PHYSICAL REVIEW FLUIDS 5, 124605 (2020)

From isotropic turbulence in triply periodic cubic domains to sheared
turbulence with inflow/outflow

Chandru Dhandapani ®” and Guillaume Blanquart
California Institute of Technology, Pasadena, California, USA

® (Received 8 October 2019; accepted 4 November 2020;
published 17 December 2020)

Homogeneous shear turbulence (HST) is an idealized version of the shear turbulence
observed in practical free shear flows, and can be simulated using simple computational
domains. One of the numerically efficient configurations to simulate turbulent flows is
to use triply periodic domains. However, owing to the mean streamwise velocity being
nonhomogeneous, periodic boundary conditions cannot be used along one of the directions.
Several studies included shear periodic boundary conditions in the cross-stream direction.
However, in these simulations, the turbulence statistics grew exponentially with time,
whereas the turbulence observed in free shear flows is statistically stationary. In Dhanda-
pani et al. [Phys. Rev. Fluids 4, 084606 (2019)], the authors fixed this problem by focusing
on the velocity fluctuations, performing HST simulations with only shear production and
neglecting shear convection. The current study improves upon the previous simulations by
including shear convection, by introducing an inflow/outflow in the cross-stream direction.
To reduce the impact of the boundary conditions, an elongated domain is used. The
simulation results show that the aspect ratio has very little effect on both isotropic and shear
turbulence. When convection is included, the turbulence statistics still reach a statistically
stationary state. The Reynolds shear stress and the anisotropy values agree very well with
the results from experiments and simulations of mixing layers, planar jets, and round jets.

DOI: 10.1103/PhysRevFluids.5.124605

I. INTRODUCTION

Turbulent free shear flows are found in a multitude of industrial applications and in nature.
However, owing to the range of scales and the stochastic and unsteady nature of turbulence,
simulating such flows has proven to be quite challenging. Various configurations have been used
to simulate turbulent flows using direct numerical simulations (DNS), which are resolved down to
the smallest turbulent length scales.

A numerically efficient method to analyze the turbulence observed in the shear layers of practical
free shear flows is to use homogeneous shear turbulence (HST) simulations. HST is characterized
by a mean flow with a constant gradient perpendicular to the flow, while the turbulence statistics are
homogeneous in all three directions. The turbulence in HST is dominated by two physical processes:
shear production and shear convection. While shear production is homogeneous, shear convection
involves the mean velocity and is nonhomogeneous. The nonhomogeneous shear convection term
presents issues in HST simulations, as regular periodic boundary conditions cannot be used in the
mean gradient direction. These issues have been tackled in past HST studies in different ways.

In 1981, Rogallo performed numerical HST experiments, using time-dependent coordinate
transformations to maintain periodic boundary conditions, which meant the field had to be remeshed
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regularly [1]. The same was true in the case of Rogers and Moin’s study [2] as well as for
Lee et al. [3]. Baron [4] tackled the issue by introducing shear-periodic boundary conditions in
the gradient direction, which was also implemented by Gerz et al. [S], Brucker et al. [6], Isaza
and Collins et al. [7], and Kasbaoui et al. [8]. However, in all of these simulations, the turbulence
statistics are not stationary [1-8].

Recently, Sekimoto et al. performed statistically stationary HST simulations for a wide range
of aspect ratios. The study focused on the bursts in the time evolution of the turbulence statis-
tics [9]. These bursts are not a result of the shear convection, as they were observed in simulations
of isotropic turbulence [10] and of shear turbulence without shear convection [11]. Carroll and
Blanquart were able to reduce these bursts by modifying the form of the linear forcing terms [10].
To date, Sekimoto et al. remains the only HST study with shear-periodic boundaries to achieve
statistical stationarity. While Sekimoto et al. did achieve a statistically stationary state in their
simulations, they did not investigate the structure, anisotropy, or scaling of the resulting turbulent
field, nor did they compare them against the shear turbulence observed in practical flows. In fact,
previous studies were focused on phenomenological shear in idealized HST flows and were not
derived to match precise experimental configurations.

In contrast, Rah et al. [12] and Dhandapani et al. [11] performed simulations corresponding to
particular locations in experimental configurations of turbulent flows, utilizing and extending the
general linear forcing formalism used by Lundgren [13]. Rah et al. decomposed the instantaneous
velocity, u, into its mean, u, and fluctuating component, u’, at the centerline of a statistically
stationary turbulent round jet. They captured the statistically stationary turbulence in a triply
periodic cubic domain, by simulating just the velocity fluctuations [12]. The velocity anisotropy,
energy spectrum, and turbulent kinetic energy budget from their simulations agreed well with
experiments and full-domain DNS of turbulent round jets. It should be noted that the flow at the
centerline has no shear convection. That is why the authors could use regular periodic boundary
conditions.

Using similar techniques, the authors extended the study to simulate the shear layers of sta-
tistically stationary free shear flows, including turbulent mixing layers, turbulent planar jet, and
round jets [11]. The study achieved the often elusive combination of homogeneity and statistical
stationarity in HST calculations, by not including shear convection. The energy spectra from the
simulations matched perfectly with experiments, and the anisotropy values show decent agreement
with full-domain DNS and experiments, leaving a little room for improvement.

The current study improves upon the previous study by including shear convection in the
simulation. Theoretically, shear convection does not impact the ensemble averaged TKE equation.
However, no study has investigated the impact of shear convection separated from shear production,
and its impact of the flow field has not been characterized. The goal of this study is threefold:
(1) achieve statistically stationary turbulence with the inclusion of shear convection, without using
shear-periodic boundary conditions, (2) compare the results with experiments of free shear flows,
and (3) isolate the effects of shear convection and shear production. As mentioned earlier, as the
mean velocity is nonhomogeneous, periodic boundary conditions cannot be used in the gradient
direction. Instead of using shear-periodic boundaries or remeshing schemes (as done in previous
studies), the objective is to use an inflow/outflow in the gradient direction. To avoid an influence
of the boundary conditions on the turbulence statistics in the bulk of the domain, the domain width
must be larger in the nonhomogeneous direction.

The numerical approach is presented in Sec. II followed by a stationary state analysis in Sec. III.
The results are discussed in Sec. IV, where the effects of aspect ratio are detailed in Sec. IV A, the
effects of inflow/outflow are discussed in Sec. IV B, and the effects of shear convection are analyzed
in Sec. IV C. Finally, concluding remarks are presented in Sec. V.
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II. NUMERICAL APPROACH
A. Governing equations

The flows considered for the current study are incompressible turbulent flows, with constant
density, p, and kinematic viscosity, v. This study follows the methodology of Lundgren [13],
expanded to anisotropic flows by Rah et al. [12] and Dhandapani et al. [11]. Only a brief review
of the methodology is provided here. The transport equation for the fluctuating velocity field,
u' = u — u, where ~ represents the ensemble average, is given by

au, — / / 1 / 2. 7 I —
E%—(u—i—u)-Vu=——Vp~|—vVu+V~u’u’—u'Vu, (1)
0
where p’ is the fluctuating pressure, p’ = p — p. The linear production term, —u’ - Vu, and the
advection by the mean flow, —u - Vu, significantly affect the turbulence statistics.
Equation (1) is rewritten in a mathematically equivalent form given by

ou’ vy
a—l;+V-(u'®u’)=——p+vV2u'+f—V-Vu', )
o
where f = —u’ - Vu is the linear forcing vector, which can be calculated based on the mean velocity

gradients. For homogeneous isotropic turbulence (HIT), f = Au’ [13]; at the centerline of a jet, f =
Au' /2 + Au,/2 ey [12]; and for shear-dominated regions in mixing layers, planar jets, and round
jets, f = Bule, [11]. Note that the jet axis is aligned with the y axis in this study. In the general
case, the mean velocity gradient tensor, —Vu, would be a combination of diagonal elements and
a dominant off-diagonal shear strain rate element. Hence, the forcing matrix containing only the
diagonal elements and the forcing matrix with only the off-diagonal element can be seen as the
two extreme cases of turbulence forcing. These two limiting cases (HIT and HST) will be explored
further in the study.

The simulations are performed using NGA [14], a semi-implicit velocity solver with an energy-
conserving finite difference scheme on a standard staggered grid. The solver uses second-order
schemes in space and for time integration. In all these simulations, the computational domains are
meshed with a uniform grid, with equal spacing in the three directions, Ax = Ay = Az = L/128.

The grid size is chosen such that Ax >~ 1.6 i, where 1, = (1)3/6)1/4 is the Kolomogorov length
scale. This corresponds to kyaxn =~ 2.0, where k. is the highest resolved wave number. A value of
kmaxn > 1.5 is often reported as sufficient for numerical simulations of isotropic turbulence [15,16].
The same simulation framework was used by Desjardins et al. to perform HIT simulations using
kmaxn = 1.5, the spectra of which agreed perfectly with spectral simulations and experiments [14].
To ensure grid convergence, the authors performed doubly refined HST simulations in the 2L x L X
L domains, and there were no differences in the statistics from the simulation results.

When discussing shear turbulence, the effect of shear convection on the turbulence statistics
should also be analyzed. This requires including an imposed mean velocity in the simulation,
which has a gradient of —B in the cross-stream direction. This is not possible with a triply periodic
computational domain, as the imposed mean velocity is not periodic. Hence, a new computational
domain with inflow/outflow is required in order to include shear convection in these simulations.
Domains with inflow/outflow need to be longer in that direction, so the boundary conditions do not
affect the bulk of the domain.

B. Flow configurations

Simulations of increasing complexity are considered:

(1) Triply periodic, cubic domain

(2) Triply periodic, elongated domains

(3) Doubly periodic, elongated domain with inflow/outflow

(4) Doubly periodic, elongated domain with inflow/outflow and shear convection.
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TABLE I. Parameters of the triply periodic and inflow/outflow simulations.

Triply periodic

Cubic Long Inflow/outflow (I/0O)

Isotropic  Shear Isotropic Shear Isotropic Shear Isotropic ~ Shear Isotropic Shear Convection

Domain

size LxLxL 2L x L x L 4L x L x L 8L xLxL 1L x L x L
Grid 128 x 128 x 128 256 x 128 x 128 512 x 128 x 128 1024 x 128 x 128 1408 x 128 x 128

f Au’' Buey Au’' Bu' ey Au' Bu' ey, Au' Bu' e, Au' Bu' e, Buey
v 0 0 0 0 0 0 0 0 0 0 Ve,
Re, 160 150 145 150 140 150 130 150 130 130 210
Re; 50 50 50 50 45 50 45 50 45 45 55
¢/L 0.18 0.25 0.17 0.25 0.17 0.25 0.16 0.25 0.16 0.23 0.33
B —0.03 0.40 0.00 0.39 0.00 0.38 0.00 0.38 0.00 0.41 0.31

The simulation parameters for the different simulations are presented in Table I. The domain width,
viscosity, and forcing constant are kept constant between the simulations, so the effects of the aspect
ratio, inflow/outflow, and shear convection on the turbulent flow can be isolated and analyzed.

1. Triply periodic domain

All simulations in the current section rely on periodic boundary conditions and result in statistical
homogeneity in all three directions. Therefore, ensemble averages can be replaced by volume
averages, calculated as

1
<a><r)=Lz—bcfxﬂfzau,y,z,t)dxdy dz, 3)

where L, is the domain width in the x direction. Isotropic and shear turbulence simulations are
performed in four domains with different aspect ratios. The first one is a cubic domain with a width
of L in each direction, L, = L. Each subsequent domain is doubled in length in the x direction,
L., =2L, 4L, 8L.

The simulations are initialized with velocity fields from the results of previously performed HST
simulations, at similar turbulence parameters [11]. The velocity fields are copied over multiple times
for the initial conditions of the long domain simulations, and random small perturbations (of 1%
magnitude compared to i) in velocity are included to break symmetry. The time evolution of
the long domain simulation statistics deviate quickly from that of cubic domain simulations, and
symmetry is broken within 5 7.

2. Domain with inflow and outflow

The simulations utilize the same flow configuration used in previous work to simulate turbulent
flames [17-21]. The computational domain is doubly periodic in the y and z directions, and has an
inflow/outflow in the x direction. The velocity fields are subjected to the forcing term, f, multiplied
by a proportionality function, «(x) which is unity between L and 9 L. This proportionality function
is shown in Fig. 1. The turbulence forcing is maintained at zero at the inlet to reduce instances of
local outflow and at the outlet to reduce instances of local inflow. Near the outflow, the flow needs
the larger buffer distance to enable the decay of turbulence.

Three different simulations are performed: one with isotropic turbulence, one with shear turbu-
lence, and one with both shear forcing and shear convection.

Leveraging the long domain and the inflow /outflow boundary conditions in the x direction, shear
convection is applied in a portion of the computational domain. More specifically, we introduce a

124605-4



FROM ISOTROPIC TURBULENCE IN TRIPLY PERIODIC ...

0.5F

o 2 4 6 8
x/L

FIG. 1. Proportionality function profile.

convection velocity, V = Ve,, which has a gradient of —B in a portion of the domain between 3.5 L
and 7.5L and V is constant in the rest of the domain. A profile of the convection velocity as a
function of x, normalized by the domain width and shear forcing constant, is shown in Fig. 2.

The portion with a mean velocity gradient of —B corresponds to homogeneous shear turbulence
with shear convection, whereas the two portions with constant V correspond to the shear simulation
with no shear convection. The shear convection is applied to a region approximately a third of the
domain, so the region with shear convection can be directly compared to the regions without, in the
same simulation.

Given the statistical homogeneity along the y and z directions, ensemble averages can be replaced
by planar averages, calculated as

1
(@), 1) = 75 /V/Z.a(x, y.z,1) dy dz. 4)

x/L
FIG. 2. Convection velocity profile normalized by the shear forcing constant and domain width.
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The mean velocity, u, of the inflow is chosen to be constant in time. Superimposed on the mean
velocity at the inflow are fields of fluctuating velocities computed from simulations of homogeneous
isotropic turbulence at a lower turbulent Reynolds number. The turbulent kinetic energy at the outlet
must be small enough to not have any instances of local inflow, hence a large enough buffer is
needed over which the turbulence can dissipate. The mean velocity has to be small enough such that
the Lagrangian particles take a long enough time to travel over this buffer region. The chosen mean
velocity is slightly larger than the rms velocity at the inlet, # ~ 1.15 u;,s and the forcing is stopped at
10 L. The time taken by Lagrangian particles to travel a distance of L in the x direction is 20 t,. This
ensures that the flow is close to laminar at the outlet, and convective outflow boundary condition
is used. At the inlet, Dirichlet boundary condition is used. There are few instances of local outflow
at the inlet, but it has no effect on either the stability of the simulation or the turbulence statistics
within the domain.

III. STATIONARY STATE ANALYSIS

By construction, the velocity field represents the fluctuations of the flow field in a small region of
a statistically stationary turbulent flow. Hence, the fluctuating quantities and their related statistics
must reach a statistically stationary state. This applies to turbulent kinetic energy, dissipation rate,
Reynolds stress, etc. We briefly review the scaling found in Carroll and Blanquart [10] for HIT and
Dhandapani et al. [11] for HST.

A. HIT in cubic domain

The turbulent kinetic energy equation for the isotropic turbulence forcing, assuming spatial
homogeneity, is

dk
— = —¢& + 2Ak. 5
= + (&)

At statistically stationary state, the energy dissipation rate is

e = 2Ak. (6)

The integral length scale, ¢, is defined as
g Yo _ Uy o

e 34°

with ums = +/2k/3 = 3AL.
The expected turbulent Reynolds number is calculated as

" Umsl  3A02
Re!, = = , ()
’ v v
The Taylor microscale, A, is calculated as
A= g [ 152 9)
£

The expected Taylor microscale Reynolds number is given by

45A07
Ref , =/ , (10)
’ %

and the expected values for turbulent kinetic energy, k,;, and energy dissipation rate, &,;, can be
calculated as

3 27
fos = 3ty = S AE an
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and

Lt3
Eoi = 2“8 = 27A°¢%. (12)

The expected eddy turnover time 7, ; is given by

koi _ 1 (13)
Toi = — = =
’ Eo,i 2A

Finally, the ratio of integral length scale to domain size, was found to be £/L =~ 0.19 for isotropic
turbulence in a triply periodic box domain [10,22]. This value was found to be independent of the
Reynolds number.

B. HST without shear convection in cubic domain

It was shown by Dhandapani ef al. [11] that for HST without shear convection, the turbulent
kinetic energy equation is

dk
— = —¢+Bu). 14
- + Bluu)) (14)
At statistically stationary state, the energy dissipation rate is

& = B(u,u) = BBk, (15)

with ums = 3BBL/2. The expected values for turbulent kinetic energy, k, s, and energy dissipation
rate, &, 5, can be calculated as

27
kos = T B'B°C (16)
and
27
cos = 5 BB a7
The expected turbulent Reynolds number is calculated as
Re? 3BBL? (18)
e, = ,
1,8 21)
and the expected eddy turnover time, t,, is given by
1
Tos = 25+ (19)

BB

It is ideal for the isotropic and shear simulations to have similar turbulent Reynolds numbers.
The relationship between the two forcing constants can be calculated by equating the two expected
turbulent Reynolds numbers:

. ) 24 [ 0;\*
Rez,i = Rez,s =B= F Z . (20)
IV. RESULTS

The results are decomposed into three groups: the effects of aspect ratio, the effects of
inflow/outflow, and the effects of shear convection.
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FIG. 3. Integral length scale normalized by the domain width L, from the triply periodic simulations using
isotropic (blue) and shear (red) turbulence. Time evolution (a and b) for cubic (dashed lines) and long domains
(solid lines: 8L, dotted lines: 4L, dashed dot lines: 2L). (c) Average integral length scale plotted against the
aspect ratio. Blue dotted line in (c) corresponds to an exponential fit, and red dotted line represents the average
value.

A. Effects of aspect ratio

The effects of the aspect ratio on the turbulence quantities are analyzed by observing the
differences between the cubic and long domain simulations for both isotropic and shear turbulence.
All eight triply periodic simulations are performed for 100 eddy turnover times and averages are
calculated after a transient period of 207,. The effects of the aspect ratio on the turbulence and flow
anisotropy are discussed in the following subsections.

1. Isotropic turbulence

The time evolution of the normalized integral length scale is shown in Figs. 3(a) and 3(b).
The volume averages from the long domain simulation have much smaller oscillations owing to
better statistical convergence due to the larger number of data points. In statistically stationary,
grid-converged turbulence, the uncertainties in statistical averages are inversely proportional to the
square root of the number of individual realizations, hence the uncertainties in the 8L case would
be \/§ ~ 2.8 times smaller than the uncertainties in the cubic case. The oscillations in the cubic
simulation results are well known and can theoretically be reduced by using a modification proposed
by Carroll and Blanquart [10], but the current study does not use the modification for a cleaner
comparison between cases.

As mentioned earlier, random perturbations are introduced in the initial data files to break the
symmetry between the simulations. The integral length scales for the long domain simulations
deviate from that of the cubic domain in less than 5t, and from each other in about 10 7.
Statistical stationarity is observed at about 20 7. The average integral length scale is calculated as

(=g 210010“ Ums ()3 /(1) dt and has a weak dependence on the aspect ratio as seen in Fig. 3(c).

While the cubic simulation has an average integral length scale value of about ¢ ~ 0.18 L, the
longest domain case (8L) shows a smaller integral length scale of about ¢ ~ 0.16 L. Similar
reductions are seen in the average integral length scales for the 2L (¢ ~ 0.17 L) and 4L (£ ~ 0.17 L)
cases. The integral length scales in the long domains remain controlled by the smallest dimension
length, L, (and not L,), and the reduced integral length scales are consistent with the observations
of the turbulent reacting flow simulations performed by Brock et al. [17]. This difference explains
the lower Reynolds number, as it is directly proportional to the square of the integral length scale
[Eq. (8)].

The time evolution of the turbulent kinetic energy is also plotted for the cubic and long domain
isotropic cases in Fig. 4(b), normalized by their respective expected values, k, ;, calculated using
their respective integral length scale values, and they fluctuate around a value of 1. Bursts in
kinetic energy are observed in the time evolution, which are more prominent in the cubic domain
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FIG. 4. Triply periodic simulation results using isotropic (blue) and shear (red) turbulence. Time evolution
of the turbulent kinetic energy normalized by the expected values, k, (a) and the Reynolds shear stress
normalized by the turbulent kinetic energy (b) for cubic (dashed lines) and long domains (solid lines: 8L,
dotted lines: 4L, dashed dot lines: 2L). (c) Average Reynolds shear stress normalized by the turbulent kinetic
energy, plotted against the aspect ratio. The dotted lines represent the average values.

simulation. These bursts in turbulence were documented by Carroll and Blanquart, who modified
the linear forcing term, to make the simulations more stable in time [10].

2. Shear turbulence

The evolution of the normalized integral length scale is shown in Fig. 3(a). Statistical stationarity
is reached quickly, within 20 7y, and the integral length scales for each case fluctuate around a
constant value. Figure 3(c) shows the temporal averages of the integral length scale computed as
in the isotropic case. Unlike for isotropic turbulence, there is no change in integral length scale in
longer domains for shear turbulence. The time evolution of the volume-averaged kinetic energy is
plotted for the cubic and long domain (8L) shear cases in Fig. 4(b), normalized by their expected
values, k, ;. The two simulations have similar initial profile, but the long domain has much smaller
oscillations owing (once again) to the larger number of data points, and the results from both cases
fluctuate around the expected values. The bursts in kinetic energy appear more often compared to
isotropic turbulence simulations, and are stronger in the cubic domain simulation. Sekimoto et al.
found bursts in the turbulence statistics in shear turbulence simulations. These bursts were observed
to have a timescale of the order of 20B~! (corresponds to 87,) [9], which is consistent with the
timescale found in Fig. 4(b). This characteristic timescale is calculated from the number of peaks
in the time signal in a large enough time period. The timescale will not be revealed by frequency
analysis, as these bursts are random events and do not have a single characteristic frequency.

The time evolution of the Reynolds shear stress normalized by the turbulent kinetic energy

is plotted in Fig. 4(b), for all eight simulations. The average value of B, calculated as 8 =
a Joor ™ ) (1)/k(r) dt, is 0.40 £ 0.07 for the cubic simulation and 0.38 to 0.39 for the long
domain simulations. The Reynolds shear stress is not affected by the aspect ratio of the computa-

tional domain, as seen in Fig. 4(c).

B. Effects of inflow/outflow

The effects of the inflow/outflow on the turbulence quantities are analyzed by observing the
differences between the triply periodic long domain simulations and the inflow/outflow simulations
for isotropic and shear turbulence.

1. Global quantities

The time averaged integral length scale profile is plotted for the inflow /outflow cases in Fig. 5(a).
The integral length scale is £ > 0.16 L for the isotropic forcing and is the same value as for the
triply periodic long domain. The value is £ >~ 0.23 L for the shear forcing, very close to the 0.25
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FIG. 5. Inflow/outflow simulation results: Planar and temporal averages of the (a) integral length scale
normalized by the domain width, (b) turbulent kinetic energy profile normalized by the expected value, k,, and
(c) energy dissipation rate normalized by the expected value, ¢, for isotropic (blue), shear (red), and convection
(black) cases. Dotted lines correspond to the edges of the region where shear convection is included. Dashed
lines in (a) correspond to average values calculated between L and 9 L for the isotropic and shear cases, and
4 L to 7 L for the advection case.

value found for triply periodic long domain, and is about 1.5 times the integral length scale for the
isotropic case. These values are used in the calculation of the expected values of the turbulent kinetic
energy and the dissipation rate.

The time-averaged kinetic energy and energy dissipation rate profiles are plotted over the domain
for the two cases in Fig. 5, normalized by their respective expected values. The two simulations have
similar kinetic energy and energy dissipation rate profiles as seen in Fig. 5. The values are much
lower near the inlet/outlet, where the forcing is not applied and have small fluctuations around
the expected values for most of the domain, between L and 9 L. The region with homogeneous
turbulence statistics has a domain width of 8 L and is comparable to the triply periodic elongated
domain simulations (L, = 8 L). The volume averages calculated between L and 9 L are observed to
be statistically stationary after 20 ty, just like in the triply periodic simulations, as seen in Fig. 6.
The volume average of the turbulent kinetic energy calculated between L and 9L fluctuates around
the expected value over long time periods, signaling the simulations are statistically stationary.

0 100 200 300 400
t/To

FIG. 6. Time evolution of the volume average of the turbulent kinetic energy from the inflow/outflow
simulation with isotropic forcing, calculated between L and 9 L.
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FIG. 7. Velocity fluctuation magnitudes for the isotropic (a), shear (b), and convection (c), normalized
by the root mean square velocity, u,s. Vorticity fluctuation magnitudes normalized by the root mean square
velocity, wms, for the isotropic (d), shear (e), and convection (f) cases. Dotted lines in (c) and (f) correspond to
the edges of the region where shear convection is included. Dashed lines in (b) correspond to average values
from the triply periodic long domain simulations and in (c¢) correspond to average values calculated between
4L and 7L.

2. Flow anisotropy

As shown in Sec. IV B 1, the turbulence intensity is comparable between the different forcing
techniques, but large differences are expected in the turbulence anisotropy. This anisotropy can be
characterized by examining the components of the velocity and vorticity vectors.

The magnitudes of the fluctuating velocity components, |u}| = ,/(u/?), are plotted as a function

1
of space, normalized by u;ms = +/(u - u)/3 in Fig. 7(a) for the isotropic forcing and Fig. 7(b)
for the shear forcing. For the isotropic forcing, the velocity fluctuations are statistically isotropic
throughout, as with the triply periodic simulations. With shear forcing, the velocity components are
significantly anisotropic throughout the domain. It is important to note that for the shear forcing
case, the shear forcing is applied in the y direction, proportional to the velocity fluctuations in
the x direction. The velocity components are the strongest in magnitude in the forced direction (y),
which is consistent with simulations from Dhandapani ef al. [11]. The average values of the velocity
anisotropy are calculated as |u|/umms = 0.93, |u;| Jttrms = 1.23, and |u| /trms = 0.79, compared to
the values from the triply periodic elongated domains given by 0.90, 1.25, and 0.78, respectively,
whereas the results from the triply periodic cubic domains are 0.91, 1.24, and 0.79. Clearly, the
aspect ratio and the inflow/outflow do not affect the anisotropy in velocity, within the range of
parameters considered in this study.
The anisotropy in the small scales can be studied by evaluating the rms vorticity components

along the different directions, |w}| =,/ (wlfz). They are shown, normalized by wims = /(@ - @) /3

for the isotropic forcing in Fig. 7(d) and for the shear forcing in Fig. 7(e). The isotropic forcing
technique produces isotropic vorticity fields |@!|/wms = 1 throughout the domain. In contrast and as
mentioned previously, in the shear forcing case, the vorticity is somewhat anisotropic. The vorticity
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FIG. 8. Vorticity values calculated from the present shear turbulence simulations without shear convection
(closed symbols) and from previously performed HST simulations [11] (open symbols), with exponential fits
(dashed lines) calculated based on results from Dhandapani et al. [11].

component magnitudes are given by |w/|/@wms = 1.00, |a);| J@ms = 1.07, and |w.|/wms = 0.92.
Dhandapani et al. [11] observed that the vorticity becomes more isotropic with increasing Reynolds
number in HST without shear convection. Their average vorticity anisotropy values are plotted
against Reynolds number in Fig. 8, along with exponential fits to those values. The vorticity
anisotropy values of the present three shear turbulence simulations without shear convection (cubic,
long, and inflow/outflow) are also plotted in the figure. The values are consistent with the expo-
nential fits, based on results from previously performed HST simulations in triply periodic cubic
domains.

Another significant measure of the anisotropy of the flow is the Reynolds shear stress. Figure 9(b)
shows the Reynolds shear stress profile normalized by the turbulent kinetic energy for the isotropic
and shear case. As expected, there is zero Reynolds shear stress in the isotropic case, as there is
no cross-correlation of the velocity components. For the shear case, however the Reynolds shear
stress is positive, and has a value of B = 0.41, which agrees well with results from triply periodic
simulations (0.40 £ 0.06 for cubic and 0.38 £ 0.02 for long).

(a) Anisotropy in u’

(b) Reynolds shear stress

(c) Reynolds shear stress
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FIG. 9. (a) Anisotropy in velocity from published studies of free shear flows as a function of Reynolds
number for u (red), u; (blue), and u, (black). (b) Reynolds shear stress profile normalized by the turbulent
kinetic energy for isotropic (blue), shear (red), and convection (black) cases. Dashed lines correspond to
average values. (c) Reynolds shear stress values as a function of Reynolds number. The dashed lines in (a) and
(c) correspond to the values from the portion with the shear convection included from the convection case. See
Ref. [11] for the complete list and details of the studies.
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C. Effects of shear convection

As mentioned previously, the shear convection velocity in the simulation, V, is in the y direction,
and has a gradient of —B from x = 3.5 L to x = 7.5 L, in the middle of the domain. This portion is
used to compare and contrast the turbulence statistics between simulations with just shear turbulence
production, and simulations with shear turbulence production and shear convection.

1. Global quantities

The integral length scale is shown in Fig. 5(a). As expected, the integral length scale is different
for all three simulations in the central region of the domain. The average integral length scale is
calculated between x = 4 L to x = 7 L for the convection case. The results show that £ ~ 0.23 L
for the shear case and ¢ ~ 0.33 L when shear convection is included. In other words, the integral
length scale is larger when shear convection is included, by about 50%. The time-averaged kinetic
energy and energy dissipation rate profiles are plotted over the domain for the three cases in Fig. 5,
normalized by their respective expected values. The three simulations have similar kinetic energy
and energy dissipation rate as seen in Fig. 5 outside the convection region, but the turbulent kinetic
energy is once again much higher in the region with shear convection, and the dissipation rate is
slightly lower. Note that the profiles for the convection case are normalized by the expected values
of the shear case without shear convection, k, s and &, ;.

As shown from the results, when shear convection is included, £ /L ~ 0.33 and B ~ 0.31. So the
expected turbulence quantities with convection can be calculated as

2 2
ko.a = kos <%) (%) ~ 1.21 k, s, 20
/3S 3 K‘S 5

o = Eos <F> <£—> ~0.92¢,,, (22)

s s

and
o 0 ﬁa ﬁa ? 0

Re], =Re/ AV =~ 1.60 Re7 . (23)

s s

This explains the higher Reynolds number and turbulent kinetic energy and slightly lower dissipa-
tion observed where shear convection is included.

2. Flow anisotropy

The anisotropy is once again characterized by examining the components of the velocity and
vorticity vectors, specifically in the region between 3.5 L and 7.5 L.

The magnitudes of the fluctuating velocity components are plotted, normalized by uyys in
Fig. 7(b) for the shear case and Fig. 7(c) for the convection case. With shear forcing, the velocity
components are anisotropic throughout the domain, and their values are given by |u|/umms = 0.93,
|u;| JUims = 1.23, and |u2| Juims = 0.79. In the portion where shear convection is included, the
velocity components are still anisotropic, but the values are slightly different, and now |u,| is the
weakest, with the values given by |u.|/u;ms = 0.83, |u;|/urms = 1.24, and |u|/urms = 0.88. These
values agree better with experiments and simulations of shear-dominated flows like mixing layers
and jets, as seen in Fig. 9(a). It is important to note that since the forcing is applied in the y direction
proportional to the fluctuations in the x directions, «/, should be compared to the streamwise velocity
fluctuations and u/, should be compared to the cross-stream velocity fluctuations. The experimental
results show no evident dependence on Reynolds number, and the results from our simulation lie in
the middle of the range of those values. In contrast, the study by Sekimoto et al. provides a wide
range of values dependent on the aspect ratio of the computational domain.

The rms vorticity components along the different directions, |w;|, normalized by w;ms are plotted
for the shear simulation in Fig. 7(e) and for the convection case in Fig. 7(f). The shear simulation
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TABLE II. Third- and fourth-order moments of velocity fluctuations calculated from the inflow/outflow
simulations and compared with experimental results. DNS 3b was a shear turbulence simulation in a triply
periodic cubic domain (1923), with linear and nonlinear forcing terms.

(W2 /W2 ) JWZP? wa® a2 )7 w2/ a2 ) 72 uu?) [ () ()72

Isotropic 0.02 —0.01 0.01 0.01 0.00
Shear —0.13 0.09 0.02 —0.05 -0.07
Convection —0.10 0.05 0.01 —0.02 —0.01
DNS 3b [11] 0.26 0.41
Panchapakesan
and Lumley [23] 0.39 0.44 0.21 0.17 0.26
Hussein et al. [24] 0.45 0.37 0.27 0.26 0.19
) a2 )? ()2 (i) T2 Geu?) Q) ) Q) i) ) (o) i) P )7
Isotropic 2.82 2.80 2.79 0.94 0.97 0.08
Shear 2.81 271 3.26 1.51 0.97 1.56
Convection 2.99 2.58 2.93 1.37 1.01 1.26
DNS 3b [11] 3.14 3.06 - - - -
Panchapakesan
and Lumley [23] - - - - 0.97 1.23

vorticity component magnitudes are given by |/ |/@ms = 1.00, |@}|/®ms = 0.92, and || /@ims =
1.07. When shear convection is included, however, w; becomes the dominant vorticity component,
and the average values are given by |/ |/wms = 0.99, |a);|/a),mS = 1.07, and |} |/ wms = 0.94.

Another significant impact of the shear convection on the flow is on the Reynolds shear stress.
Figure 9(b) shows the Reynolds shear stress profile normalized by the turbulent kinetic energy for
the shear and convection case. As mentioned earlier, for the shear case, the Reynolds shear stress
has a value of 8 ~ 0.41, and the portion with shear convection shows a value of 8 ~ 0.31, which
agrees better with results from the literature of shear-dominated turbulent flows such as mixing
layers, planar jets, and round jets, as seen in Fig. 9(c).

3. Higher order moments

The average values of the third- and fourth-order moments of the velocity fluctuations are
calculated for the three inflow/outflow simulations and tabulated along with round jet experimental
results in Table II. These moments are related to the Gaussianity of the velocity field. More precisely,
for a normal distribution, the skewness is zero and the flatness is 3. It can be seen that the skewness in
u/, and u; in the inflow/outflow simulations are also close to zero, and including convection does not
significantly change the skewness results. It was shown by Dhandapani et al. [11] that simulations
with only the linear forcing terms show no skewness, and to capture the skewness in the velocity,

nonlinear forcing terms are needed in the simulations. The flatness of the velocity fluctuations are

calculated as (u 4) / (u§2)2 and are close to the Gaussian value of 3 for all the simulations. Once again,
there is no major difference in the flatness results between the three inflow/outflow simulations.
Some of the third- and fourth-order moments calculated are cross-correlations between different
components of the velocity. The third-order cross-correlation moments are also near zero and
confirm the previous observations by Dhandapani ez al. [11]: nonlinear terms need to be included to
get third moments to be nonzero. The fourth-order cross-correlation moments however, are nonzero.
Using the quasi-Gaussian approximation, some of these moments can be predicted a priori, e.g.,
(u/zu/z) () (u /,2) + 2(u;u;)2, (u;qu) (u/ Y(u?), and (i, /g) 3(u, y)(u;z). The normalized
value of (i u’z) is close to 1 in the isotropic simulations as u, and uy are uncorrelated (i.e.,
(u, uy) = 0), and is higher than 1 in the shear and convection simulations as expected due to the
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FIG. 10. Normalized turbulent kinetic energy budget. The lines correspond to experimental results from
Panchapakesan and Lumley [23]. Symbols correspond to different simulations: with shear convection =
diamonds, without shear convection [DNS 3 (1923 grid) from Dhandapani et al. [11] = circles.

cross-correlation. The normalized value of (u;,zuf) is near 1 for all the simulations and experiments,
as uy, and u are always uncorrelated. Finally, the normalized value of (u)’cuf) is near zero for the
isotropic simulations, and the convection simulation results agree very well with the experiments by
Panchapakesan and Lumley [23]. Once again, the lower value of this fourth-order moment (when
compared to the shear simulation without convection) is due to the smaller cross-correlation, (ujcu;)
(see Table I).

In summary, the addition of shear convection does not alter the higher order moments of the flow
significantly. Third-order moments remain zero because of the linearity of the shear production and
shear convection terms. Fourth-order moments can be predicted a priori from the Gaussianity of the
velocity field and the (u;u;> cross-correlation term.

4. Energy budget

The turbulent kinetic energy budget values are calculated using the same method as in Dhanda-
pani et al. and plotted in Fig. 10 with results from Dhandapani et al. [11] and the experiment results
of Panchapakesan and Lumley [23]. All the values are normalized by Uo3 /11,2, where U, is calculated
as U, = 4/k/0.052 [23] and ry, is calculated as ri,, = 0.586 U,/B [25]. As expected, the shear
convection term had zero contribution to the turbulent kinetic energy budget and is not included
in the budget plot. It can be seen that the production, convection, and dissipation are accurately
captured, compared to the simulation without convection.

V. CONCLUSIONS

The paper presented a series of direct numerical simulations (DNS) of increasing geometrical
complexity to prove that statistically stationary, homogeneous shear turbulence (HST) simulations
can be achieved. First, the impact of the aspect ratio of the computational domain on both isotropic
and shear turbulence characteristics was studied. The integral length scale was slightly reduced
in the elongated domains for the case of isotropic turbulence, while it remained the same for
shear turbulence. The anisotropy in the turbulence remains unaffected by the aspect ratio of the
computational domains.
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Introducing an inflow /outflow in one direction had very small effects on both isotropic turbulence
and shear turbulence. The velocity and vorticity components remained isotropic for the isotropic
turbulence forcing scheme and anisotropic for the shear turbulence, with very little change in the
anisotropy values. The Reynolds shear stress was also not affected by the use of an inflow/outflow.

Shear convection was introduced in a region of the domain along with shear turbulence forcing.
The inflow/outflow introduced in the nonhomogeneous direction was necessary to include shear
convection without having to use shear periodic boundary conditions or other special boundary treat-
ment. This resulted in statistically stationary homogeneous shear turbulence, which has remained
elusive in most of the previous studies.

With shear convection included in the inflow/outflow simulations, the velocity anisotropy and
Reynolds stress values agreed better with simulations and experiments of shear-dominated flows.
The turbulent kinetic energy budget results also agreed better with those of free shear flows.

The present results underscore the necessity of using appropriate boundary conditions when
simulating HST flows.
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