = 0). In all cases, the spatial resolution � is small compared
with the Kolmogorov scale η = (ν3/〈ε〉)1/4, where ε = 2νSi jSi j is the kinetic energy dissipation
rate, ν is the kinematic viscosity, Si j = (∂ui/∂x j + ∂u j/∂xi )/2 is the rate-of-strain tensor, and the
average 〈 〉 is taken in the homogeneous x and z directions as a function of y. Table I also shows
the ratio of rms velocity fluctuations in the x and z directions, urms/wrms, where rms values are
defined as frms = (〈 f 2〉 − 〈 f 〉2)1/2. These two directions are identical in statistics, and the shear-free
turbulence in the present DNS has urms/wrms ≈ 1. It should be noted that urms/wrms deviates from
1 significantly if the computational domain is not large enough because the statistical convergence
of the present DNS depends on the domain size in the homogeneous directions.
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TABLE I. Parameters of the DNS dataset of shear-free turbulence (SFT). Reynolds number Re0 = urmsL/ν

(urms is the rms velocity fluctuation in the x direction, L is the integral length scale calculated with the longitu-
dinal correlation function of the velocity in the x direction, and ν is the kinematic viscosity); N is the number
of collocation points; Resolution is �/η (� is the grid size and η is the Kolmogorov scale); Taylor-based
Reynolds number is Reλ = urmsλ/ν (λ is the Taylor length scale calculated with velocity fluctuations in the
x direction); Ratio between rms velocity fluctuations in the x and z directions is urms/wrms. The statistics are
taken on the center plane of the shear-free turbulence.

Flow Re0 N �/η Reλ λ/η L/η urms/wrms

SFT1 909 1024 1.3 192 27.3 126 1.04
SFT2 473 1024 1.1 126 22.1 89 0.96
SFT3 289 512 1.4 93 19.0 57 1.05

III. CONDITIONAL STATISTICS OF THE TURBULENT/NONTURBULENT
INTERFACIAL LAYER

A. Detection of the outer edge of the turbulent/nonturbulent interfacial layer

It is useful to define the outer edge of the TNTI layer, called “irrotational boundary” [30], which
represents an isosurface of vorticity magnitude |ω| = ωth. The threshold ωth is determined by ana-
lyzing the volume of the turbulent region, defined by |ω| > ωth, as a function of ωth as described in
Ref. [31]. Since |ω| rapidly changes across the thin TNTI layer, this isosurface location is insensitive
to ωth as long as ωth is taken from an appropriate range [31–33]. At each point of the irrotational
boundary, a local coordinate ζI , pointing in the normal direction of the irrotational boundary, is
defined by a unit vector n = −∇ω2/|∇ω2|. Here, ζI < 0 and ζI > 0 represent the turbulent and
nonturbulent regions, respectively, while the irrotational boundary is at ζI = 0. Figure 1 illustrates
examples of the local coordinate. Here, the flow is visualized on a two-dimensional plane for an
explanation while the local coordinate is defined with the three-dimensional vector n. Using this
local coordinate, averages conditioned on ζI can be obtained by averaging over points taken at the
same distance ζI from the irrotational boundary, either in the turbulent or in the nonturbulent flow
regions [3]. This average is denoted by 〈 〉I .

The procedure for computing the conditional statistics is the same as in Refs. [23,34]. The
conditional statistics are calculated as functions of ζI by taking samples from the local coordinate
assigned for various locations on the isosurface of |ω| = ωth. Each local coordinate is discretized
with spacing close to the Kolmogorov scale η taken at the center of the shear-free turbulence,
and variables on the DNS grids are interpolated onto the discrete points of the local coordinate

FIG. 1. Local coordinate ζI used for calculating conditional statistics. A color represents log10(ω · ω) while
an isosurface of |ω| = ωth is shown with white lines (SFT1). The coordinates shown with broken lines are
excluded from samples of conditional statistics.
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with the trilinear interpolation. The local coordinate sometimes crosses the isosurface more than
once. The conditional statistics are calculated separately in turbulent and nonturbulent regions by
excluding some of the local coordinates from statistical samples, as explained below. The local
coordinates shown with broken lines in Fig. 1 are not used for the conditional statistics. When
the local coordinate crosses another point of |ω| = ωth for |ζI | � 15η, the entire local coordinate is
excluded from the analysis. This example is shown as A in Fig. 1. When the local coordinate crosses
another point of |ω| = ωth for |ζI | > 15η (shown as B), the region within a distance of 15η from
|ω| = ωth is excluded from the conditional statistics. Here, 15η is determined from the thickness of
the TNTI layer, and it was confirmed that the conditional statistics do not depend on this length [34].
In this way, the turbulent and nonturbulent regions which appear in ζI > 0 and ζI < 0, respectively,
are excluded from samples of the conditional statistics, and the conditional statistics at a given ζI are
calculated solely from turbulent or nonturbulent regions. The number of points on the irrotational
boundary used for setting the local coordinate affects the convergence of the conditional statistics,
as examined in Appendix A. Here, the spacing between the two nearby points used as the origins of
ζI is less than 10η.

B. Scale decomposition of kinetic energy

We consider the kinetic energy of the flow as a function of a length scale r, where the scale
separation is achieved by using a low-pass filter [26]. The filtering operation at a given scale r is
defined as a volume average made in a sphere of radius r, centered at a point x, with volume VR(r).
Specifically, we define the average of any given function φ(x, t ) within the spherical volume of
radius r as

φ(x, t, r) =
∫∫∫

G(x, x′, r)φ(x′, t )dx′

VR
, (1)

where G is a kernel function which is equal to 1 and 0 inside (|x − x′| � r) and outside (|x − x′| >

r) the sphere, respectively. The volume is calculated as VR = ∫∫∫
G(x, x′, r)dx′. Therefore, Eq. (1)

is equivalent to the top-hat filter. The kinetic energy of the fluid contained in scales smaller than r
can be represented as kr (x, t, r) = uiui/2 − ui ui/2. Following studies on the subgrid scale (SGS)
energy budget [35,36], the governing equation for kr is written as

∂kr

∂t
+ u j

∂kr

∂x j
= DP + Dν + DT + DS + εν + �, (2)

with

DP = ∂

∂x j
(p u j − pu j ) = −u j

∂ p

∂x j
+ u j

∂ p

∂x j
, (3)

Dν = ν

2

∂2

∂x j∂x j
(uiui − ui ui ) = ν

(
1

2

∂2uiui

∂x j∂x j
− ∂ui

∂x j

∂ui

∂x j
− ui

∂2ui

∂x j∂x j

)
, (4)

DT = 1

2

∂

∂x j
(uiui u j − uiuiu j ) = −uiu j

∂ui

∂x j
+ u jui

∂ui

∂x j
, (5)

DS = ∂

∂x j
[(uiu j − ui u j )ui] = uiu j

∂ui

∂x j
− ui u j

∂ui

∂x j
+ (uiu j − ui u j )

∂ui

∂x j
, (6)

εν = −ν

[
∂ui

∂x j

∂ui

∂x j
− ∂ui

∂x j

∂ui

∂x j

]
, (7)

� = −(uiu j − ui u j )
∂ui

∂x j
. (8)
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FIG. 2. Sketch outlining the computation of the conditional spherical averaging for spheres whose center
is located in (a) the turbulent region and (b) the nonturbulent region. The position on the interface coordinate
ζI is denoted by xI in the global coordinate system.

Here, DP is the pressure diffusion, Dν is the viscous diffusion, DT is the turbulent diffusion, DS is
the diffusive effects arising from the interaction between the large-scale velocity ui and the small-
scale stress tensor uiu j − ui u j , εν is the viscous dissipation, and � represents the interscale energy
transfer between large and small scales. All terms are expressed in forms that do not contain spatial
derivatives of filtered quantities and fluctuations for application of this equation near the TNTI layer
explained below.

To study the scale-by-scale kinetic energy budget in relation to the TNTI layer, the volume
averaging procedure is combined with conditional averages computed in relation to the interface
position. Figure 2 outlines the procedure used for combining the spherical volume average with
the conditional average on ζI . The computation of Eq. (1) raises no particular difficulty when the
flow region within the volume is totally in the turbulent (or the nonturbulent) region. However, the
procedure needs to be slightly modified near the TNTI layer for studying separately the turbulent
and the nonturbulent flow regions. The volume average is defined with a sphere of radius r whose
center is located at xI , which is also located at ζI on the interface coordinate as sketched in Fig. 2.
The present method uses kernel functions GT and GNT that can assume 0 or 1 depending on the
position of the flow point x and the center of the sphere xI as defined in Fig. 2. Turbulent and
nonturbulent regions are identified on each side of the irrotational boundary. Therefore, the filter
defined with GT or GNT works as the volume average of the turbulent or nonturbulent regions.

The following procedure is adapted for calculating the conditional statistics of filtered quan-
tities: We consider a point on the isosurface of |ω| = ωth whose location is given by xω =
xω1 in the Cartesian coordinate system. For xω = xω1 on the isosurface, the local coordinate
ζI is defined. At one point on the local coordinate denoted as ζI = ζI1, the function GT or
GNT for a given filter length r = r1 is defined based on the profile of |ω(x, y, z)| and |ω| at
ζI = ζI1, as explained in Fig. 2. Equation (2) is valid for this filter defined with (xω, ζI , r) =
(xω1, ζI1, r1) because the same filter is applied in the entire computational domain. At ζI = ζI1,
we calculate the filtered quantities, e.g., kr and Eq. (2), which are used as samples of condi-
tional statistics at ζI = ζI1. This procedure is repeated for different sets of (xω, ζI , r). Finally,
the conditional statistics of filtered quantities are obtained as functions of (ζI , r) by taking
ensemble averages of different xω. Because Eqs. (3)–(8) are written in forms that do not con-
tain the derivative of filtered quantities, filtered values for the filter defined with (xω, ζI , r) =
(xω1, ζI1, r1) are calculated only at ζI = ζI1, and they are used for calculating the conditional
statistics. This method requires the filter calculation only at ζI = ζI1 instead of the entire com-
putational domain, and significantly reduces the computational cost of the conditional analysis of
Eqs. (3)–(8).
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FIG. 3. (a) Conditional rms velocity fluctuations in SFT1. (b) Variation of ξb and ηb across the TNTI layer
in SFT1. (ξb, ηb) obtained at the center of a fully developed turbulent mixing layer [38] is also plotted for
comparison. Three thin lines in panel (b) correspond to an axisymmetric state with one large eigenvalue, ηb =
ξb, or one small eigenvalue, ηb = −ξb, and a two-dimensional state ηb = (1/27 + 2ξ 3

b )1/2.

IV. RESULTS AND DISCUSSION

A. Conditional statistics near the turbulent/nonturbulent interfacial layer

The present work mainly relies on results obtained with SFT1 while SFT2 and SFT3 are used
to examine the Reynolds-number dependence. The Kolmogorov scale at the center of the shear-
free turbulence (y = 0) is used to normalize the distance ζI and scale r in the plots of conditional
statistics. It should be noted that the Kolmogorov scale in the turbulent region hardly depends on
the transverse position except within the TNTI layer [34]. The TNTI layer can be defined as a buffer
layer where the vorticity magnitude is adjusted between the turbulent and nonturbulent regions [1].
Based on the mean vorticity magnitude conditioned on ζI , the TNTI layer is found to be located
for −19η � ζI � 0 in the present DNS, where the reference Kolmogorov scale η is computed at
the center of the shear-free turbulence. Two sublayers within the TNTI layer can be defined based
on vorticity dynamics. One is called a viscous superlayer (VSL) and appears at the outer part of
the TNTI layer, where enstrophy growth is dominated by viscous diffusion [7,9,37]. The other one
is a turbulent sublayer (TSL) and is a buffer layer located between the viscous superlayer and the
turbulent core region. In the TSL, vortex stretching has an important contribution to enstrophy
growth [1]. The VSL and TSL are detected by examining the enstrophy budget near the TNTI layer,
and are found for −4.3η � ζI � 0 and −19η � ζI � −4.3η, respectively, in SFT1. The turbulent
region inside the TNTI layer is called a turbulent core region in this paper. Further details of the
identification of the TNTI layer and sublayers in the shear-free turbulence are described in Ref. [23].

Figure 3(a) shows rms velocity fluctuations near the TNTI layer. For the x direction, the rms
velocity fluctuation is defined as urmsI = (〈u2〉I − 〈u〉2

I )1/2, and those in other directions are defined
in the same manner. In the turbulent core region (ζI � −20η), rms velocity fluctuations are similar
for all components. Within the TNTI layer (−20η � ζI � 0), urmsI and wrmsI decrease toward the
nonturbulent region while the decrease of vrmsI is much slower than the other components. There-
fore, the velocity fluctuations are more anisotropic within the TNTI layer and in the nonturbulent
region than in the turbulent core region. The nonturbulent region has large velocity fluctuations in
the y direction, which is the direction of the mean flow development. This result is consistent with
the conditional rms velocity fluctuations in a turbulent planar jet, where velocity fluctuations are
larger in the lateral direction than in the spanwise direction [39]. With the Reynolds stress tensor
defined with the conditional averages, Ri j = 〈uiu j〉I − 〈ui〉I〈u j〉I , the normalized anisotropy tensor
can be defined as

bi j = Ri j

Rkk
− 1

3
δi j, (9)
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FIG. 4. Conditional rms vorticity in normal and tangential directions of the irrotational boundary:
√

2ωNI =√
2〈ω2

N 〉1/2
I and ωT I = 〈ω2

T 〉I with ωN = n · ω and ω2
T = ω2 − ω2

N .

where δi j is the Kronecker delta. The state of anisotropy of the Reynolds stress tensor is often
expressed with ηb = (bi jb ji/6)1/2 and ξb = (bi jb jkbki/6)1/3, which are related to the invariants of
bi j [40]. Figure 3(b) shows variations of ηb and ξb for −60η � ζI � 30η on the plane of ξb and ηb.
The figure also shows the result obtained at the center of the fully developed mixing layer, where the
Reynolds stress is calculated with conventional time averages instead of conditional averages [38].
From the nonturbulent to turbulent region, the state of anisotropy changes from (ξb, ηb) ≈ (0.2, 0.2)
to (0.05,0.05) and approaches the isotropic state (ξb, ηb) = (0, 0). Here, (ξb, ηb) ≈ (0.05, 0.05) is
already achieved just at the end of the TNTI layer in the turbulent region (ζI = −19η), and the
Reynolds stress tensor in the turbulent region becomes anisotropic within the TNTI layer. It should
be noted that the center of the mixing layer is more anisotropic than the turbulent region of the
shear-free turbulence because the shear-free turbulence does not have a mean velocity gradient.

On the local coordinate taken in the n direction, the vorticity component in the n direction is
given by ωN = n · ω. On the other hand, ω2

T = ω2 − ω2
N represents a contribution to ω2 = ω · ω

from the vorticity components in the tangential direction of the irrotational boundary. Figure 4
shows the conditional rms vorticities in the normal and tangential directions, which are defined
as ωNI = 〈ω2

N 〉1/2
I and ωT I = 〈ω2

T 〉1/2
I . In the figure, ωNI is multiplied by

√
2 because ωT I is equal

to
√

2ωNI when 〈ω2
x 〉I = 〈ω2

y 〉I = 〈ω2
z 〉I . Although ωT I sharply decreases for 10η � ζI � 0, ωNI

decreases slowly from the turbulent core region toward the nonturbulent region. This is because the
vorticity vector near the TNTI layer is mostly oriented in the tangential direction to the interface
[33,41]. The isotropic relation

√
2ωNI ≈ ωT I is still valid in the turbulent core region of ζI � 50η

although the presence of the TNTI layer affects the vorticity field within and near the TNTI layer of
the shear-free turbulence.

B. Scale-by-scale energy budget near the turbulent/nonturbulent interfacial layer

The filter defined with GT or GNT excludes some regions from the volume average. Therefore,
the properties of the filter change upon introducing GT or GNT . Here, the effective cutoff length
becomes smaller than the original filter. The characteristic length of the filter is estimated as

R f =
[

3

4π

∫∫∫
G(xI , x′, r)dx′

]1/3

, (10)

with G = GT or GNT . With this definition, R f is equal to r for the conventional top-hat filter, for
which G(xI , x, r) = 1 for |xI − x| � r and G = 0 for |xI − x| > r. R f can be treated as a variable
on the local coordinate, and the conditional average of R f divided by r is plotted as a function of
(r/η, ζI/η) in Fig. 5(a). For small r, 〈R f 〉I/r = 1 is obtained for most ζI , and the filter length is
not different from r, which is used for plotting the conditional statistics in this study. However,
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FIG. 5. Properties of the filter used near the TNTI layer: (a) the effective filter size 〈Rf 〉I divided by r;
(b) the location 〈ζ f 〉I at which filtered quantities are defined. These results are taken from SFT1.

〈R f 〉I/r decreases with r especially for small ζI , and the cutoff length of the filter at large scales is
not accurately represented by r. A similar issue also arises for the location ζI at which the filtered
quantities are defined since the center of the filter changes upon introducing GT or GNT . The location
where the filtered quantities are defined is estimated as the mass center of the volume used for
defining the volume average and is given by

x f =
∫∫∫

x′G(xI , x′, r)dx′∫∫∫
G(xI , x′, r)dx′ , (11)

with G = GT or GNT . The distance from the origin of the local coordinate (ζI = 0) to x f is denoted
ζ f . Figure 5(b) shows the conditional average of ζ f divided by η, where 〈ζ f 〉I = |ζI | appears as
horizontal lines. The filtered quantities are defined at ζI without any problems when 〈ζ f 〉I = |ζI |,
which is observed for small r. 〈ζ f 〉I tends to be larger than |ζI | for large r. In this case, the conditional
statistics do not represent the properties of turbulence at ζI . Therefore, the conditional statistics are
presented for |ζI | � r in the rest of the paper.

FIG. 6. Cumulative kinetic energy budgets as functions of ζI/η for SFT1, showing all the terms in Eq. (2),
i.e., pressure diffusion 〈DP〉I , viscous diffusion 〈Dν〉I , turbulent diffusion 〈DT 〉I , diffusion by large- and small-
scale interactions 〈DS〉I , viscous dissipation 〈εν〉I , and energy flux 〈�〉I for (a) r = 6η and (b) r = 24η. The
results are presented for |ζI | � r.
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FIG. 7. (a) Cumulative kinetic energy near the TNTI layer and conditional averages of (b) viscous dis-
sipation −〈εν〉I and (c) energy flux 〈�〉I , which are plotted as functions of ζI and r in SFT1. Black regions
represents |ζI | < r.

Figure 6 shows the cumulative kinetic energy budgets in the turbulent region near the TNTI layer
in SFT1 for two different scales (r = 6η and 24η), showing conditional averages of all the terms
in Eq. (2) as functions of ζI . These budgets are quite different from the classical kinetic energy
budgets in free shear flows. The transport terms DT and DS are more important near the irrotational
boundary than in the turbulent core region. Far from the TNTI layer, the mean energy flux 〈�〉I

roughly balances the mean viscous dissipation 〈εν〉I for both length scales r = 6η and 24η. The
viscous diffusion 〈Dν〉I is always negligible near the TNTI layer at r = 24η. However, 〈Dν〉I at
r = 6η becomes negative within the TNTI layer, indicating the energy transfer from the TSL to the
VSL (this is further confirmed by positive 〈Dν〉I in the VSL in Fig. 9). The pressure diffusion 〈DP〉I

displays an oscillation within the TNTI layer for r = 6η while negative 〈DP〉I cannot be observed
at r = 24η.

Figure 7(a) displays the conditional profile of the cumulative kinetic energy 〈kr〉I as a function
of both r and ζI . This plot confirms that there is less energy at small scales in the nontur-
bulent region (ζI > 0) than in the turbulent region (ζI < 0). 〈kr〉I hardly depends on ζI for
ζI/η � −15, i.e., in the turbulent core region. However, 〈kr〉I at small scales r/η � 10 decreases
as the irrotational boundary (located at ζI = 0) is approached from the turbulent region. The
decrease of 〈kr〉I at small scales is more important within the VSL (−4η � ζI � 0) than in the
TSL (−19η � ζI � −4η). This confirms one of the key assumptions made in previous studies
and models of the TNTI layer [42,43]; namely, that the TNTI layer inhibits the buildup of
small-scale turbulent motions. Small-scale velocity fluctuations are small in the VSL and the non-
turbulent regions because the kinetic energy in these regions is associated with large-scale motions,
which can also contribute to the irrotational strain near the TNTI layer [8,44,45]. Therefore, the rms
velocity fluctuations in Fig. 3 are not negligible in the VSL and the nonturbulent regions because
the rms fluctuations contain the contributions from all length scales.

Figures 7(b) and 7(c) show conditional averages of the viscous dissipation −〈εν〉I and the
interscale energy flux 〈�〉I in Eq. (2), respectively. The separation between the turbulent and
nonturbulent regions is also clearly observed because the dissipation and the energy flux are very
small in the nonturbulent region. The magnitude of the dissipation increases with r. Both −〈εν〉I

and 〈�〉I at small scales become small as the irrotational boundary is approached from the turbulent
region. Figures 7(b) and 7(c) confirm that the interscale energy transfer to very small scales as well
as the dissipation at small scales are both suppressed within the VSL. Appendix B presents the
cumulative kinetic energy and the mean interscale energy flux obtained with a conventional filter
that does not distinguish turbulent and nonturbulent regions.
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FIG. 8. Correlation coefficients between DT and DS , CI (DT , DS ), and between −� and DT , CI (DT , −�),
plotted against r/η in SFT1. The results are presented for |ζI | � r.

Returning to Fig. 6, one of the most interesting features concerns the turbulent diffusion 〈DT 〉I

and the diffusion by large- and small-scale interactions 〈DS〉I , both of which become large in
magnitude as the irrotational boundary is approached. The profiles of 〈DT 〉I and 〈DS〉I suggest
that they are in some sort of balance, partially canceling their global effect. Their signs change
upon approaching the irrotational boundary from the turbulent region. For instance, the turbulent
diffusion 〈DT 〉I changes from negative to positive values as the irrotational boundary is approached.
Thus, the turbulent diffusion removes kinetic energy from the core of the turbulent flow and feeds
that energy into a fluid near the TNTI layer. The opposite effect (sign) can be seen for 〈DS〉I .
Figure 6 shows that the point where the signs of these terms change is clearly outside the TNTI
layer for r = 24η, implying large-scale effects on these terms. Both 〈DT 〉I and 〈DS〉I change their
sign closer to the irrotational boundary as the scale decreases (at ζI/η ≈ −35 for r = 24η and
ζI/η ≈ −20 for r = 6η). Notice that both terms become even more important than 〈�〉I and 〈εν〉I

near the irrotational boundary for r = 6η. The link between DT and DS becomes even clearer when
analyzing the correlation between the two quantities at several scales. Figure 8 shows the correlation
coefficient between these terms. The distance from the irrotational boundary does not affect the
degree of (anti) correlation between the two quantities, which is very high in the entire TNTI layer.
In Eq. (6), the last term of DS is equal to −�. The analysis with the Kármán-Howarth-Monin-Hill
equation indicates that � and DT are correlated with each other in a turbulent wake [46], and
this correlation can be the reason for the anticorrelation between DT and DS . This is examined
by calculating the correlation coefficient between DT and −�, which is also shown in Fig. 8.
Although DT and −� are negatively correlated, the correlation is not strong enough to cause the
strong anticorrelation between DT and DS . The correlation between DT and −� is stronger within
the TNTI layer than in the turbulent core region. The correlation between DT and −� was also
found in the near field of the wake, where the flow is highly anisotropic and inhomogeneous [46].

The conditional averages of the remaining terms in Eq. (2) are shown in Fig. 9, where 〈DS〉I is not
shown because it strongly resembles the profile of DT with an opposite sign. The pressure diffusion
〈DP〉I [Fig. 9(a)] is mostly positive for ζI/η � −10, and tends to increase the kinetic energy of
the flow near the TNTI layer. However, 〈DP〉I is negative for small scales at ζI/η ≈ −5, and the
small-scale kinetic energy is removed by the pressure effect within the TNTI layer. On the other
hand, the mean viscous diffusion in Fig. 9(b) is small compared with the other terms. However, it
locally removes energy from the turbulent region while it contributes to the kinetic energy growth
in the VSL region at small scales. The separation between positive and negative values of 〈Dν〉I

and 〈DP〉I seems to occur within the TNTI layer, which suggests that the role of the pressure and
viscous forces in the kinetic energy transfer is affected by the presence of the TNTI layer. It has also
been shown that the viscous diffusion transfers enstrophy from the TSL toward the VSL [7,37]. The
profile of 〈Dν〉I indicates that the viscous diffusion for the kinetic energy also has a similar role at
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FIG. 9. Conditional averages of diffusion terms of the cumulative kinetic energy as functions of ζI and r in
SFT1: (a) pressure diffusion 〈DP〉I ; (b) viscous diffusion 〈Dν〉I ; (c) turbulent diffusion 〈DT 〉I . The results are
presented for |ζI | � r while black represents |ζI | < r.

small scales r � 6η, and the viscous diffusion of enstrophy within the TNTI layer can be associated
with the kinetic energy diffusion at the small scales. 〈DT 〉I shown in Fig. 9(c) is positive within and
near the TNTI layer, while it becomes negative far from the TNTI layer. Thus, 〈DT 〉I does not seem
to be correlated with the pressure diffusion 〈DP〉I or the viscous diffusion 〈Dν〉I , and it transfers the
energy toward the region near the TNTI layer from the turbulent core region.

C. Pressure diffusion at small scales within the turbulent/nonturbulent interfacial layer

In Fig. 9(a), the pressure diffusion term displays negative values near the TNTI layer. The mini-
mum value of the pressure diffusion within the TNTI layer is examined with the three simulations
used in this work. Figure 10(a) shows the location ζI and scale r of the minimum as a function
of the Reynolds number. The minimum of 〈DP〉I is obtained at (r, ζI ) ≈ (5.8η, −6.0η), which is
relatively independent of the Reynolds number. Thus, the pressure diffusion DP effectively reduces
the kinetic energy at small scales around ζI = −6η, i.e., within the TSL region. Since both the
pressure diffusion DP and the viscous dissipation εν reduce the kinetic energy within this layer,
Fig. 10(b) shows their relative importance, compared with the energy flux, as a function of the

FIG. 10. (a) Coordinate within the TNTI layer (ζI/η) and scale (r/η) at which the mean pressure diffusion
term 〈DP〉I attains its minimum, plotted against the Reynolds number on the centerline of the shear-free
turbulence. (b) Comparison between the mean pressure diffusion 〈DP〉I and the energy dissipation 〈εν〉I (both
normalized by the energy flux 〈�〉I ) plotted against the Reynolds number, where the values are taken from the
locations where 〈Dp〉I attains its minimum shown in panel (a).
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Reynolds number. In all cases, 〈εν〉I is more important than 〈DP〉I . However, as the Reynolds number
increases, the magnitude of 〈DP〉I/〈�〉I slightly increases, and conversely 〈εν〉I/〈�〉I decreases.
Even though 〈εν〉I remains dominant, 〈DP〉I is not negligible and accounts for roughly 20% of the
total kinetic energy transferred for the scale of r ≈ 6η.

The local minimum value of 〈DP〉I in the vicinity of its positive values for small scales is possibly
explained by the presence of small-scale vortices within the TNTI layer. A previous DNS study on
the SGS kinetic energy transfer observed that negative peaks of DP are often centered at the vortex
cores, which are surrounded by positive DP [36]. It has also been shown that small-scale vortices
with a radius of about 5η frequently appear within the TSL [32,41,47]. The outer edge of the TNTI
layer is formed around these vortices near the edge of the turbulent region, as visualized in previous
studies [32,33,41], and the local coordinate in the interface normal direction often crosses the core
of the vortices. Therefore, the small-scale vortices within the TSL can cause the local minimum of
〈DP〉I at small scales within the TSL and positive 〈DP〉I around there.

D. Interscale energy transfer near the turbulent/nonturbulent interfacial layer

The interscale energy flux � is further examined with the velocity vector and gradient described
in relation to the interface orientation. On each local coordinate ζI , we can define the orthogonal
coordinate system (ζI , ζt1, ζt2), where ζt1 and ζt2 are the coordinates in tangential directions of
the irrotational boundary. Here, tangential directions are arbitrary on the plane perpendicular to the
interface normal direction n. The velocity components in the ζI , ζt1, and ζt2 directions are denoted
by un, ut1, and ut2, respectively. With these velocity components, � is decomposed as

� = �n,n + �n,t + �t,n + �t,t l + �t,tt , (12)

�n,n = −(unun − un un)
∂un

∂ζI
, (13)

�n,t = −(unut1 − un ut1)
∂un

∂ζt1
− (unut2 − un ut2)

∂un

∂ζt2
, (14)

�t,n = −(ut1un − ut1 un)
∂ut1

∂ζI
− (ut2un − ut2 un)

∂ut2

∂ζI
, (15)

�t,t l = −(ut1ut1 − ut1 ut1)
∂ut1

∂ζt1
− (ut2ut2 − ut2 ut2)

∂ut2

∂ζt2
, (16)

�t,tt = −(ut1ut2 − ut1 ut2)
∂ut1

∂ζt2
− (ut2ut1 − ut2 ut1)

∂ut2

∂ζt1
. (17)

The decomposition only considers the sum of the contributions from t1 and t2 and does not take
into account the dependence on specific directions on the tangential plane of the interface. �α,β

represents the energy flux arising from the derivative of α-directional velocity with respect to the β

direction, where the subscripts n and t denote the normal and tangential directions of the interface,
respectively. �t,t l contains the tangential velocity and its longitudinal derivative in the tangential
direction, while �t,tt contains the transverse derivative. Figure 11(a) shows the conditional averages
of the decomposed terms with the length scale of r/η = 6. Averages of �n,n and �t,n have large
positive values near the interface. These components contain the velocity gradient in the interface
normal direction, and the energy transfer from large to small scales is caused by the gradient in
the interface normal direction. On the contrary, the terms with the tangential gradient, �n,t and
�t,t l , have negative mean values near the interface, and these terms contribute to the mean energy
transfer from small to large scales. However, the magnitudes of 〈�n,t 〉I and 〈�t,t l〉I are smaller than
〈�n,n〉I and 〈�t,n〉I , and the average of � is still positive. The dependence on these directions is
much weaker in the turbulent core region, and there are no significant influences of the TNTI on
� far away from the TNTI layer. Figure 11(b) shows the results at r/η = 24. The profiles of each
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FIG. 11. Conditional averages of decomposed terms of the interscale energy flux, Eqs. (13)–(17), in SFT1:
(a) r/η = 6; (b) r/η = 24. The results are presented for |ζI | � r.

term are qualitatively similar for r/η = 6 and 24, and the velocity gradient in the interface normal
direction causes the interscale energy transfer to small scales. However, the influence of the TNTI
layer appears further away from the interface for the energy flux at larger scales.

Figure 12 complements the information given in the conditional average of the kinetic energy
flux � presented in Fig. 7(c) by showing the probability density function (PDF) of � for r/η = 4 at
three locations. Even though the mean value of � is positive, implying a dominating forward energy
transfer from large to small scales, both forward and backward transfer events exist. The forward
transfer (� > 0) becomes less frequent from the TSL toward the VSL as also expected from small
〈�〉I within the VSL.

Figures 13(a)–13(e) show the joint PDF between � and decomposed terms in Eq. (12) calculated
for (ζI/η, r/η) = (−10, 10). Events with � > 0 mostly occur with positive �n,n and �t,n in
Figs. 13(a) and 13(c), and the instantaneous energy transfer to small scales is also associated with
the velocity gradient in the interface normal direction. In Figs. 13(b) and 13(d), the probability is
high for � > 0 even for �n,t < 0 and �n,t l < 0. Thus, although the averages of �n,t and �n,t l are
negative, negative �n,t and �n,t l are not directly related to � < 0. The comparison of the joint
PDF for all decomposed terms indicates that � < 0 is not caused by a specific term. Figure 13(f)
shows the joint PDF between �n,n and �t,n. These terms are positively correlated, and the energy
transfer into small scales by �n,n and �t,n often occurs in the same region. Positive �n,n requires
∂un/∂ζI < 0. As un is the velocity in the ζI direction, ∂un/∂ζI < 0 represents a compressive motion

FIG. 12. PDF of the kinetic energy flux � for r/η = 4 within the VSL (ζI/η = −4), TSL (ζI/η = −10),
and turbulent core region (ζI/η = −30).
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FIG. 13. Joint PDF between � and decomposed terms in Eqs. (13)–(17): (a) �n,n, (b) �n,t , (c) �t,n, (d)
�t,t l , (e) �t,tt . (f) Joint PDF between �n,n and �t,n.

in the interface normal direction. �t,n contain ∂ut1/∂ζI and ∂ut2/∂ζI , which can be considered as a
shear due to the tangential-velocity jump across the TNTI layer. The compression in the interface
normal direction can amplify the tangential-velocity gradients in the interface normal direction,
∂ut1/∂ζI and ∂ut2/∂ζI , and therefore �n,n tends be correlated with �n,t . Positive �n,n and negative
�t,t l near the TNTI layer are consistent with the analysis of the interscale energy transfer based
on the Kármán-Howarth-Monin-Hill (KHMH) equation in a turbulent wake [48]. It was shown that
stretching motions in the interface tangential direction, related to �t,t l in the present analysis, cause
a backward energy transfer, while compressive motions in the interface normal direction, i.e., �n,n,
cause a forward energy transfer. The analysis of the KHMH equation was conducted on an isosurface
used to detect the TNTI layer in the wake. The present analysis conditioned on the distance from the
irrotational boundary further confirms that the presence of the interface affects the interscale energy
transfer within the entire TNTI layer and even in the turbulent core region when the scale r is large.

V. CONCLUSIONS

The scale dependence of kinetic energy near the TNTI layer was studied with direct numerical
simulations of shear-free turbulence. The scale dependence was assessed by using a different diag-
nostic tool based on the local volume average (low-pass filter) combined with statistics conditioned
on the distance from the outer edge of the TNTI layer. The proposed metric is therefore able to
decompose the flow into large- and small-scale components, at a fixed distance from the outer edge
of the TNTI layer. The local volume average was taken solely with turbulent or nonturbulent regions,
and the scale dependence was studied separately for these two regions.

Conditional averages were taken for the small-scale kinetic energy and its transport equation.
The presence of the TNTI depletes the kinetic energy at small scales and the interscale energy
flux � into small scales within the VSL. The interscale energy flux was also examined based on
the decomposition that considers the velocity vector and its gradient in the interface normal and
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FIG. 14. Dependence of conditional statistics on the different number of samples in SFT1: (a) cumulative
kinetic energy; (b) averaged interscale energy flux. These results are obtained at ζI = −15η in SFT1.

tangential directions. The present analysis confirmed that the interscale energy transfer from large
to small scales is caused by the velocity gradient in the interface normal direction. Here, the energy
transfer from large to small scales is caused by fluid compression associated with the gradient of
the interface-normal velocity and a shearing motion associated with the gradient of the interface-
tangential velocity. The interscale energy transfers by the compression and shear tend to occur in the
same region and contribute to the energy flux from large to small scales. The viscous diffusion Dν

is shown to increase the small-scale kinetic energy within the VSL, and this energy growth can be
related to the process by which the fluid within the VSL gains enstrophy by viscous diffusion. The
turbulent diffusion DT and diffusion by large- and small-scale interactions DS are anticorrelated
within the TNTI layer. DS can be expressed in a form that contains the interscale energy flux �

with a negative sign. Although DT and −� exhibit a negative correlation within the TNTI layer,
the correlation is not strong enough to cause a strong correlation between DT and DS . The role
of the pressure diffusion DP changes depending on the scale, because it reduces the small-scale
kinetic energy within the TSL while increasing the energy at other regions and scales. For scales
of about 6η, the pressure diffusion term has a local minimum within the TSL, while the pressure
diffusion contributes to an increase of the kinetic energy in the turbulent core region. This profile
can be explained by the presence of small-scale vortices within the TSL since the vortex cores often
have negative peaks of the pressure diffusion term, which are surrounded by positive values [36].
The results provide the first detailed picture of the kinetic energy dynamics within the TNTI layer
as functions of scale and position within the layer, and the proposed approach opens the door to a
detailed study of the entrainment mechanism based on the scale dependence of turbulent flows.
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APPENDIX A: INFLUENCE OF NUMBER OF SAMPLES ON CONDITIONAL STATISTICS

The convergence of conditional statistics depends on the number of points on the irrotational
boundary, NC , for which the statistical samples are taken with the local coordinate ζI . Figure 14
shows the cumulative kinetic energy 〈kr〉I and the averaged interscale energy flux 〈�〉I at ζI = −15η

obtained for a range of NC between 5.0 × 102 and 6.5 × 105. 〈kr〉I is independent of NC for the range
of Nc used here, and one can obtain a well-converged result for 〈kr〉I even with a small number of
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FIG. 15. Conditional statistics calculated with the filter that does not distinguish turbulent and nonturbulent
regions: (a) cumulative kinetic energy; (b) averaged interscale energy flux. These results are obtained in SFT1.

samples. On the other hand, 〈�〉I tends to be converged when NC > 5.0 × 104. Here, the points
where the local coordinate is defined are almost uniformly distributed on the isosurface of |ω| = ωth.
The order of the distance between two nearby points on the isosurface is estimated as D = √

S/NC ,
where S is the isosurface area of |ω| = ωth. For NC ≈ 5.0 × 104, D/η is about 13 in SFT1, and the
local coordinate has to be assigned to the isosurface with spacing smaller than about 13 times the
Kolmogorov length scale for the DNS database used in this study.

APPENDIX B: STATISTICS OBTAINED WITH A CONVENTIONAL TOP-HAT
LOW-PASS FILTER

The filter used for the scale decomposition is defined with the volume average of either turbulent
or nonturbulent regions. This Appendix assesses a filter that does not distinguish between these two
regions. This filter is defined by Eq. (1) with G equal to 1 and 0 for |x − x′| � r and |x − x′| > r,
respectively. Figure 15 shows the cumulative kinetic energy 〈kr〉I and interscale energy flux 〈�〉I

obtained with this filter. As also found in the profiles obtained with GT and GNT in Figs. 7(a) and
7(c), 〈kr〉I and 〈�〉I with small r within the VSL are smaller than in the turbulent core region.
However, 〈kr〉I and 〈�〉I for all length scales decrease from the turbulent toward the nonturbulent
region because the nonturbulent region has smaller 〈kr〉I and 〈�〉I than the turbulent region.
Therefore, when the filter is applied without distinguishing the turbulent and nonturbulent regions,
it is not clear whether the reduction of 〈kr〉I and 〈�〉I at small r within the TNTI layer is related to
the properties of the TNTI layer or the influence of the nonturbulent region mixed in the statistics
calculated in the turbulent region. Here, the present results do not suggest that a low-pass filter
used in the study of TNTI layers should always distinguish turbulent and nonturbulent regions. For
example, when the performance of subgrid-scale models is assessed near the TNTI layer, a low-pass
filter that defines grid and subgrid scales should be applied without distinguishing the two regions
because computational grids in large-eddy simulations are usually too coarse to resolve thin TNTI
layers [49–51].
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