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The coupling effect of the isotropic wall slip and the spanwise oscillation boundary
conditions on the drag reduction and turbulence properties are studied by direct numerical
simulations. As the slip length increases, the drag reduction gradually changes from the
oscillation dominated to the slip dominated. The increase of slip length will decrease
the maximum spanwise velocity of the fluid on the wall, which is responsible for the
decreased ability of the oscillatory wall motion to reduce the skin-friction drag. The drag
reduction decomposition shows that the contribution from the modifications of turbulent
dynamics will undergo a shift from drag increase to drag reduction as the isotropic slip
length increases. Compared with the respective no-slip reference flow, the drag reduction
of wall slip in laminar and turbulent channel flows can be expressed in a unified form
versus the outer scale slip length. Furthermore, many aspects of the turbulence properties
are influenced by the coupling effect. First, the wall slip condenses the envelope range of
the phase fluctuations caused by the oscillatory wall motion, as well as the magnitude of
the periodic fluctuation of the phase-averaged friction coefficient. Second, an unexpected
property of the coupled boundary condition is found that the existence of the Stoke layer
delays the relaminarization process caused by the large slip length. Third, the wall slip
would narrow the periodic inclination of the streaks and then inhibit the energy transfer
process in the horizontal direction. Fourth, in terms of phase, the Stokes strain and the
shear angle have the same lag phase with the spanwise velocity, while the hysteresis of
turbulent dynamics leads to the larger lag phase of the streaks and phase-averaged friction
coefficient. These new features are valuable for increasing knowledge on this topic.

DOI: 10.1103/PhysRevFluids.5.124601

I. INTRODUCTION

Turbulent drag reduction is an important way to improve the endurance and reduce the energy
consumption of marine vessels and underwater vehicles, which is of great significance to sustainable
development. The physical basis of turbulent drag reduction can be summarized as the influences of
boundary conditions on the coherent structures and the bursting processes [1]. Many flow control
schemes are therefore proposed to reduce the skin-friction drag [1,2], including passive (e.g.,
superhydrophobic surfaces) and active (e.g., spanwise oscillation) strategies. Numerical simulation
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FIG. 1. Schematic diagram of the physical problem. The coupled boundary condition of wall slip and
spanwise oscillation. W (t ) is the oscillating wall velocity in the spanwise direction. us and ws is the streamwise
and spanwise slip velocities of the fluid on the wall, respectively. lb is the isotropic slip length.

method plays an important role in the study of turbulent drag reduction, and direct numerical
simulations (DNS) is favored by researchers for its accurate identification of the flow field.

As a passive drag reduction strategy, superhydrophobic surfaces [3–7], inspired by the water-
repellent properties of many surfaces in nature [4], can be used for drag reduction in both laminar
[8–15] and turbulent [15–34] flow regimes. Experimental studies [18–21] have shown that the
effects of superhydrophobic surfaces on the flows can be equivalent to the slip boundary condition,
in which the slip length is a key parameter to evaluate the performance of the slippage. The slip
length lb is the ratio of the finite slip velocity on the wall to the local wall-normal derivative of
the velocity [4,11,16,23,25], as illustrated in the inset of Fig. 1. The boundary condition on a
superhydrophobic surface with randomly distributed textures can be represented by an isotropic
slip length in both streamwise and spanwise directions [31]. The effect of slip length on the drag
reduction of wall turbulence was first investigated by Min et al. [23], showing that in order to have
a noticeable drag reduction, the slip length must be greater than a critical value. Fukagata et al. [16]
deduced a theoretical framework of drag reduction based on the law of the wall, which is in good
agreement with the DNS results within the whole range of slip length (hereafter, referred to as the
FKK theory). Busse et al. [25] proposed a modification on the FKK theory, which improves the
prediction for the change of drag for small slip length. Aghdam et al. [15] further extended the FKK
theory to the situation where the slip length is shear dependent. According to the literature, the drag
reduction achieved by isotropic slip is almost independent of the Reynolds number [16,25,34]. The
drag reduction mechanism is generally explained by the influence of the slip boundary condition
on the turbulent dynamics. In the numerical study of Busse et al. [25], the results showed that the
slip boundary condition would affect the intermittency degree of the probability density function of
the wall shear stress, and a high streamwise slip helps to make the streaks more regular. Based on
the mechanism analysis, Rastegari et al. [26,33] proposed a general expression of the magnitude of
drag reduction, i.e., DR = us/Ub + O(ε), in which, us is the mean slip velocity on the wall and Ub

is the bulk mean velocity. us/Ub comes from the effective slip on the wall and O(ε) results from
the modifications to the turbulent dynamics, where O(ε) contributes to no more than 20% of the
total drag reduction. In these previous investigations, the wall itself is stationary. It is still unclear
how the effective slip affects the drag reduction as well as the turbulent dynamics under a boundary
condition of wall motion.

In fact, active boundary motion can also achieve drag reduction, in which the spanwise oscillation
is a typical method. As an active drag reduction strategy, spanwise wall oscillation [35–45] has
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been widely investigated on the condition that the wall is no-slip. For the first time, Jung et al.
[38] applied the spanwise wall oscillation to the turbulent channel flow and studied a wide range
of nondimensional oscillation periods T +. Under the optimal oscillation period (T + ≈ 100), the
drag reduction can be up to 40%. Quadrio et al. [42] produced a drag reduction database of various
oscillation periods and amplitudes by DNS, based on which a scaling parameter was addressed to
describe the amount of drag reduction. The parameter was linearly related to the drag reduction
on condition that the oscillation period was less than twice the typical lifetime of the near-wall
structures. To reveal the mechanism of drag reduction by spanwise oscillation, Choi [39] carried out
an experimental investigation on the near-wall structures modified by the oscillatory wall motion
and argued that the drag reduction is the result of the weakened stretching of the quasi-streamwise
vortices induced by the negative spanwise vorticity. Through the discussion on turbulence statistics,
Touber et al. [43] concluded that the unsteady cross-flow straining inhibits the contribution of
turbulence to the wall shear stress, leading to the drag reduction. For the parameters of spanwise
oscillation, there is an optimal oscillation period for drag reduction, and the reduction is positively
correlated with the velocity amplitude.

In summary, the drag reduction mechanism of spanwise oscillation is quite different from that
of wall slip. The former can modulate turbulence statistics and coherent structures periodically
[40,43], while the latter has a limited effect on the turbulent dynamics [26,33]. In the current
work, the wall slip is applied to the oscillatory turbulent channel flow to explore the drag reduction
performance. The influence of this coupled boundary condition (wall slip and spanwise oscillation)
on the turbulence properties are also investigated. The motivation and the main implication of this
study lie in the quantitative understanding of the drag reduction and the turbulent dynamics under
the coupling effect of wall slip and spanwise oscillation, which is helpful to extend the cognition of
wall turbulence evolution under coupled boundary conditions.

The paper is organized as follows. In Sec. II, the numerical methodology is introduced. In
Sec. III, the drag reduction results are shown in Sec. III A, the coupling phenomenon is illustrated in
Sec. III B, and the drag reduction decomposition is conducted in Sec. III C. In Sec. IV, the influences
of the coupling effect on turbulence properties are discussed from four perspectives: the turbulence
statistics, the quadrant analysis, the phase-averaged properties, and the coherent structures. They
are illustrated in Secs. IV A, IV B, IV C, and IV D, respectively. Finally, in Sec. V, the conclusions
are presented.

II. METHODOLOGY

The schematic diagram of the physical problem studied in the current work is shown in Fig. 1,
which presents a channel flow. The isotropic slip boundary condition is coupled with the spanwise
oscillatory wall motion. The physical model of isotropic slip is a superhydrophobic surface with
randomly distributed textures [31]. The ideal assumption is adopted, i.e., the slip boundary is always
maintained as flat.

The channel flow is governed by the incompressible Navier-Stokes equations, which can be
expressed as the Lamb form:

∇ · u = 0, (1)

∂u
∂t

= u × ω − (∇Π + f ) + ν∇2u, (2)

where u is the velocity vector (the velocity components in the streamwise, spanwise, and wall-
normal directions are u, w, and v, respectively), ω = ∇ × u is the vorticity vector, Π = p/ρ +
|u · u|/2 is the total pressure, p is the pressure fluctuation, ρ is the fluid density, f is the mean
streamwise pressure gradient, and ν is the kinematic viscosity of the fluid. The channel flow is
driven by f , which is adjusted in each time step to maintain a constant flow rate. The Fourier-
Chebyshev pseudospectral method is employed to solve the equations. Fourier expansions are used
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TABLE I. The grid parameters of the simulations.

Reb Reτ0 Lx × Ly × Lz Nx × Ny × Nz Δx+0 Δy+0 Δz+0

2800 180 4πh × 2h × 2πh 256 × 128 × 256 8.8 0.05-4.4 4.4
7000 396 2πh × 2h × πh 256 × 256 × 256 9.7 0.03-4.9 4.9

for spatial discretization of the governing equations in both streamwise and spanwise directions,
while Chebyshev polynomials are used in the wall-normal direction. A second-order time-splitting
method [46] is adopted for time advancement.

In the current work, two bulk Reynolds numbers Reb are considered, 2800 and 7000. Reb =
Ubh/ν, where Ub is the bulk mean velocity, and h is the half channel height. For the turbulent
baseline flow, i.e., the flow without wall slip and spanwise oscillation, the corresponding friction
Reynolds numbers Reτ0 are 180 and 396, respectively. Reτ0 = uτ0h/ν, where uτ0 is friction velocity
of the turbulent baseline flow. For the cases of Reτ0 = 180, the size of the computing domain is
4πh × 2h × 2πh in the streamwise, wall-normal, and spanwise directions, respectively. For the
cases at higher Reynolds number Reτ0 = 396, a reduced domain size 2πh × 2h × πh is used to
save the computational cost. Here, although the domain size for the higher Reynolds number is
reduced, it is sufficient to capture the mean streamwise pressure gradient and the change in drag,
which has been validated by Busse et al. [25]. The grid parameters are listed in Table I. The grids
in the normal direction are nonuniform. For the cases of Reτ0 = 180, the minimum spacing near
the wall is Δy+0 ≈ 0.05, and the maximum spacing at the center of the channel is Δy+0 ≈ 4.4. The
domain size (Lx, Ly, Lz), grid size (Nx, Ny, Nz), and nondimensional grid resolution (Δx+0, Δy+0,
Δz+0) for both cases of Reτ0 = 180 and Reτ0 = 396 are comparable to those of the related studies
[16,25]. Hereafter, the superscripts +0 and + denote the normalization using the wall units of the
turbulent baseline flow and the actual flow, respectively.

The upper and lower walls of the channel sinusoidally oscillate in the spanwise direction, with the
wall velocity W (t ) = Im sin (2πt/T ), where Im is the wall-velocity amplitude and T is the oscillation
period. The dimensionless forms of the wall-velocity amplitude and the oscillation period are I+0

m =
Im/uτ0 and T +0 = Tu2

τ0/ν, respectively. The optimal oscillation period of the turbulent channel flow
at low Reynolds number is T +0 ≈ 100 [45]. A number of I+0

m and T +0 are considered in the current
work. The isotropic slip is given by the Navier slip boundary condition, us = lb∂u/∂y|wall and ws =
lb∂w/∂y|wall, where lb is the isotropic slip length. The dimensionless forms of the slip length based
on the outer and inner length scales are l∗

b = lb/h and l+0
b = lb/δν , respectively, where δν ≡ ν/uτ0 is

the viscous length scale of the turbulent baseline flow. The coupled boundary condition is given by
specifying the oscillating wall velocity W (t ) and the slip length lb. The actual velocity components
of the fluid on the wall are

u|±h = lb
∂u

∂n

∣∣∣∣
±h

, v|±h = 0, w|±h = Im sin
2π

T
t + lb

∂w

∂n

∣∣∣∣
±h

, (3)

where n is the inward pointing unit normal vector and y = ±h represent the upper and lower walls
of the channel.

The simulation parameters of all the cases in the current work are listed in Table II. The coupled
boundary condition involves three parameters as illustrated in Eq. (3): slip length, oscillation
amplitude, and oscillation period. In order to save the computational cost, the simulation parameters
are selected as follows. For the cases of Reτ0 = 180, 22 combinations of oscillation amplitude
and period are considered. Apart from the combination of I+0

m = 0 and T +0 = 0, the rule for the
combination of oscillation amplitude and period follows that I+0

m ranges from 2 to 20 at fixed
T +0 = 92 and T +0 ranges from 23 to 276 at fixed I+0

m = 12. The slip length l+0
b changes from 0 to

100 or from 0 to 180 for each combination. For the cases of Reτ0 = 396, only two combinations of
oscillation amplitude and period are considered (I+0

m = 0, T +0 = 0 and I+0
m = 12, T +0 = 92), and
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TABLE II. The simulation parameters. The turbulent baseline flow corresponds to the combination of I+0
m =

0, T +0 = 0, and l+0
b = 0.

Reτ0 I+0
m T +0 l+0

b

180 0 0 0, 0.1, 0.32, 1, 3.2, 7, 10, 15, 21, 32, 50, 72, 100, 135, 180
180 2 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 4 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 6 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 8 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 10 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 92 0, 0.1, 0.32, 1, 3.2, 7, 10, 15, 21, 32, 50, 72, 100, 135, 180
180 14 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 16 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 18 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 20 92 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 23 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 46 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 69 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 115 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 138 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 161 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 184 0, 0.1, 0.32, 1, 3.2, 7, 10, 15, 21, 32, 50, 72, 100, 135, 180
180 12 207 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 230 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 253 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
180 12 276 0, 0.1, 0.32, 1, 3.2, 10, 32, 100
396 0 0 0, 0.1, 0.32, 1, 3.2, 7, 10, 15, 21, 32, 50, 72, 100, 135, 180
396 12 92 0, 0.1, 0.32, 1, 3.2, 7, 10, 15, 21, 32, 50, 72, 100, 135, 180

l+0
b changes from 0 to 180 for each combination. The total number of cases for the two Reynolds

numbers is 227.
For all of the cases in the current work, after approaching statistically stationary, each case is

calculated long enough to obtain the concerned turbulence statistics, especially the skin-friction
drag. In case of simulations with spanwise oscillation, the phase average is also conducted. For all
the cases, including the turbulent baseline flow and the slip flow without oscillation, the ensemble
average results are averaged in 320h/Ub and 82h/Ub nondimensional time for the cases of Reτ0 =
180 and Reτ0 = 396, respectively. With the exception of a few cases in which the T +0 is greater
than 184, these two time lengths are set to contain at least 20 oscillation periods. Taking the cases
of Reτ0 = 180 with T +0 = 184 for example, 320h/Ub contains around 20 oscillation periods. For
the cases of Reτ0 = 396 with T +0 = 92, 82h/Ub also contains around 20 oscillation periods.

Like Agostini et al. [45], the decomposition of a physical quantity X in the oscillatory turbulent
flow can be written as

X = X̃ + X ′ = 〈X 〉 + X̂ + X ′, (4)

where X̃ is the phase-averaged value (i.e., the wall-averaged result under the same phase), X ′ is the
stochastic fluctuation, X̃ = 〈X 〉 + X̂ , 〈X 〉 is the time-averaged value (i.e., the wall-averaged result
under all phases), and X̂ is the periodic fluctuation. X̃ is calculated from

X̃ |φ = 1

N

N∑
n=1

[
1

NxNz

Nx,Nz∑
i,k=1,1

Xi,k|φ+(n−1)T

]
, (5)

124601-5



LI, JI, DUAN, LAN, ZHANG, AND LV

FIG. 2. Validation of the numerical method. (a) The RMS velocity fluctuations scaled with uτ0 in global
coordinates. (b) Streamwise one-dimensional energy spectra of y+0 = 5.4 (scaled with u2

τ0/2) versus the
streamwise wave number kx . “Present” represents the result of the current work. “KMM 87” represents the
result of Kim et al. [47]. Case Reτ0 = 180.

where φ ∈ {0, T }, i, k are x, z grid indices, and N is the number of periods over which averaging is
performed.

For the turbulent baseline flow of the Reτ0 = 180 cases, the root-mean-square (RMS) velocity
fluctuations and the streamwise one-dimensional energy spectra of y+0 = 5.4 are shown in Fig. 2 to
illustrate the accuracy of the algorithm and the adequacy of the grid resolutions, respectively. The
RMS velocity fluctuations are in good agreement with the results of Kim et al. [47] throughout the
channel, as shown in Fig. 2(a). In Fig. 2(b), it can be confirmed that the mesh is adequate. The energy
density of the high wave numbers is several orders of magnitude lower than that of the low wave
numbers, and there is no energy pile-up at high wave numbers, indicating that the energy transferred
from the energy-containing scales to the dissipation scales can be dissipated without accumulation.

III. COUPLING EFFECT ON DRAG REDUCTION

In this section, the drag reduction analysis will be conducted. First, the drag reduction results
are shown in Sec. III A. Then, in Sec. III B, the coupling phenomenon is illustrated, which can be
used to explain the variation of drag reduction under the coupled boundary condition. Finally, in
Sec. III C, the drag reduction is quantitatively decomposed through the outer scale slip length.

A. Drag reduction results

The drag reduction is defined as:

DR = (〈Cf 〉base − 〈Cf 〉)

〈Cf 〉base
, (6)

where 〈Cf 〉base is the (time-averaged) mean friction coefficient of the turbulent baseline flow and
〈Cf 〉 is the mean friction coefficient of the real flow. Specify DRosci, DRslip, and DRcoup as the
drag reductions under three different boundary conditions, i.e., the spanwise oscillation boundary
condition (no-slip wall), the Navier slip boundary condition (stationary wall), and the coupled
boundary condition, respectively. The drag reduction loss DRloss is defined as Eq. (7) to indicate
the coupling effect on the drag reduction,

DRloss = DRosci + DRslip − DRcoup. (7)
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FIG. 3. (a) DR and (b) DRloss/DRosci versus the slip length l+0
b . The oscillation parameters corresponding

to DRosci and DRcoup are I+0
m = 12 and T +0 = 92. The delta and gradient symbols represent the Reτ0 = 180

cases and the Reτ0 = 396 cases, respectively.

Figures 3(a) and 3(b) show the variations of DR and DRloss/DRosci as a function of the inner scale
slip length, respectively. The drag reduction properties of the Reτ0 = 180 cases and the Reτ0 = 396
cases are basically the same. As shown in Fig. 3(a), when the isotropic slip length is small enough
(e.g., l+0

b < 1), the contribution of the streamwise slip length to drag reduction is insufficient to
offset the adverse effect of the same slip length in the spanwise direction, as the spanwise slip length
can lead to drag increase [16,25]. Busse et al. [25] concluded that there is a threshold of streamwise
slip length L+0

x,thresh = 3.5, greater than which the adverse effect of any spanwise slip length on the
skin-friction drag can be ignored. However, as the slip length is very small, the change of the overall
drag reduction is weak, i.e., DRloss ≈ 0. As the slip length increases, the value of DRcoup gets closer
to DRslip. When the slip length is greater than a certain value (e.g., l+0

b > 50), the coupled wall
motion can hardly improve the drag reduction, DRloss ≈ DRosci. Thus, 0 < DRloss/DRosci < 1, as
shown in Fig. 3(b). The tendency of DRcoup constantly approaching DRslip can be explained by the
coupling phenomenon, which will be described in Sec. III B.

Figure 4(a) shows the variation of DRcoup versus the slip length l+0
b and the wall-velocity

amplitude I+0
m with a fixed oscillation period T +0 = 92. Figure 4(b) shows the variation of DRcoup

versus the slip length l+0
b and the oscillation period T +0 with a fixed wall-velocity amplitude

I+0
m = 12. When the slip length is small, the optimal oscillation period is basically the same as

the value under the no-slip boundary condition, i.e., T +0 ≈ 100, and the drag reduction is positively

FIG. 4. Contour lines of DRcoup versus the slip length l+0
b and (a) I+0

m , (b) T +0. The dots represent the DNS
cases, and their parameters are listed in Table II. Case Reτ0 = 180.
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FIG. 5. Contour lines of DRloss/DRosci versus the slip length l+0
b and (a) I+0

m , (b) T +0. The dots represent
the DNS cases, and their parameters are listed in Table II. Case Reτ0 = 180.

correlated with the wall-velocity amplitude. As the slip length increases, the contribution of the
oscillatory wall motion to the drag reduction becomes weaker, and the influences of the oscillation
amplitude and period gradually fade away. The overall trend is that as the slip length increases, the
drag reduction gradually changes from the oscillation dominated to the slip dominated.

Figure 5(a) shows the variation of DRloss/DRosci versus l+0
b and I+0

m with T +0 = 92. Figure 5(b)
shows the variation of DRloss/DRosci versus l+0

b and T +0 with I+0
m = 12. Under the same slip length

and oscillation period, the drag reduction loss corresponding to the small wall-velocity amplitude is
larger than that of the high wall-velocity amplitude. There are three reasons for this property. The
first is that the drag reduction is positively correlated with I+0

m . The second is that the drag reduction
as a function of the amplitude changes faster when I+0

m is small, which can be seen from Fig. 8(a) in
Sec. III B. The third is that, under a constant oscillation period, the same slip length will lead to the
same proportion of amplitude reduction, which will be proved by Eq. (14) in Part B. Hence, under
the same T +0, the drag reduction loss corresponding to the small I+0

m should be larger than that of
the high I+0

m . The feature shown in Fig. 5(b) is that the drag reduction loss is basically independent
of the oscillation period under the same slip length and wall-velocity amplitude.

B. Coupling phenomenon

The results of the numerical simulations reveal that the maximum spanwise velocity of the fluid
on the wall caused by the oscillatory wall motion will decrease as the slip length increases, which
presents a coupling phenomenon under the coupled boundary condition. This phenomenon can be
reflected by the variations of the phase-averaged spanwise velocity, as shown in Fig. 6.

FIG. 6. The phase-averaged spanwise velocity of the fluid on the wall when l+0
b = 0, 3.2, 10, 32, respec-

tively. w+0 is the spanwise velocity of the fluid scaled with uτ0. The oscillation parameters of the cases are
I+0
m = 12 and T +0 = 184. “PH1” and “PH16” stand for phase π/8 and 2π , respectively. The interval between

adjacent phases is π/8. Case Reτ0 = 180.
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Theoretical interpretation can be obtained through the solution of the flow caused by oscillating
plates (i.e., Stokes’s second problem). In the spanwise direction of the Stokes layer generated by
oscillatory wall motion, the N-S equation can be simplified to the heat conduction equation:

∂w

∂t
= ν

∂2w

∂y2
. (8)

In addition to the oscillation velocity of the wall, the slip velocity related to the local shear rate
should also be considered in the boundary condition:

w(y, t ) = Im sin ωt + lb
∂w

∂n
, at y = ±h, (9)

For the simulation parameters in this paper, there is no interference between the Stokes layers on
the upper and lower walls. Thus, considering the lower half channel, the general solution of Eq. (8)
can be written as:

w(y, t ) = Ae−η sin(ωt − η − ϕ), (10)

where ϕ is the lag phase, η = k(y + h), and k = √
ω/2ν is the wave number of the oscillation. The

normal derivative of the general solution can be written as:

∂w

∂y
= −Ake−η sin(ωt − η − ϕ) − Ake−η cos(ωt − η − ϕ). (11)

Substituting Eqs. (10) and (11) into the boundary condition Eq. (9),

A sin(ωt − ϕ) = Im sin ωt − Aklb sin(ωt − ϕ) − Aklb cos(ωt − ϕ), (12)

thereby

A = Im√
1 + 2klb + 2k2l2

b

, ϕ = arc tan
klb

1 + klb
. (13)

Let klb = ξ , then

w(y, t ) = Im√
1 + 2ξ + 2ξ 2

e−η sin

(
ωt − η − arc tan

ξ

1 + ξ

)
. (14)

Equation (14) is the solution of the Stokes’s second problem when the wall has a slip length in the
oscillation direction.

The wall slip changes both the maximum spanwise velocity and the phase of the fluid on the
wall but does not influence the oscillation period. Under a constant oscillation period, the same
slip length will lead to the same proportion of amplitude reduction. Figures 7(a) and 7(b) show
the comparison of the maximum spanwise velocity and the phase between the DNS results and
the Stokes theoretical solution Eq. (14), respectively. As can be seen from Fig. 7(a), the maximum
spanwise velocity of the fluid on the wall as a function of the slip length is in good agreement with
the Stokes theoretical solution. As shown in Fig. 7(b), the phases of the Stokes flow can be well
overlapped after superimposing the lag phases caused by wall slip on the actual phases of the DNS
results.

In order to evaluate the drag reduction loss caused by the decrease of the maximum spanwise
velocity of the fluid on the wall, define DRosci

loss as the drag reduction loss corresponding to this
decrease only, i.e., DRosci

loss (I+0
m , T +0, l+0

b ) = DRosci(I+0
m , T +0) − DReq

osci(w
+0
max, T +0), where DReq

osci is
the drag reduction of the spanwise oscillation boundary condition with the wall-velocity amplitude
equal to the maximum spanwise velocity of the fluid on the wall w+0

max when lb �= 0. According
to Quadrio et al. [42], for a given T +0, the drag reduction will decrease monotonically with the
decrease of I+0

m . Figure 8(a) shows the DNS results of DRosci at T +0 = 92 in the present study and
their fitting curve versus I+0

m . For verification, the DNS results from Quadrio et al. [42] are also
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FIG. 7. (a) The maximum spanwise velocity of the fluid on the wall w+0
max versus the slip length l+0

b (I+0
m =

12, T +0 = 184). (b) The DNS results coincide with the Stokes theoretical solution after superimposing the lag
phases ϕ (l+0

b = 10). Case Reτ0 = 180.

plotted in this figure. Figure 8(b) shows the drag reduction loss as a function of the slip length by
taking the spanwise oscillation of I+0

m = 20 and T +0 = 92 as the reference (l+0
b = 0). In general,

the actual drag reduction loss DRloss is greater than DRosci
loss , indicating that the drag reduction of wall

slip in the oscillatory turbulent channel flow also decreases, which can be seen from the analysis in
Sec. III C.

C. Drag reduction decomposition

In this section, the drag reduction is decomposed according to the contributions arising from
different sources. When the spanwise oscillation dominates the drag reduction of the coupled
boundary condition, the variation of drag reduction with the oscillation parameters is basically the
same as that without slip. Therefore, Sec. III C only focuses on the drag reduction property of slip
length under the constant oscillation parameters.

Define the relative drag reduction as DRr = (〈Cf 〉ref − 〈Cf 〉)/〈Cf 〉ref , 〈Cf 〉ref is the mean friction
coefficient of the reference flow when lb = 0. For the slip flow without oscillation, the turbulent
baseline flow is used as the reference; for the flow under the coupled boundary condition, the no-slip

FIG. 8. (a) The DNS results of DRosci in the present study and their fitting curve versus I+0
m when T +0 =

92. The fitting function is DRosci × 100 = 0.0015(I+0
m )3 − 0.1577(I+0

m )2 + 4.6666(I+0
m ). “QR 04” represent the

DNS result of Quadrio et al. [42] at T +0 = 100, and Reτ0 = 200. (b) Drag reduction loss DRloss and DRosci
loss

versus l+0
b . Case Reτ0 = 180.
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oscillatory turbulent flow with the same oscillation parameters is used as the reference. For the
purposes of the following analysis, a proportionality coefficient ζ is defined to describe the variation
of the streamwise pressure gradient,

ζ = ∂〈p〉
∂x

∣∣∣∣
slip

/
∂〈p〉
∂x

∣∣∣∣
ref

, (15)

where ζ ≡ 1 − DRr , ∂〈p〉/∂x|slip is the mean streamwise pressure gradient driving the channel flow
when lb �= 0, and ∂〈p〉/∂x|ref is the reference mean pressure gradient without slip.

In laminar Poiseuille flow, the governing equation is

− 1

ρ

d p

dx
+ ν

d2u

dy2
= 0. (16)

Note that d p/dx < 0. Considering the slip velocity u(±h) = lbdu/dn|±h on the upper and lower
walls, we have

u(y) = − 1

2μ

d p

dx
(h2 − y2) − lb

h

μ

d p

dx
, (17)

where μ = ρν is the kinetic viscosity. Keeping the flow rate as 2q, the expression of d p/dx|slip

can be written as (3qμ)/(−h3 − 3h2lb). Taking the pressure gradient of the laminar Poiseuille flow
under the no-slip boundary condition as the reference, the expression of ζ for the laminar Poiseuille
flow is ζ = 1/(1 + 3l∗

b ). Besides, according to the experimental research conducted by Choi and
Kim [3], the drag reduction of a laminar Couette flow with one slip surface also has the form
of 1/(1 + l∗

b ), which brings the following question. Is there a similar form for ζ in the turbulent
channel flow?

To figure out this unified expression, considering the nonlinearity of turbulence, we define ζ in
the turbulent flow as:

ζ = 1

1 + C(l∗
b )l∗

b

, (18)

where the coefficient C(l∗
b ) is a function of the slip length.

In the turbulent channel flows, including the turbulent baseline flow and the oscillatory turbulent
flow, the DNS results show that us = 〈u〉|±h = lb〈∂u/∂n〉|±h is still valid. From a generalization
perspective, similar to Fukagata et al. [16], the mean velocity profile can be decomposed as Eq. (19)
after the actual mean streamwise pressure gradient ∂〈p〉/∂x|slip is extracted out,

〈u(lb, y)〉 = − ∂〈p〉
∂x

∣∣∣∣
slip

[
〈 f (lb, y)〉 + lb

∂〈 f (lb, y)〉
∂n

∣∣∣∣
±h

]
, (19)

where 〈 f (lb,±h)〉 = 0 and ∂〈 f (lb, y)〉/∂n|±h is derived from the slip boundary condition. Equation
(19) shows that the mean velocity profile can be decomposed into two parts, which is illustrated in
Fig. 9.

For the no-slip reference flow,

〈u(0, y)〉 = − d〈p〉
dx

∣∣∣∣
ref

〈 f (0, y)〉. (20)

Under the constant flow rate condition, there is

− d〈p〉
dx

∣∣∣∣
ref

∫ h

0
〈 f (0, y)〉dy = − d〈p〉

dx

∣∣∣∣
slip

∫ h

0

[
〈 f (lb, y)〉 + lb

∂〈 f (lb, y)〉
∂n

∣∣∣∣
±h

]
dy. (21)
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FIG. 9. Decomposition of the mean velocity profile in turbulent channel flow. 1© represents the mean slip
velocity on the wall, i.e., us. 2© is the remaining part after deducting us from the mean velocity profile, and 2©
is zero on the wall.

Therefore,

ζ =
∫ h

0
〈 f (0, y)〉dy

/∫ h

0

[
〈 f (lb, y)〉 + lb

∂〈 f (lb, y)〉
∂n

∣∣∣∣
±h

]
dy. (22)

According to Eq. (18), there is C(l∗
b ) = (1 − ζ )/l∗

b ζ . Substituting Eq. (22) into this relation, we have

C(l∗
b ) = h2 ∂〈 f (lb, y)〉

∂n

∣∣∣∣
±h

/∫ h

0
〈 f (0, y)〉dy︸ ︷︷ ︸

C1(l∗b )

+
[∫ h

0
〈 f (lb, y)〉dy

/∫ h

0
〈 f (0, y)〉dy − 1

]/
l∗
b︸ ︷︷ ︸

C2(l∗b )

,

(23)

and name the two terms on the right-hand side as C1(l∗
b ) and C2(l∗

b ), respectively.
Combining the expressions for ζ and C1(l∗

b ) [Eqs. (22) and (23)], and us = lb〈∂u/∂n〉|±h,
we can get that C1l∗

b ζ = us/Ub. Furthermore, ζ is also equal to 〈τ slip
w 〉/〈τ ref

w 〉, where 〈τ slip
w 〉 =

μ〈∂u(lb, y)/∂n〉|±h is the mean wall shear stress when lb �= 0, and 〈τ ref
w 〉 = μ〈∂u(0, y)/∂n〉|±h is

the mean wall shear stress of the no-slip reference flow. Therefore, C1(l∗
b ) can also be expressed

as

C1(l∗
b ) = us

Ubl∗
b ζ

= h

Ub

∂〈u(0, y)〉
∂n

∣∣∣∣
±h

= h

μUb
〈τ ref

w 〉. (24)

Thus, C1 is a constant which is independent of the slip length. In the slip flow, C1 remains consistent
with the value of the no-slip reference flow. Since the above decomposition starts from the mean
velocity profile and takes the flow without slip as the reference, it is applicable to both the turbulent
baseline flow and the oscillatory turbulent flow.

The relationship between C1, C2(l∗
b ) and DRr , ζ is

DRr ≡ 1 − ζ = [C1 + C2(l∗
b )]l∗

b ζ = us

Ub
+ C2(l∗

b )l∗
b ζ . (25)

As constituents of C(l∗
b ), C1, and C2(l∗

b ) represent two sources of the drag reduction. Compared to
the expression of Rastegari et al. [26], the decomposition of C(l∗

b ) in the current work has the same
meaning as their expression DR = us/Ub + O(ε). C1/C and C2(l∗

b )/C represent the proportions of
the contributions to the drag reduction (or drag increase) resulting from the effective slip on the
wall and the modifications to the turbulent dynamics, respectively. The DNS results of C1 and C2,
as well as C2/C1 are shown in Fig. 10. Hereafter, C2 is short for C2(lb). C2/C1 describes the ratio of
the contribution from the modifications of turbulent dynamics to the contribution from the effective
slip on the wall. For validation, the DNS results of Min et al. [23] and Busse et al. [25] are also
shown in Fig. 10. As can be seen from Figs. 10(a) and 10(c), the absolute value of C2 is much

124601-12



COUPLING EFFECT OF WALL SLIP AND SPANWISE …

FIG. 10. The DNS results of [(a) and (c)] C1, C2, and [(b) and (d)] C2/C1 versus the inner scale slip
length l+0

b . “slip” represents the flow under the isotropic slip boundary condition. “couple” represents the
flow under the coupled boundary condition with I+0

m = 12 and T +0 = 92. Panels (a) and (b) are the results
of the cases of Reτ0 = 180. Panels (c) and (d) are the results of the cases of Reτ0 = 396. In (b), “MK 04”
and “BS 12” represent the DNS results of Min et al. [23] and Busse et al. [25] (isotropic slip boundary
condition, Reτ0 = 180), respectively. In (d), “BS 12” represents the DNS result of Busse et al. [25] (isotropic
slip boundary condition, Reτ0 = 360). The way to calculate C1 and C2 of Refs. [23,25] is C1 = h〈τ ref

w 〉/μUb

and C2(l∗
b ) = DRr/l∗

b ζ − C1.

smaller than the constant C1 after the slip length exceeds a certain value. In addition, the value
of C1 under the coupled boundary condition is smaller than that under the isotropic slip boundary
condition, which proves that the drag reduction of the same slip length in the oscillatory turbulent
flow is lower than that in the turbulent baseline flow. As shown in Figs. 10(b) and 10(d), for the
turbulent baseline flow, the contribution from the modifications of turbulent dynamics to the drag
increase is large when the isotropic slip length is small, e.g., when l+0

b = 1, C2/C1 is around −50%.
As the slip length increases, this proportion gradually changes to around 20%, and the effect of
C2 changes from drag increase to drag reduction. Additionally, compared with the turbulent flow
without oscillation, the critical slip length which makes the contribution of the modifications of
turbulent dynamics change from drag increase to drag reduction increases in the oscillatory turbulent
flow.

In summary, compared with the respective no-slip reference flow, the proportionality coefficients
ζ of laminar (including the laminar Couette flow and the laminar Poiseuille flow) and turbulent
channel flows (including the turbulent baseline flow and the oscillatory turbulent flow) are demon-
strated to be in a unified form [i.e., Eq. (18)] versus the outer scale slip length. For laminar flow, C
is a constant. For turbulent flow, C is composed of C1 and C2, and C1 remains consistent with the
value of the no-slip reference flow. The contribution from the modifications of turbulent dynamics
represented by C2 will undergo a shift from drag increase to drag reduction as the isotropic slip
length increases.
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TABLE III. Abbreviation of case name and the corresponding parameters. Case Reτ0 = 180.

Abbr I+0
m T +0 l+0

b DR

Base 0 0 0 0
Slip 0 0 7 0.31
Osci 12 184 0 0.31
Coup 12 184 7 0.50

IV. COUPLING EFFECT ON WALL TURBULENCE

In this section, the coupling effect of the coupled boundary condition on the turbulent dynamics
will be addressed. The time-averaged results, including the mean velocity profiles and the second
moments, as well as the empirical mode decomposition (EMD) of the friction coefficient are
conducted in Sec. IV A. The quadrant analysis of the production term of the turbulent kinetic energy
(TKE), and the joint probability density function (PDF) of u′ and v′, are carried out in Sec. IV B.
The phase-averaged variations of the turbulence properties during the oscillation period are shown
in Sec. IV C. Finally, in Sec. IV D, the variation of the inclination angle of the streaks is analyzed
based on the phase-averaged two-point correlation function of the streamwise velocity fluctuations.

The analysis in this section is mainly based on four cases of Reτ0 = 180 under different boundary
conditions. In what follows, unless otherwise noted, the turbulent baseline flow is represented by
“Base,” the isotropic slip boundary condition is indicated by “Slip,” “Osci” is used to represent the
spanwise oscillation boundary condition, and “Coup” indicates the coupled boundary condition.
The specific parameters of the four cases are shown in Table III. For the validity of the comparison,
the drag reduction of the selected “Slip” case and the “Osci” case are close to each other.

A. Turbulence statistics

Figures 11(a) and 11(b) show the mean velocity profiles of 〈u+〉 and 〈u+〉 − 〈u+
s 〉, respectively. In

both figures, the delta symbols represent the DNS results under the isotropic slip boundary condition
conducted by Min et al. [23], and their condition is Reτ0 = 180 and l+0

b = 3.566. The diamond
symbols represent the DNS results under the spanwise oscillation boundary condition conducted
by Touber et al. [43], and the corresponding condition is Reτ0 = 200, I+0

m = 12, and T +0 = 100.
The results in the current work are slightly different from those in the literature due to the different

FIG. 11. Mean velocity profiles (a) 〈u+〉 and (b) 〈u+〉 − 〈u+
s 〉 in wall units scaled with the actual friction

velocity. “MK 04” and “TL 12” represent the DNS results of Min et al. [23] (the isotropic slip boundary
condition) and Touber et al. [43] (the spanwise oscillation boundary condition), respectively.
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FIG. 12. The Reynolds shear stress −〈u′v′〉 normalized by u2
τ0 in global coordinates. y/h = −1 represents

the lower wall of the channel. The red lines represent the results under the isotropic slip boundary condition,
and the green lines represent the results under the coupled boundary condition with I+0

m = 12 and T +0 = 184.
The arrows in the figure indicate the change of the peak position of the Reynolds shear stress as the slip length
increases.

simulation parameters, but the variation trend of the mean velocity profiles under the isotropic slip
boundary condition and the spanwise oscillation boundary condition is consistent with that in the
literature.

As can be seen from Fig. 11(a) of the time-averaged velocity profiles, on the one hand, the
effective wall slip (the “Slip” case) increases the mean streamwise velocity in the near-wall region,
and the slope of the log layer is almost the same as the turbulent baseline flow. On the other hand,
the oscillatory wall motion (the “Osci” case) which generates a Stokes layer thickens the viscous
sublayer, and then lead to the elevation of the buffer and log layers. As a result, the coupled boundary
condition mixes the above effects, and the slope of the log layer is almost the same as the slope
when only the oscillatory wall motion is applied. After subtracting the respective time-averaged
streamwise slip velocity 〈u+

s 〉 on the wall, the profiles collapse in the viscous sublayer, and another
two obvious characteristics can also be seen from Fig. 11(b). The first characteristic is that the
velocity profiles are similar before and after the application of wall slip, nothing but the log layer
is shifted downward. The slope is basically unchanged, regardless of that the slip is applied on
the turbulent baseline flow or the oscillatory turbulent flow. The second characteristic is that the
shift of the outer layer caused by the slip acting on the oscillatory turbulent flow is obviously
smaller than that of the turbulent baseline flow. These two characteristics are well correlated with
the change of the statistical properties. The first characteristic shows that the influence of slip on
turbulent dynamics is limited, which can be seen from the analyses of the turbulence properties in
the following sections. The second characteristic reflects that the same isotropic slip length has a
weaker effect on the oscillatory turbulent flow than the turbulent baseline flow. This can also be
supported by the fact that the relative drag reduction of the same slip length acting on the oscillatory
turbulent flow is less than that of the turbulent baseline flow.

The distribution of −〈u′v′〉 throughout the entire channel height is shown in Fig. 12. As the
isotropic slip length increases, the Reynolds shear stress becomes smaller and smaller throughout
the channel. According to Busse et al. [25], the increasing slip length will promote the process of
relaminarization, and the decay of Reynolds shear stress is one of the features of relaminarization
[48]. Under the isotropic slip boundary condition, when l+0

b = 100, −〈u′v′〉 in the channel almost
disappears. However, when l+0

b = 100, the Reynolds shear stress in the oscillatory turbulent flow is
obviously higher than that in the slip flow without oscillation. This reflects an unexpected property
that the existence of the Stoke layer delays the relaminarization process caused by the large slip
length. Nevertheless, under the coupled boundary condition, the Reynolds shear stress will still
disappear as the slip length increases, which can be seen from the variation trend. Of course, this
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critical slip length depends on the oscillation parameters. Figure 11(b) has shown that the same
slip length has a weaker ability to change the mean velocity profile of the oscillatory turbulent flow,
compared to the turbulent baseline flow. Therefore, the existence of the stokes layer will mitigate the
influence of wall slip on turbulent fluctuations. The peak position of Reynolds shear stress remains
basically unchanged under the isotropic slip boundary condition (a similar trend can be seen from
Min et al. [23]), while the peak position is pushed outward under the coupled boundary condition,
as indicated by the arrows in Fig. 12. This is because the coupled boundary condition has a stronger
inhibition on the ejection events than before coupling. It can be seen clearly from the quadrant
analysis in Sec. IV B.

According to Rastegari et al. [26], the friction coefficient of channel flow with wall slip can be
expressed as:

Cf = 6

Reb

(
1 − us

Ub

)(
1

1 − 3I+

)
, (26)

where I+ = ∫ h
0 y[−〈u′

v
′ 〉+ − 〈ūv̄〉+]dy (the upper half channel). There is no secondary mean flow

under the isotropic slip boundary condition, leading to that 〈ūv̄〉 = 0. In the laminar flow, I+ = 0.
The integral of the weighted Reynolds shear stress in the normal direction represents the contribu-
tion of turbulent fluctuations to the total friction coefficient. Figure 13(a) is the comparison of the
weighted Reynolds shear stress −y〈u′v′〉 under different boundary conditions. Compared with the
“Osci” case, the wall slip of the coupled boundary condition condenses the envelope range of the
phase fluctuations caused by the oscillatory wall motion, and further suppresses the generation
of the Reynolds shear stress. More details about the Reynolds stress transport are presented in
Sec. IV C. Figures 13(b), 13(c) and 13(d) are the comparison of the RMS velocity fluctuations of the
streamwise, wall-normal, and spanwise directions, respectively. The streamwise and spanwise RMS
velocity fluctuations in the viscous sublayer increase visibly due to the wall slip, and the envelope
range of their phase fluctuations caused by the periodic oscillation also increases in this region.
However, as v′ is weak in the viscous sublayer and the cross-correlation between u′ and v′ is reduced,
the phase fluctuation of −y〈u′v′〉 is not greatly affected in this region. The reduced cross-correlation
between u′ and v′ fluctuations can be reflected by the joint PDF in Sec. IV B, as shown in Fig. 16. In
the buffer and log layers, the envelope ranges of the RMS velocity fluctuations decrease under the
coupled boundary condition. As a result, the magnitude of the periodic fluctuations of the friction
coefficient will also decrease, which is shown in Fig. 14. Here, the periodic fluctuations are the
phase-averaged results of the wall-averaged friction coefficient.

Figure 14(a) shows the temporal variations of the wall-averaged friction coefficients of the four
cases. The EMD method [45,49], part of the Hilbert-Huang transform (HHT), which can generate
a collection of intrinsic mode functions (IMF), is used to distinguish the large-scale components
and the small-scale fluctuations of the wall-averaged friction coefficient. The EMD method can be
expressed as

X (t ) =
n∑

i=1

IMFi + rn, (27)

where IMFi is the ith empirical mode and rn is the residue. Therefore, the original signal X (t )
is decomposed into n empirical modes and a residue. Note that IMF1 is the highest frequency
component. The large-scale components of the wall-averaged friction coefficients of the “Osci”
case and the “Coup” case are also shown in Fig. 14(a), i.e., rosci and rcoup, which are the results of
deducting the first three (n = 3) and first two (n = 2) modes from their original signals, respectively.
The selection criterion of n is to ensure that

∑n
i=1 IMFi has the same frequency as the spanwise

oscillation. The dark gray area in Fig. 14(a) corresponds to a time range from 480 to 800, containing
20 oscillation periods. The deducted components are the small-scale fluctuations of the friction
coefficients, i.e.,

∑n
i=1 IMFi, as shown in Fig. 14(b).
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FIG. 13. (a) The weighted Reynolds shear stress −y〈u′v′〉 of the upper half channel in wall units scaled with
u2

τ0h. Panels (b), (c), and (d) are the RMS velocity fluctuations (scaled with uτ0) of the streamwise, wall-normal,
and spanwise directions, respectively. The blue and yellow thin solid lines represent different phases of the
“Osci” case and the “Coup” case, respectively. The thick lines represent the time-averaged results.

The periodic fluctuations of the friction coefficients Ĉ f of the “Osci” case and the “Coup” case are
shown in Figs. 14(c) and 14(d), respectively. Sixteen phases in an oscillation period are considered.
Compared to the “Osci” case, the magnitude of the periodic fluctuations of the friction coefficient
pronouncedly decreases in the “Coup” case. In Figs. 14(c) and 14(d), the periodic fluctuations
calculated from the data with and without large-scale components are roughly the same, which
are represented by the thick solid line and the dashed line, respectively. A similar characteristic
can be seen in Agostini et al. [45]. Moreover, the periodic fluctuations in Fig. 14(c) is of the same
magnitude as that of Agostini et al. [45], although their friction Reynolds number is as high as 1000.
The vertical bars represent the standard deviation ±σ corresponding to the data without large-scale
components, i.e.,

∑n
i=1 IMFi. σ is evaluated from

σ =
√√√√ 1

N − 1

N∑
n=1

[X |φ+(n−1)T − X̃ |φ]2, (28)

where φ ∈ {0, T }, and N = 20. For both the “Osci” case and the “Coup” case, the standard deviation
is smaller than the amplitude of the periodic fluctuation of the phase-averaged friction coefficient.
The fact that the average results with and without large-scale components are very close indicates
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FIG. 14. (a) The temporal variations of the wall-averaged friction coefficients of the four cases (solid lines).
The large-scale components of the “Osci” case and the “Coup” case are represented by rosci (dashed line) and
rcoup (dash-dot line), respectively. (b) The small-scale fluctuations of the friction coefficients of the “Osci” case
and the “Coup” case. For the “Osci” case, n = 3. For the “Coup” case, n = 2. Panels (c) and (d) are the periodic
fluctuations of the phase-averaged friction coefficients of the “Osci” case and the “Coup” case, respectively.
The vertical bars represent the standard deviation calculated from the data without large-scale components.

that the error arising from retaining the large-scale components is low. Therefore, in the current
work, the operation of removing the large-scale components is not performed in the phase-averaged
statistics.

B. Quadrant analysis

In this section, the quadrant analysis will be carried out on the exchange term of the TKE k =
〈u′

iu
′
i〉/2, followed by the joint PDF of (u′, v′). The turbulent exchange term refers to the exchange

of physical quantities between the mean flow and the turbulent fluctuations. The exchange term
between mean flow kinetic energy and TKE is Pk ,

Pk = −〈u′
iu

′
j〉

∂〈ui〉
∂x j

. (29)

In the direction of the turbulent flow field where the average strain rate is not zero, part of the
energy in the mean flow is transferred to the turbulent fluctuations by the Reynolds stress. Pk is the
only source of TKE in the turbulent flow field, also known as the production term. The quadrants
are divided according to the signs of u′ and v′. The second quadrant (u′ < 0, v′ > 0) contains the
ejection events of the turbulent bursting processes, and the fourth quadrant (u′ > 0, v′ < 0) contains
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FIG. 15. Pk from each quadrant scaled with u3
τ0/δν of the turbulent baseline flow. Black long dashed lines

are the total Pk of the four quadrants.

the sweep events. The high-speed fluid washing against the wall accompanying with the sweep
events are the main source of the high skin-friction drag in wall turbulence.

As can be seen from Fig. 15, the turbulent processes associated with the fluctuations from the
second and the fourth quadrants dominate the production of the TKE. Under the isotropic slip
boundary condition, the region where the fourth quadrant dominates the production of the TKE is
about y+0 < 16, slightly larger than the turbulent baseline flow (about y+0 < 13). Within this region,
the contribution of the sweep events is greater than that of the ejection events. This is because the
velocity and its fluctuations in the near-wall region are small, and the sweep events spurt from
the normal position far away from the wall, which contains more energy than the ejection events.
The oscillatory wall motion extends the region where the fourth quadrant dominates to y+0 < 20.
This phenomenon indicates that the oscillatory wall motion suppresses the ejection events in the
near-wall region to a greater extent than the sweep events, due to that the Stokes layer happens to
be the main area where the ejection events occur. In this way, it can be understood that the effective
thickness of the Stokes layer is positively correlated with drag reduction [37,42]. Under the coupled
boundary condition, the above range is further extended to y+0 < 30, indicating that the wall slip
can enhance the oscillatory wall motion to suppress the ejection events and increase the normal
range where the fourth quadrant dominates the production of the TKE.

The TKE mainly comes from the bursting process in the near-wall region. Hence, the decrease
in the production indicates that the coupled boundary condition can strongly inhibit this process.
Figure 16 compares the joint PDF of u′ and v′ at y+0 = 10.5 under different boundary conditions.
Compared to the turbulent baseline flow, the isotropic slip slightly narrows the distributions of
the second, the third, and the fourth quadrants, the high velocity fluctuations are suppressed, and
the highest probability density mainly appears in the fourth quadrant. Also compared with the
turbulent baseline flow, there is a strong narrowing when the spanwise wall oscillation is imple-
mented, indicating that the turbulent fluctuations in the Stokes layer are weakened pronouncedly. In
addition, under the periodic oscillation, the region with the highest probability density appears to
be concentrated on the side of u′ < 0. When the isotropic slip is applied on the oscillatory turbulent
flow, the high wall-normal velocity fluctuations are further suppressed, but the probability of the
high streamwise velocity fluctuations are slightly increased, which is different from the effect of
slip on the turbulent baseline flow. Another notable feature of the “Coup” case is the apparent
counterclockwise rotation in the joint PDF compared to the “Osci” case, indicating a decrease in
the cross-correlation between the streamwise and the wall-normal fluctuations.

C. Phase-averaged properties

In this section, the phase-averaged variations of the turbulence properties during the oscillation
period are concerned, including the Stokes strain, the Reynolds normal stresses and the enstrophy

budgets. The phasewise variation of the Stokes strain ˜∂w/∂y is shown in Fig. 17. The oblique
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FIG. 16. The joint PDF of u′ and v′ at y+0 = 10.5, scaled with uτ0. (a) The “Base” case (black dashed
lines) compared with the “Slip” case (solid red lines). The probability density in this figure ranges from 100
to 10. (b) The “Osci” case (blue lines) compared with the “Coup” case (yellow lines), solid lines represent the
time-averaged results, and the dotted lines represent the phase-averaged results. The probability density in this
figure ranges from 800 to 100.

lines at the intersection of positive and negative strains represent the isolines of zero strain. For the
“Osci” case, when the spanwise velocity of the wall is zero, the Stokes strain on the wall reaches
the extreme value. The phases where the arrows located are the zero-strain phases of the fluid on the
wall. For the oscillatory turbulent flow without slip, when the Stokes strain in the upper region of
the viscous sublayer (e.g., the region of 5 < y+0 < 10) is high and changes slowly with the phase,
the streamwise skin-friction drag will increase. When the Stokes strain near this region is low and
changes rapidly, the skin-friction drag will decrease. This is consistent with the observation in the
literature [43,45].

When the isotropic slip is applied to the oscillatory turbulent flow (the “Coup” case), the
magnitude of the Stokes strain is significantly reduced and the phase lags. Another obvious feature
is that the phase corresponding to the minimum of the phase-averaged friction coefficient is closer
to the zero-strain phase on the wall. According to Eq. (14), when l+0

b = 7, the lag phase ϕ is about
0.4456, which is exactly the difference between the zero-strain phases indicated by the arrows on
the same side of Figs. 17(a) and 17(b). Note that T corresponds to the phase 2π . According to the

FIG. 17. Contours of the phase-averaged Stokes strain scaled with uτ0/δν . (a) The “Osci” case. (b) The
“Coup” case. The phases corresponding to the maximum and minimum of the periodic fluctuations of the
friction coefficient are also marked with vertical dashed lines in the two figures. The maximum and minimum
are obtained by Fourier fitting of the curves shown in Figs. 14(c) and 14(d). 0 and T/2 correspond to the
zero-velocity states of the wall.
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FIG. 18. The distributions of the anisotropy ratio. (a) 〈u′
iu

′
j〉/〈u′

iu
′
i〉. (b) 〈ω′

iω
′
j〉/〈ω′

iω
′
i〉. In both figures, the

line style is used to distinguish different physical quantities. The “Base,” “Slip,” “Osci,” and “Coup” cases
are distinguished by the black, red, blue, and yellow lines, respectively. In (a), the delta and gradient symbols
represent the 〈u′u′〉/〈u′

iu
′
i〉 and 〈w′w′〉/〈u′

iu
′
i〉 of the DNS results from Touber et al. [43].

comparison in these two figures, the friction coefficient lags about T/8 (the corresponding lag phase
is about π/4), which is obviously larger than the lag phase of the spanwise velocity or the Stokes
strain. This is a new phenomenon that is noteworthy. As can be seen from the following analysis,
this is caused by the hysteresis of the turbulent dynamics.

Before investigating the budgets, the distributions of the anisotropy ratio are compared. Fig-
ures. 18(a) and 18(b) show the ratios of the Reynolds stress components to 〈u′

iu
′
i〉 (twice the

TKE) and the ratios of the enstrophy components to 〈ω′
iω

′
i〉, respectively. Note that the enstrophy

component refers to one of the three constituents that contribute to the scalar enstrophy. In Fig. 18(a),
the delta and gradient symbols represent the 〈u′u′〉/〈u′

iu
′
i〉 and 〈w′w′〉/〈u′

iu
′
i〉 of the DNS results from

Touber et al. [43], the corresponding condition is Reτ0 = 200, I+0
m = 12, and T +0 = 200. The black

and blue symbols represent the results of the turbulent baseline flow and the oscillatory turbulent
flow, respectively. The results of the “Base” and the “Osci” cases in the current work are in good
agreement with the literature [43].

As shown in Fig. 18(a), for the “Osci” case, compared with the turbulent baseline flow, the
proportion of 〈u′u′〉 decreases and the proportion of 〈w′w′〉 increases, while the proportions of
〈u′v′〉 and 〈v′v′〉 are basically unchanged. It means that the oscillatory wall motion makes the
turbulent energy transfer from the streamwise direction to the spanwise direction. For the “Coup”
case, the viscous diffusion from the wall is restrained, and the energy transfer from 〈u′u′〉 to 〈w′w′〉
is weakened. For 〈u′v′〉 and 〈v′v′〉, although their proportions do not change significantly, there
is a monotonous trend as shown in Fig. 18(a), that is, the higher the drag reduction, the smaller
the absolute values of their ratio. The enstrophy components have a similar property. As shown
in Fig. 18(b), for the “Osci” case, compared with the turbulent baseline flow, the proportion of
〈ω′

xω
′
x〉 contributes to the enstrophy increases greatly, while the proportions of 〈ω′

yω
′
y〉 and 〈ω′

zω
′
z〉

in the viscous sublayer decrease. For the “Coup” case, there is no significant change in 〈ω′
yω

′
y〉,
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FIG. 19. Contours of the phase-averaged (a) ũ′u′ and (b) ˜w′w′, normalized by the inner scale of the
turbulent baseline flow. The contour maps represent the results of the “Osci” case, and the colored contour
lines represent the results of the “Coup” case, using the same color legend. The vertical dashed lines have the
same meaning as in Fig. 17.

but the separation between the streamwise and spanwise fluctuations increases, as the process of
transferring energy from 〈ω′

zω
′
z〉 to 〈ω′

xω
′
x〉 is inhibited.

Figures 19(a) and 19(b) show the contours of the phase-averaged ũ′u′ and ˜w′w′, respectively.
For comparison, the results of the “Osci” case and the “Coup” case are overlapped in one figure. It
can be seen that the peak positions of ũ′u′ and ˜w′w′ are elevated, and their lag phases are basically
the same as the lag of the phase-averaged friction coefficient. The elevation of the peak position is
due to the strong inhibition of the ejection events by the coupled boundary condition. According to
the statistical characteristics of turbulent channel flow, the budgets of the phase-averaged Reynolds
stress can be expressed as

∂ ũ′
iu

′
j

∂t
= P̃i j + T̃i j + D̃i j + Π̃i j + ε̃i j, (30)

in which, P̃i j is the phase-averaged production term; T̃i j is the turbulent diffusion term; D̃i j is the
viscous diffusion term; Π̃i j is the pressure-velocity interaction term; ε̃i j is the viscous dissipation
term. Their expressions are

P̃i j = −ũ′
iu

′
k

∂ ũ j

∂xk
− ũ′

ju
′
k

∂ ũi

∂xk
, T̃i j = −∂ ˜u′

iu
′
ju

′
k

∂xk
, D̃i j = 1

Re

∂2ũ′
iu

′
j

∂xk∂xk
,

Π̃i j = −
˜

u′
i

∂ p′

∂x j
−

˜

u′
j

∂ p′

∂xi
, ε̃i j = − 2

Re

˜∂u′
i

∂xk

∂u′
j

∂xk
. (31)

Figures 20(a) and 20(b) show the phase-averaged variations of the ũ′u′ budget of the “Osci”
case and the “Coup” case, respectively. Similarly, Figs. 20(c) and 20(d) show the phase-averaged
variations of the ˜w′w′ budget. Comparing the “Coup” case with the “Osci” case, an overall
impression is that ˜w′w′ decreases more dramatically than ũ′u′, indicating that the source of the
spanwise Reynolds stress under the coupled boundary condition is suppressed to a greater extent.
This is because the wall slip significantly suppresses the viscous related diffusion process, and
then prevents the energy transfer from ũ′u′ to ˜w′w′. Compared with other terms, the fluctuation of
the production term is larger, which is the main source of the fluctuation of the Reynolds normal
stress. For ũ′u′ at different phases of the “Coup” case, the peak position of P̃i j is lifted to a certain

extent compared with the “Osci” case, which is consistent with Fig. 19. For ˜w′w′, at most phases,
the contribution of the pressure-velocity interaction exceeds the production term and becomes the
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FIG. 20. Budgets of the phase-averaged [(a) and (b)] ũ′u′ and [(c) and (d)] ˜w′w′, normalized by the inner
scale of the turbulent baseline flow. The left-hand and the right-hand columns represent the results of the “Osci”
case and the “Coup” case, respectively.

primary source. For both ũ′u′ and ˜w′w′, there is no significant change in the peak position of the
viscous dissipation, which can also be seen from the variation of the enstrophy, as shown in Fig. 21.

The dissipation of TKE is closely related to the enstrophy [45]. As we know from Fig. 18, the
difference of ˜ω′

yω
′
y between the “Osci” case and the “Coup” case is small. Since the current work

focuses on the new changes brought by the coupling of spanwise oscillation and wall slip, only ˜ω′
xω

′
x

and ω̃′
zω

′
z are concerned in the current work. Figures 21(a) and 21(b) show the contours of the phase-

averaged ˜ω′
xω

′
x and ω̃′

zω
′
z, respectively. For both the “Osci” and the “Coup” cases, the two enstrophy

components at the near-wall region are changing in step with the periodic fluctuations of the friction
coefficients. When the enstrophy components increase with the phase, the friction coefficients rise,

FIG. 21. Contours of the phase-averaged (a) ˜ω′
xω

′
x and (b) ω̃′

zω
′
z, normalized by the inner scale of the

turbulent baseline flow. The contour maps represent the results of the “Osci” case, and the colored contour
lines represent the results of the “Coup” case, using the same color legend. The vertical dashed lines have the
same meaning as in Fig. 17.
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and when the enstrophy components decrease with the phase, the friction coefficients also decrease.
Hence, the lag phase of the enstrophy is the same as the phase-averaged friction coefficient. These
results indicate that the enstrophy is closely correlated with the evolution of the skin-friction drag.
In addition, the peak positions of the enstrophy components do not have obvious elevation like
Reynolds stress.

The budget of the phase-averaged enstrophy can be written as

∂

∂t

(
1

2
ω̃′

iω
′
i

)
= P̃ω + S̃ω + T̃ω + D̃ω + ε̃ω, (32)

where P̃ω = −ũ′
jω

′
i∂ω̃i/∂x j is the phase-averaged exchange term. T̃ω, D̃ω, and ε̃ω are the turbulent

diffusion term, the viscous diffusion term, and the viscous dissipation term, respectively, which are
expressed as

T̃ω = − ∂

∂x j

˜

u′
j

(
1

2
ω′

iω
′
i

)
, D̃ω = ν

∂2

∂x j∂x j

˜1

2
ω′

iω
′
i, ε̃ω = −ν

˜∂ω′
i

∂x j

∂ω′
i

∂x j
. (33)

The vortex stretching term S̃ω = S̃1
ω + S̃2

ω + S̃3
ω, in which S̃1

ω = ω̃′
iω

′
j s̃i j , S̃2

ω = ω̃ jω̃
′
is

′
i j , and S̃3

ω =
˜ω′

iω
′
j s

′
i j . si j = (∂ui/∂x j + ∂u j/∂xi )/2 is the strain rate tensor. Both the average deformation s̃i j and

the fluctuating deformation s′
i j contribute to the process of vortex stretching. For the phase-averaged

˜ω′
xω

′
x and ω̃′

zω
′
z, their budgets can be written as

∂

∂t

(
1

2
˜ω′

xω
′
x

)
= P̃x

ω + S̃x
ω + T̃ x

ω + D̃x
ω + ε̃x

ω,
∂

∂t

(
1

2
ω̃′

zω
′
z

)
= P̃z

ω + S̃z
ω + T̃ z

ω + D̃z
ω + ε̃z

ω, (34)

where S̃x
ω = S̃1,x

ω + S̃2,x
ω + S̃3,x

ω , S̃z
ω = S̃1,z

ω + S̃2,z
ω + S̃3,z

ω . The superscript x or z represents the x or z
component of the corresponding term.

Figures 22(a) and 22(b) show the phase variations of the ˜ω′
xω

′
x budget of the “Osci” case and

the “Coup” case, respectively. Similarly, Figs. 22(c) and 22(d) show the phase variations of the
ω̃′

zω
′
z budget. Comparing the “Coup” case with the “Osci” case, an overall impression is that ˜ω′

xω
′
x

decreases more than ω̃′
zω

′
z. This is because the wall slip significantly weakens the energy transfer

from ω̃′
zω

′
z to ˜ω′

xω
′
x. In the region outside the viscous sublayer, the productions of enstrophy are

substantially balanced with the viscous dissipation. The production here includes the exchange term
and the vortex stretching term. Similarly to Reynolds stress, the fluctuation of the production is
always the main source of the fluctuation of the enstrophy component. For the “Coup” case, the
presence of wall slip increases the fluctuations of viscous diffusion and dissipation near the wall.
The values of D̃z

ω and ε̃z
ω in the very near wall region even exceed the corresponding results of

the “Osci” case, but as the distance from the wall increases, their fluctuations quickly shrink to a
lower level than that of the “Osci” case. As can be seen from Figs. 22(e), 22(f) 22(g), and 22(h), the
production of the enstrophy mainly comes from the vortex stretching process. The contributions
from the exchange terms P̃x

ω and P̃z
ω are always small. Among the vortex stretching terms, the

fluctuations of S1,x
ω , S1,z

ω , and S2,x
ω , S2,z

ω are larger than that of S3,x
ω , S3,z

ω , which is because S1
ω and

S2
ω come from the interaction between the turbulent fluctuations and the mean strain. Out of the

viscous sublayer, S3,x
ω and S3,z

ω maintain at a relatively stable level. Compared to the “Osci” case, the
wall-normal positions where S1,z

ω and S2,z
ω reach the peak at different phases are closer to the wall in

the “Coup” case, and the overall vortex stretching process becomes weaker.
According to the statistical characteristics of turbulent channel flow, the time derivative of the

phase-averaged enstrophy is zero, so does the enstrophy components. Hence, the sum of all terms
on the right-hand sides of Eq. (34) should also be zero, i.e.,

∑
RHS = 0. The imbalances in the

budgets presented in Fig. 22 are shown in Fig. 23. Compared to the fluctuation level of the enstrophy
budget, the imbalances of the three enstrophy components under each phase are small, although the
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FIG. 22. Phase variations of [(a) and (b)] the ˜ω′
xω

′
x budget and [(c) and (d)] the ω̃′

zω
′
z budget, as well as [(e)

and (f)] the productions of ˜ω′
xω

′
x and [(g) and (h)] the productions of ω̃′

zω
′
z, normalized by the inner scale of the

turbulent baseline flow. The left-hand and the right-hand columns represent the results of the “Osci” case and
the “Coup” case, respectively.

phase-averaged results are only averaged over 20 periods. This proves that the numerical results are
correct, and also reflects that the grid resolution is sufficient to distinguish the energy dissipation.

The previous analyses confirmed that the wall slip would inhibit the energy transfer process
resulting from the oscillatory wall motion, including the transfer from ũ′u′ to ˜w′w′, and the transfer
from ω̃′

zω
′
z to ˜ω′

xω
′
x, which is to the disadvantage of the reduction of the streamwise skin-friction
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FIG. 23. Imbalances in the budgets [sum of the right-hand sides of Eq. (34)] for (a) the “Osci” case and
(b) the “Coup” case. The imbalances of ˜ω′

yω
′
y are also shown in this figure.

drag. Hence, this should also be the reason for the drag reduction loss under the coupled boundary
condition. Agostini et al. [45] argued that the substantial fluctuations in P̃11 (the phase-averaged
production term of ũ′u′) over most of the near-wall region are reflecting the variations in the
streak strength. The main mechanism of energy transfer relies on the periodical reorientation of the
streak structures. Hence, the above properties indicate that the periodic inclination of the coherent
structures under the coupled boundary is declining. In fact, the average elongation of the vortex
tubes in the turbulent field can also be reflected by the enstrophy, and the variations in enstrophy
manifest that the population of vortex structures in the flow field is significantly reduced, as shown
in Sec. IV D.

D. Coherent structures

The influence of different boundary conditions on the coherent structures can be reflected by
the changes of the streamwise vortices and the low-speed streaks. The vortices identified with the
second invariant of the instantaneous velocity gradient tensor [50,51] (i.e., the Q criterion) are shown
in Fig. 24. The background of Fig. 24 is the low-speed streaks at y+0 = 5.4. According to the DNS
results, the inclination angle of streaks in different wall-normal planes is basically the same at the
same instant. Compared with the turbulent baseline flow, the slip on the wall can significantly reduce
the number of hairpin vortices which dominate the wall turbulence [52,53]. In contrast, under the
oscillatory wall motion, the vortex structures are modulated by the periodic oscillation, and the low-
speed streaks also incline cyclically. Under the coupled boundary condition, the quasi-streamwise
vortices are further weakened. Moreover, in the oscillatory turbulent channel flow without slip (the
“Osci” case), the angle between the low-speed streaks and the streamwise direction varies within
the range of ±29◦. For the “Coup” case, this range is narrowed to ±16◦ (the range is calculated from
the data of 16 phases in an oscillation period, and the measurement method will be introduced in the
following). This is related to the decrease of the maximum spanwise velocity of the fluid on the wall
under the coupled boundary condition. As the coupling effect constrains the fluctuating deformation,
the population of quasi-streamwise vortices decreases dramatically, and the high skin-friction drag
caused by the sweep events reduces. In addition, compared with the “Osci” case, the characteristic
scale of the streak structures in the “Coup” case is larger, which can be determined by the following
analysis of two-point correlation function.

In order to quantitatively investigate the periodic inclination of the streaks, the angle γ measured
from the two-point correlation function of streamwise velocity fluctuations is taken as a measure
for the inclination angle of the streaks. The phase-averaged two-point correlation function of
streamwise velocity fluctuations can be written as

R̃u′u′ (Δx, y,Δz) = 〈u′(x, y, z)u′(x + Δx, y, z + Δz)〉phase

〈u′2(x, y, z)〉phase
, (35)
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FIG. 24. Vortices identified by the Q criterion. Q = 1, normalized by the outer scale of the turbulent
baseline flow, i.e., U 2

b /h2. The color on the vortices represents the value of u′/Ub, i.e., the streamwise velocity
fluctuations scaled with the bulk mean velocity. The background is u′/Ub at y+0 = 5.4, and the regions where
u′/Ub < −0.05 are colored by dark grey (the low-speed streaks). The “Osci” case and the “Coup” case are in
their respective phase of maximum inclination angle.

where 〈•〉phase also represents the phase average. As can be seen from Figs. 25(a) and 25(b), the
feature angles of the isolines with different correlation values are basically parallel, which indicates
that it is of better robustness to take the feature angle of the isoline of the correlation function as a
measure for the inclination angle of the streaks. In the current work, the angle between the tangent

FIG. 25. Panels (a) and (b) are the contours of R̃u′u′ at y+0 = 5.4 of the “Osci” case and the “Coup” case,
respectively. For panels (a) and (b), both cases are in their respective phase of maximum inclination angle.
Panels (c) and (d) are the phase variations of the isoline with R̃u′u′ = 0.4, including the maximum inclination
angle γmax measured from the angle between the tangent line and the streamwise direction. Panels (c) and
(d) are the results of the “Osci” case and the “Coup” case, respectively. “PH1” and “PH16” stand for phase
π/8 and 2π , respectively. The interval between adjacent phases is π/8.
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FIG. 26. (a) The phase variations of the shear angle γs at the y+0 = 5.4, 10, and 15 wall-normal planes
and (b) the periodic change of the inclination angle γ at the y+0 = 5.4 plane. In (a), the blue and yellow lines
represent the results of the “Osci” case and the “Coup” case, respectively. The solid, dashed, and dash-dot lines

represent the results of the y+0 = 5.4, 10, and 15 planes, respectively. The lag phases of ˜∂w/∂y and C̃f are also
indicated in the legend for comparison (the width of the gray rectangle). In both figures, the horizontal axis
coordinates of the blue and yellow bars represent the phases corresponding to the maximum or minimum shear
angles. The width of the gray area between the blue and yellow bars at the same wall-normal plane represents
the lag phase.

line of R̃u′u′ = 0.4 at Δx+0 = 0 and the streamwise direction is used as the inclination angle γ , as
shown in Figs. 25(c) and 25(d). Additionally, the streamwise and spanwise correlation length scales
under the coupled boundary condition increase obviously.

Figures 26(a) and 26(b) show the phase variations of the shear angle γs at the y+0 = 5.4, 10, 15
planes and the periodic change of the inclination angle γ at the y+0 = 5.4 plane, respectively. The
phase-averaged shear angle γs is defined as γs = arc tan (∂w̃/∂y)/(∂ ũ/∂y). The phase correspond-
ing to the maximum angle is determined by Fourier fitting of the curves. It can be found that, when
the isotropic slip is applied to the oscillatory turbulent flow, the spanwise velocity, the Stokes strain,
and the shear angle have the same lag phase. However, the lag phase of the inclination angle of the
streaks is equivalent to the lag of the phase-averaged friction coefficient, which is larger than the
Stokes strain. The coupled boundary condition has a strong inhibition on the turbulent fluctuations
of the second quadrant, which raises the peak position of the Reynolds stress, and affects the process
of energy transfer in the horizontal direction. As reflected in phase, the evolution of the Reynolds
stress, the enstrophy and the coherent structures have greater lag than that of the Stokes strain.
Because the evolution of the skin-friction drag is highly correlated with the enstrophy, the periodic
fluctuation of the phase-averaged friction coefficient has the same lag phase as the turbulent energy
and structures.

V. CONCLUSIONS

The coupling effect of isotropic wall slip and spanwise oscillatory wall motion is studied by
DNS, which refers to the effect on the drag reduction and the turbulent dynamics. When these
two boundary conditions work together on the near-wall turbulence, in addition to the respective
influences on the turbulent dynamics, they also interact with each other, presenting novel statistical
properties.

When the slip length is small, the drag reduction is dominated by the spanwise oscillation.
The optimal oscillation period is basically the same as the value under the no-slip boundary
condition, and the drag reduction is positively correlated with the wall-velocity amplitude. As
the slip length increases, the contribution of the oscillatory wall motion to the drag reduction
becomes weaker, and the influences of the oscillation amplitude and period gradually fade away.
On the one hand, under the same slip length and oscillation period, the drag reduction loss

124601-28



COUPLING EFFECT OF WALL SLIP AND SPANWISE …

corresponding to the small wall-velocity amplitude is larger than that of the high wall-velocity
amplitude. On the other hand, under the same slip length and wall-velocity amplitude, the drag
reduction loss is basically independent of the oscillation period. The increase of slip length results
in the decrease of the maximum spanwise velocity of the fluid on the wall, which reflects the
coupling phenomenon and decreases the drag reduction ability of the oscillatory wall motion.
Through the theoretical solution of the Stokes’s second problem under the coupled boundary
condition, the velocity amplitude reduction and phase lag caused by the wall slip can be well
explained.

The drag reduction decomposition is conducted to describe the contributions arising from
different sources. Coefficient ζ is defined to describe the drag reduction versus the outer scale
slip length l∗

b . Compared with the respective no-slip reference flow, the ζ of laminar (including
the laminar Couette flow and the laminar Poiseuille flow) and turbulent channel flows (including
the turbulent baseline flow and the oscillatory turbulent flow) can be written in a unified form,
i.e., 1/[1 + C(l∗

b )l∗
b ]. For laminar flow, C is a constant. For turbulent flow, C consists of C1 and

C2, resulting from the effective slip on the wall and the modifications to the turbulent dynamics,
respectively. As the slip length increases, C1 remains consistent with the value of the no-slip
reference flow, while the contribution represented by C2 will undergo a shift from drag increase
to drag reduction. Additionally, compared with the turbulent flow without oscillation, the critical
slip length at which the contribution of C2 changes from drag increase to drag reduction increases
in the coupling case.

Furthermore, many aspects of the turbulence properties are influenced by the coupling effect.
First, the coupled boundary condition mixes the effects of the wall slip and the oscillatory wall
motion on the mean velocity profiles, i.e., the mean streamwise velocity in the near-wall region
increases and the viscous sublayer thickens. Second, an unexpected property of the coupled
boundary condition is found that the existence of the Stokes layer makes the Reynolds shear stress
decrease slowly as the slip length increases, which eventually delays the relaminarization process
caused by the large slip length. Third, the slip on the wall can condense the envelope range of the
phase fluctuations caused by the oscillatory wall motion, as well as the magnitude of the periodic
fluctuation of the phase-averaged friction coefficient. Fourth, according to the quadrant analysis, the
wall slip can enhance the oscillatory wall motion to suppress the ejection events and increase the
normal range where the sweep events dominate the production of the TKE. Meanwhile, the joint
PDF reflects that the cross-correlation between u′ and v′ fluctuations is reduced. Fifth, due to the
strong inhibition of the ejection events by the coupled boundary condition, the peak positions of
the phase-averaged Reynolds stress ũ′u′ and ˜w′w′ are elevated. Consistent with the variation of the
phase-averaged enstrophy components ˜ω′

xω
′
x and ω̃′

zω
′
z, there is no significant change in the peak

position of the viscous dissipation of the Reynolds normal stress. Sixth, the wall slip would narrow
the periodic inclination of the streaks and then inhibit the energy transfer process resulting from
the periodical reorientation of the streaks, including the transfer from ũ′u′ to ˜w′w′, and the transfer
from ω̃′

zω
′
z to ˜ω′

xω
′
x. Seventh, in terms of phase, a noteworthy phenomenon is that the Stokes strain

and the shear angle of different wall-normal planes have the same lag phase with the spanwise
velocity, while the hysteresis of turbulent dynamics leads to the larger lag phase of the streaks and
phase-averaged friction coefficient.
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