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Diffusion controls a plethora of natural and industrial phenomena. Directly, as in intra-
cellular transport and gas exchange in the lungs, or indirectly, in processes that are driven
by the encounter of different entities through their mixing: e.g., microbes and nutrients or
species involved in chemical reactions. When mixing happens in confined environments
that are characterized by the presence of impermeable boundaries, the species spatial
organization deviates from the one observed in unconfined systems. Here, we investigate
the impact of confinement on mixing state and rate. We use the analytical solution of a
one-dimensional diffusion equation for a finite spatial domain of size λ to quantify the
impact of confinement on several mixing measures, such as the concentration and gradients
probability density function, scalar dissipation rate, and dilution index. We show that
no-flux boundary conditions lead to a new timescale characterizing confinement-limited
mixing controlled by diffusion, λ2/(D π 2), which is significantly shorter (one order of
magnitude shorter) than the characteristic diffusive timescale, λ2/D, in an unconfined do-
main. These observations show that the diffusive homogenization mechanism is enhanced
by the presence of impermeable boundaries and, thus, mixing happens much faster under
confinement.

DOI: 10.1103/PhysRevFluids.5.124502

I. INTRODUCTION

In both natural and industrial systems, and across scales, the ability of dissolved compounds to
react is controlled by the efficiency of the system to mix them, promoting their physical encounter.
In a quiescent fluid the mixing process is driven by the sole action of diffusion. In the presence of
advection (e.g., a stirred mixture or a flowing solute) the mixing front stretches, due to heterogeneity
in flow velocities, while it diffuses, leading to the complex competition between these two effects,
the first increasing and the second reducing solute concentration gradients [1,2]. This combined
action results in a mixing mechanism by which initially segregated substances are led to occupy the
same volume [3,4]. Classical mixing measures, such as the scalar dissipation rate [5], the degree of
mixing [6], or the dilution index [7,8] (a measure of the system entropy), are based on the detailed
knowledge of the spatial distribution of the solute concentrations and their gradients.
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A mass conservation equation controls the spatiotemporal distribution of a passive tracer con-
centration, c, through the well-known advection-diffusion equation [2,9]:

∂c

∂t
= −u · ∇c + D∇2c, (1)

where D is the diffusion coefficient and u is the velocity field experienced by the tracer. Solving
Eq. (1) across several temporal and spatial scales is necessary to understand important scientific
questions (e.g., kinetics of reactions or microbial growth) and to address industrial (e.g., bioreme-
diation, filtration) and societal issues (e.g., efficient design of water treatment solutions). In most
practical applications, it is challenging to solve Eq. (1) via numerical simulation or measuring c
across relevant spatial/temporal scales. Thus, upscaling techniques that focus on the controlling
physical mechanisms to predict their larger scale impact have been developed, including volume
averaging methods [10] or statistical models, such as the continuous time random walk [11],
multirate-mass-transfer [11], or the lamellar framework [8]. The latter has been successfully applied
to a wide range of flow systems characterized with a different flow kinematics, as turbulent [12],
chaotic [4], or laminar flows [8,13,14].

In a lamellar framework, a transported scalar field is characterized by a displacing front organized
as an ensemble of thin and elongated structures, called lamellae, which are stretched and folded by
the background heterogeneous flow field and typically characterized by their length l (t ) and width
s(t ) [15]. An individual lamella undergoes the following geometrical changes, as it is moved: (i) it
is displaced and stretched by the flow kinematics, (ii) it diffuses along the front transverse direction,
and (iii) it eventually merges with another lamella to form larger lamella bundles [4,8,15]. The
model then solves Eq. (1) for a single lamella in a Lagrangian framework:

∂c

∂t
= −n

s

ds

dt

∂c

∂n
+ D

∂2c

∂n2
, (2)

where n denotes the spatial coordinate in the direction perpendicular to the lamella, along which
diffusion takes place. Using the Ranz transform [15,16], space is normalized by the lamella width
s(t ), n̄ = n/s(t ) and time is expressed in terms of diffusion time s(t )2/D, t̄ = D

∫ t
0 1/s(t ′)2dt ′. Thus,

mixing reduces to a one-dimensional diffusion problem:

∂c

∂ t̄
= ∂2c

∂ n̄2
. (3)

The mixing driven by these processes is then modeled considering the dynamics of the aver-
age between several lamellae thicknesses that individually takes place only along the direction
transverse to the local front. This diffusion equation controls mixing-driven phenomena also in
many other situations where a mixing front is steady (as in microreactors where solutes are injected
side-by-side) and the kinematics of fluid motion can be neglected. For continuous systems where a
tracer can freely diffuse across space, an initial pulse or front of tracer would result in a diffusive
profile with Gaussian- or error function-like shape. However, several mixing-driven processes
happen in media characterized by confinement, such as capillary tubes, batch reactors, or porous
systems (as filters or soils): in such scenarios the walls defining the confined domain, e.g., a capillary
tube surface or porous media grains, are considered impermeable. As a consequence, solutes within
such confined systems cannot diffuse freely, as they will experience the impermeable walls where
no-flux boundary conditions must be honored.

The goal of the present work is to describe the impact on mixing of the spatial distribution and
temporal evolution of a diffusive tracer in a quiescent fluid (no flow) within a system characterized
by confinement, such as reactors [15], porous or fractured media [13], and microfluidics [17,18].
To do so we solve the one-dimensional diffusion equation with no-flux boundary conditions and
we assess the impact of the presence of boundaries on the following classical mixing measures:
the scalar dissipation rate ε(t ), the concentration c and gradient ∇c (whose value we denote by
gc), their corresponding probability density functions (PDFs), pc(c) and pg(gc), and the dilution
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index E (t ). Their results are all quantitatively and qualitatively different from the unconfined case.
Our results represent the building block of mixing models for more complex systems involving
distributed confinement size and fluid velocity heterogeneity.

II. RESULTS

We study a one-dimensional system in which a tracer undergoes molecular diffusion, for two
initial configurations: at t = 0 the tracer is distributed either as a front or a pulse. These two initial
conditions are paradigmatic cases of interest since many, more complex, configurations can be
interpreted as a properly weighted statistical superposition of them. Furthermore, we consider two
scenarios: (i) the system has infinite size, x ∈ (−∞,+∞), also called an unconfined case and (ii) the
system has finite size, x ∈ [0, λ], also called a confined case. We introduce the following normalized
space, time, and concentration:

x̂ = x

λ
, t̂ = t

τD
, ĉ = c

c0
, (4)

where λ is the characteristic confinement length scale, τD = λ2

D is the characteristic time for
diffusion, and c0 is the maximum solute concentration at t = 0. Dropping hats for simplicity of
notation, the spatiotemporal concentration distribution of a passive solute undergoing molecular
diffusion is described by Fick’s first law [19], stating that the mass flux is locally proportional to the
concentration gradient and mass conservation, which together lead to the diffusion equation, here
expressed in terms of dimensionless quantities:

∂c

∂t
= ∂2c

∂x2
. (5)

In addition to metrics involving explicitly the spatial extent of the diffusing tracer, a way to quantify
and characterize the system mixing is in terms of the tracer concentration distribution, or PDF. We
introduce it in terms of pc(c, t ) dc, the probability of sampling a concentration value between c
and c + dc when the spatial domain is sampled uniformly, as equal to the probability px(x, t )dx
to find a given location between x and x + dx when sampling mass uniformly. We derive pc(c, t )
by inverting, when possible, and differentiating the spatial dependence of the scalar profile c(x, t )
obtaining

pc(c, t )dc = px(x, t )dx, thus pc(c, t ) = px(x, t )

∣∣∣∣∂x(c, t )

∂c

∣∣∣∣. (6)

In the configurations considered here, the profiles are invertible either on the full domain or on half
of it. In that case they are also symmetrical and, thus, the PDF on half of the domain is equal to the
one for the whole. The total probability of inspecting a point at any location with uniformly random
sampling px(x, t ) = p(t ) within the considered domain V is P = ∫

V p(t )dx = 1 by definition, thus
p = 1/V . However, in an unconfined domain with infinite size this probability is identically zero.
Therefore, for an unconfined domain, we must consider a portion of it x ∈] − N, N[ or x ∈]0, N[,
with arbitrarily large, but finite, N so that outside this domain the concentration is too small to be
detected, c < cm, where cm represents the smallest concentration that is distinguishable from zero.
In general, the size N of such domain must be time dependent, N = N (t ), since the concentration is
spreading. For a profile invertible on the full domain we consider x ∈] − N, N[ and thus

P[−N (t ) < x < N (t )] =
∫ N (t )

−N (t )
p(t )dx = p(t )2N (t ) = 1, p = 1

2 N (t )
; (7)

if the profile is invertible only on half of the domain we have x ∈] − N, 0[ and

P[−N (t ) < x < 0] =
∫ 0

−N (t )
p(t )dx = p(t )N (t ) = 1, p = 1

N (t )
. (8)
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In the following we are going to solve the dimensionless diffusion equation (5), and compute
different mixing measures and their scaling laws for an initial front/pulse for unconfined and
confined scenarios.

A. Unconfined case

For an unconfined domain, x ∈ (−∞,+∞), the partial differential equation (5) can be solved
considering the Fourier transform along the spatial variable x, reducing Eq. (5) to an ordinary
differential equation in the Fourier space, that can be solved and antitransformed. The well-known
general solution of Eq. (5) is given by

c(x, t ) = 1√
4πt

∫ +∞

−∞
f0(y)e−[(x−y)2/4t]dy, (9)

where f0(x) = c(x, t = 0) is the initial concentration profile.

1. Initial concentration front

Assuming that the mass is initially distributed as a sharp front located at x = 1/2, we represent
the initial condition as f0(x) = θ (x − 1/2) [shown as a black solid line in Fig. 1(a)], invoking the
Heaviside step function θ . Thus, the solution of (9) for this initial condition is

c(x, t ) = 1

2

[
1 − erf

(
x − 1/2√

4t

)]
, (10)

which is shown, at different times (t = 0.0045, 0.016, 0.12, and 0.43, from light to dark), in
Fig. 1(a) as pink solid lines. As time passes, the initially sharp concentration profile evolves towards
a smoother profile, spreading across the unconfined domain.

The spatial distribution of concentration c(x, t ) can be mapped into its PDF p(c), as defined by
Eq. (6). We denote by N (t ) the distance from x = 1/2 to the location where concentration attains
the smallest detectable value cm, c(x = −N, t ) = cm and, by symmetry, it is also the distance from
x = 1/2 where concentration is higher than 1 − cm, c(x = N, t ) = 1 − cm. Thus, the normalization
of the PDF is p(t ) = 1/[2N (t )] and

N (t ) =
√

4t erf−1(2cm − 1), therefore p(t ) = − 1

4
√

terf−1(2cm − 1)
. (11)

Note that erf−1(2cm − 1) is negative, ensuring that p is positive. Finally, using Eq. (11), inverting
and differentiating Eq. (10) we get

pc(c) = −
√

π

2 erf−1(2cm − 1)
e[erf−1(2 c−1)]2

. (12)

We observe that under unconfined conditions a diffusive solute of concentration c has a PDF which
is independent of time. This is also shown in Fig. 2(a) where pc(c) is plotted as solid pink lines,
with color ranging from light to dark with increasing time (all solutions collapse on a single curve).

The degree of mixing reached by the diffusing system at a given time can be measured in terms
of the system entropy or dilution index [7], defined as

E (t ) = exp

(
−

∫
c(x, t )ln[c(x, t )]dx

)
. (13)

Inserting Eq. (10) into the previous expression we obtain

E (t ) = exp(
√

2t I ), where I = −
∫ ∞

−∞

1

2
[1 + erf(y)] ln

(
1

2
[1 + erf(y)]

)
dy, (14)
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FIG. 1. Profile of concentration c and its gradient ∇c predicted by the analytical solution of a one-
dimensional diffusion equation in an unconfined [Eq. (9) (solid line)] and confined [Eq. (31) (dotted line)]
domain. (a) Concentration profile for a front concentration initial condition (black line), in unconfined
Eq. (10) and confined Eq. (31) domains. (b) Concentration gradient normalized by its maximum value
at time t = 0.0045 for the profiles in (a): each line in both plots corresponds to the normalized time
t = 0.0045, 0.016, 0.12, and 0.43. (c) Concentration profile for a pulse initial condition in unconfined
domain, Eq. (18), normalized by its maximum value at time t = 0.0047 and confined domain, Eq. (31).
(d) Concentration gradient for the profiles in (c): each line corresponds to a different normalized time
t = 0.0047, 0.013, 0.023, 0.043, and 0.079.

having introduced the coordinate y = x√
2Dt

. The previous exact analytical expression is shown in
Fig. 3(a) in a double-logarithmic plot versus time and in Fig. 3(b) as a semilogarithmic plot versus√

t , as pink dots: from its initial value E (0) = 1 (note that at t = 0 the concentration has value either
0 or 1) it keeps increasing as e

√
t for all times as result of the infinite space where the concentration

can mix (and dilute) indefinitely.
The spatial variability of the concentration solution, Eq. (10), is quantified by its gradient, i.e.,

its spatial derivative, that is,

∇c = 1√
4πt

e−[(x−1/2)2/4t]. (15)

The previous expression is shown in Fig. 1(b) as a solid pink line ranging from light to dark as time
increases with the same steps of the associated concentration profile (t = 0.0045, 0.016, 0.12, and
0.43). Since the previous expression also represents the spatial distribution of a diffusing pulse, its
PDF is discussed in the next section.
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FIG. 2. Probability density function (PDF) pc and pg of concentration c and gradient gc values, shown in
Fig. 1, for confined (solid line) and unconfined (solid-dotted line) cases: each line corresponds to the same
rescaled times as in Fig. 1: color scale goes from light to dark as time increases. (a) and (b) are concentration
and gradient PDFs for a front initial condition while (c) and (d) are concentration and gradient PDFs for an
initial pulse. Diamonds represent the approximated solutions derived for the confined cases. The insets in
(a) and (c) are zoomed-in views of the PDF for the last time step. Insets of (b) and (d) represent the temporal
evolution of the plateau value β.

As time passes the gradient maximum value gM reached at x = 1/2 decreases as gM = 1/
√

4πt
[as shown in Fig. 4(a) in a semilogarithmic plot and in Fig. 4(b) in a double-logarithmic plot], while
it broadens as measured by the square root of its variance, that scales as

√
2t . The rate at which the

considered diffusive system is mixing is then quantified by the scalar dissipation rate as

ε(t ) =
∫ +∞

−∞
∇cT ∇c dx, (16)

which quantifies the spatial availability of concentration gradients that allows the Fickian mass flux
to take place. It is a measure of mixing because it is related to the time derivative of the square
of concentration [6] and therefore is related to a measure of the concentration fluctuations. In the
case where the considered system is finite, boundary terms appear; however, if no-flux boundary
conditions apply (∇c|S = 0), these boundary terms are identically zero and play no role at all times.
Defining the change of variable y = (x − 1/2)/

√
4t , we obtain

ε(t ) = 1√
4 π2t

∫ +∞

−∞
e−2y2

dy = 1√
8πt

, (17)

as shown in Figs. 4(c) and 4(d), where it is displayed through a semilogarithmic and double-
logarithmic plot, respectively. The scaling of the scalar dissipation rate reflects that of the average
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FIG. 3. Temporal evolution of the dilution index E (t ), Eq. (13). (a) and (b) show the front initial condition:
in (b) the semilogarithmic representation of E versus

√
t emphasizes the scaling e

√
t for early times. (c) Pulse

initial condition. For all initial conditions, the unconfined case (pink dots) grows indefinitely, while the confined
case (diamonds) reaches its maximum value (complete mixing) earlier than t = 1/π2 (vertical dashed black
line). The solid line represents the approximated analytical solution computed.

gradient that can be approximated by the ratio of gM ≈ t−1/2 and its spreading rate t1/2, so that
∇c ∼ t−1/4.

2. Initial concentration pulse

If we consider the paradigmatic case of a pulse initial condition, for which all the mass is initially
located at x = 1/2, as described by f0(x) = δ(x − 1/2), the concentration profile is the well-known
Gaussian function

c(x, t ) = 1√
4πt

e−[(x−1/2)2/4t], cM = c(x = 1/2) = 1√
4πt

, (18)

which is characterized by the decay of its maximum value cM and its lateral spreading.
In Fig. 1 c′(x, t ) = c(x, t )/c(x, t0), where t0 = 0.0047, it is shown at four times steps (t =
0.0047, 0.0128, 0.0234, 0.04.3, and 0.0788), as a pink solid line ranging from light to dark as
time increases. We notice that the concentration profile for a pulse initial condition, Eq. (18), is
exactly the gradient of the concentration profile of a front: this is a consequence of the linearity of
the diffusion equation and the fact that an initial pulse corresponds to the gradient of an initial front.
Below we show that it is not the case in a confined domain.

The PDF of this profile can be derived from Eq. (6). The profile is invertible only on half of
the domain x ∈]0, N[ so p = 1/N , computing N as described above, inverting and differentiating
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FIG. 4. Temporal evolution of the maximum gradient gM and scalar dissipation rate ε for a front initial
condition. The semilogarithmic plot in (a) and (c) emphasizes the exponential cutoff due to confinement that
takes place around t = 1/π 2; the double-logarithmic plot in (b) and (d) emphasizes the power-law decay for
early times, taking place when the confinement has no impact on diffusive mass transfer.

Eq. (18), we get

pc(c) = 1

2 c
√

ln(cm/cM ) ln(c/cM )
, (19)

which is shown in Fig. 2(c). Since the solution Eq. (18) shown in Fig. 1(c) is the same as the
gradient of a diffusing front, the previous expression also represents the PDF of a front gradient
pg(gc), shown in Fig. 2(b), that scales as 1/gc for small values and its maximum value gM decays
with time (due to mixing), as t−1/2.

The dilution index for an unconfined diffusing pulse is computed combining Eq. (13) with
Eq. (18), to get

E (t ) = exp
[
ln(

√
4πt ) + 1/2

] =
√

4πet . (20)

The previous exact analytical expression is shown in Fig. 3(c) in a double-logarithmic plot versus
time, as pink dots: from its initial value it keeps increasing at all times (slower than the initial front)
as a result of the infinite space that the concentration can explore. The concentration gradient is
obtained differentiating (18):

∇c(x, t ) = − 1√
4πt

x − 1/2

2t
e−[(x−1/2)2/4t], (21)

and it is shown in Fig. 1(d) at four time steps (t = 0.0047, 0.013, 0.023, 0.043, and 0.079), as pink
solid lines ranging from light to dark as time increases. Its maximum value (equal to the opposite
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FIG. 5. Temporal evolution of the maximum gradient gM and scalar dissipation rate ε for a pulse initial
condition in unconfined (dots) and confined (diamonds) cases. The semilogarithmic plot in (a) and (c) em-
phasizes the exponential cutoff (dashed black line) due to confinement that takes place around t = 1/π2; the
double-logarithmic plot in (b) and (d) emphasizes the power-law decay for early times, taking place when the
confinement has no impact on diffusive mass transfer.

of its minimum value) is reached at the moving location x = 1/2 + √
2t and its absolute value

decreases with time as

gM = e−1/2

√
8πt

, (22)

which is shown in Fig. 5(a) in a semilogarithmic plot and in Fig. 5(b) in a double-logarithmic plot.
We cannot invert and differentiate Eq. (21) since the spatial variable x appears within the exponential
argument as well as in prefactor. Thus, we compute numerically the occurrence of the values gc

from the analytical expression Eq. (21), to derive the gradient distribution pg(gc), as a normalized
histogram: the result is shown as a pink solid line in Fig. 2(d), ranging from lighter to darker as
time increases, for the same steps as the profiles of Figs. 1(c) and 1(d). As for the concentration
profile, the distribution of gradient values gc scales as 1/gc for small values and it increases towards
its maximum value, Eq. (22).

The scalar dissipation rate defined in Eq. (16), measuring the rate of the diffusing pulse mixing,
is

ε(t ) = 1√
32πt3

, (23)

and it is shown as pink dots in Fig. 5(c) as a semilogarithmic plot and 5(d) as a double-logarithmic
plot.
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Classical measures of mixing for unconfined diffusive systems are power laws of time: this
implies that for these mixing phenomena a rigorous timescale cannot be defined. However, it is
common to refer to t = 1 (in dimensional form to λ2/D) as the characteristic diffusive timescale.
We introduced it as the timescale allowing one to make the diffusion equation dimensionless; it can
also be invoked from the second centered moment of a diffusing plume as the time needed for its
spreading to cover the length scale of 1.

B. Confined case

Let us now consider a system where a tracer is confined within impermeable boundaries,
x ∈ [0, 1], with imposed no-flux boundary conditions. The diffusion problem is mathematically
formulated as

∂c

∂t
= ∂2c

∂x2
for x ∈ [0, 1] with c(x, 0) = f0(x) and

∂c

∂x

∣∣∣
x=0,1

= 0, (24)

with c, t , and x defined in Eq. (4). Using the method of separation of variables, we can express the
problem solution as

c(x, t ) = X (x)T (t ), (25)

which can be differentiated with respect to time and space, providing

∂c

∂t
= X (x)T ′(t ) and

∂2c

∂x2
= X ′′T (t ). (26)

We then rewrite Eq. (24) as

X (x)T ′(t ) = X ′′(x)T (t ). (27)

Collecting time on the left-hand side and space on the right-hand side of the equation, we obtain

T ′(t )

T (t )
= X ′′(x)

X (x)
= −α, (28)

where α is a positive constant that ensures mass conservation. We have now a system of two ordinary
differential equations to be solved simultaneously:

X ′′(x) + αX (x) = 0 (29)

and

T ′(t ) + αT (t ) = 0. (30)

Solving Eq. (29) for X (x), we find the family of solutions Xm(x) = Am cos(
√

α x): applying the
boundary condition X ′(0) = X ′(1) = 0 the only nontrivial solution is given by α = m2π2. Thus,
Eq. (30) becomes T ′(t ) = −π2m2T (t ): integrating on both sides we get Tm(t ) = Pme−π2m2t + C.
The general solution is a linear combination of the obtained sets of solutions:

c(x, t ) =
∞∑

m=1

Bm cos(πmx)e−π2m2t + c f , (31)

with c f the homogeneous concentration reached at t = +∞ and Bm a coefficient that depends on
the spatial initial distribution f0(x) = c(x, 0):

Bm = 2
∫ 1

0
f0(x) cos(πmx)dx. (32)

The derived solution Eq. (31) expresses the concentration profile as the superposition of modes m
(functions that do not change shape as the system diffuses) that are periodic and fluctuating in space
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between the domain boundaries, while temporally decaying exponentially fast with characteristic
scaling exp(−m2π2t ).

1. Initial concentration front

For an initial front f0(x) = θ (x − 1/2), the profile in Eq. (31) is shown in Fig. 1 (as a pink dotted
line ranging from light to dark as time increases) at the same time steps shown for the unconfined
case. At early times the confined and unconfined profiles exactly overlap, while at later times they do
not. On the one hand, the confined solution, due to the no-flux boundary conditions imposed, keeps
a flat profile at the boundaries (x = 0, 1) and, thus, a steep gradient providing a strong diffusive
mass flux responsible for mixing. On the other hand, the unconfined solution spreads across space
smoothing its gradient, reducing dramatically the Fickian mass flux and, thus, the overall mixing.

For times larger than t > 1/(m2π2) the exponential time dependence of the mode m cannot be
neglected. Since for the mode m = 1 the coefficient B1 = 2/π is nonzero, it dominates the solution,
Eq. (31), for times larger than 1/π2. For such times, the concentration profile is well approximated
by

c(x, t ) ≈ c f − 2/π cos(πx)e−π2t , (33)

with the value of c that is bounded between its minimum and maximum values cm < c < cM , that
are taken at the impermeable walls x = 0, 1 where they vary to conserve the total mass, as

cm = c(x = 0, t ) = c f − 2/πe−π2t , cM = c(x = 1, t ) = c f + 2/πe−π2t . (34)

At early times, t < 1/π2, several terms of the expansion, Eq. (31), must be taken into account and
we cannot invert and differentiate it to compute its PDF, pc(c). However, at such short times the
solution for c(x, t ) is not affected by the presence of the impermeable boundaries at x = 0 and
x = 1 and it is well approximated by (10), and thus also pc(c) is known and given by Eq. (12). For
t > 1/π2 we can invert and differentiate Eq. (33) to derive the probability density function. The
profile is invertible on the full domain x ∈]0, 2 N[, in the confined case N = 1/2 so p = 1/(2 N ) =
1, and we get

pc(c, t ) ≈ 1

2

exp(π2t )√
1 − [

(c f − c)π
2 exp(π2t )

]2
, (35)

which is shown in Fig. 2(a) as a pink dotted line from light to dark, for increasing time. As
time overcomes 1/π2 the concentration PDF becomes time dependent and it deviates from the
unconfined case: for low concentrations it deviates from the scaling ∼1/c towards a U-shaped
function, characterized by peaks at the smallest and largest value, Eq. (34), and it is exactly described
by Eq. (35), as shown in Fig. 2(a) (diamonds).

We were not able to derive an analytical expression for the dilution index for this case and, thus,
it has been computed numerically inserting Eq. (31) within the definition of E , Eq. (13). This is
shown in Fig. 3(a) where the confined case from its initial value E (t = 0) = 1 rises up to its final
plateau for times larger than t > 1/π2 corresponding to

E (t ) = exp

[
−

∫
c f ln(c f )dx

]
= exp [−1/2 ln(1/2)] =

√
2, (36)

implying that the macroscopic mixing state of the diffusing system stops evolving, while the
unconfined case grows indefinitely. Moreover, the semilogarithmic plot of E versus

√
t shown in

Fig. 3(b) highlights the higher degree of mixing of the confined case for times even shorter than√
0.1 corresponding to times shorter than 0.01.
For large times, t > 1/π2, we compute the gradient of Eq. (33):

∇c ≈ 2 sin(πx)e−π2t . (37)
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The above expression for ∇c, whose value we denote by gc, can be inverted and differentiated to
compute its probability density function as

pg(gc) ≈ 1

2π

exp(π2 t )√
1 − [

1
2 gc exp(π2t )

]2
, (38)

shown in Fig. 2(b) (diamonds). We remark that for a front initial condition the concentration is
dissipated very quickly and the values cm and cM approach exponentially fast the asymptotic value
c f , flattening the spatial profile: this is reflected on the concentration PDF pc(c) that deviates from

the unconfined 1/c to become flat at low c values where it gets the value β ≈ exp(4π2t )
4π

, as shown
in Fig. 2(b) and its inset. The concentration gradient reaches its maximum value, gM , at location
x = 1/2:

gM = ∇c(x = 1/2, t ) = 2e−π2t , (39)

and decays much faster (exponentially fast) than the power-law decrease of the unconfined case, as
shown in Figs. 4(a) and 4(b). This change in temporal decay is due to the fact that to conserve mass
the concentration value at the boundaries vary exponentially fast [see Eq. (34)] as the tracer gets
accumulated there due to the spatial confinement.

From the spatial profile of the concentration gradient Eq. (37), we compute the analytical
expression of the scalar dissipation rate for t > 1/π2 as

ε(t ) ≈ 2e−2π2t , (40)

whose exponential decay, shown in Figs. 4(c) and 4(d) superposed to the slower power-law decay
1/

√
8πt of the unconfined case, has the characteristic time 1/(2π2).

2. Initial pulse

We now consider an initial pulse f0(x) = δ(x − 1/2). Since B1 = 0, for times larger than
1/(4π2), the leading mode of Eq. (31) is m = 2 (and B2 = −2) so that

c(x, t ) ≈ c f − 2 cos(2πx) exp(−4π2 t ), (41)

with the concentration value bounded between its minimum and maximum values cm and cM ,
respectively, which are

cm = c(0, t ) = c f − 2e−4π2t , cM = c(1/2, t ) = c f + 2e−4π2t . (42)

We observe that, unlike in the unconfined case, the concentration profile for the pulse initial
condition differs from the gradient of a diffusing front. The former decays exponentially with a
characteristic time which is four times shorter: 1/(4π2) instead of 1/π2. Moreover, the two spatial
profiles are different since the front gradient is zero at the boundaries (x = 0 and x = 1) to ensure
no flux at impermeable walls, while the pulse solution, to conserve the mass, is always above zero
and it increases at both boundaries with time.

For early times t < 1/(4π2) several terms of the sum in (31) must be taken into account and we
cannot invert it to compute pc(c). However, at such short times the solution for c is not affected by
the presence of the impermeable boundaries at x = 0 and x = 1 and it is well approximated by (18)
and thus also pc(c) is known. At large times, we invert and differentiate the concentration spatial
profile Eq. (41) on half of the domain, x ∈]0, N[ so p = 1/N = 2, to derive the probability density
function pc(c) as

pc(c, t ) ≈ exp(4π2t )

2π

√
1 − ( (c−c f ) exp(4π2t )

2

)2
, (43)
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shown in Fig. 2(c) (diamonds). We remark that for a pulse initial condition the concentration is
dissipated very quickly and the values cm and cM approach exponentially fast the asymptotic value
c f , flattening the spatial profile: this is reflected on the concentration PDF pc(c, t ) that deviates from
the scaling 1/c towards a U shape.

As for the front case, we were not able to derive an analytical expression for the dilution index in
a confined domain, thus, it has been computed numerically inserting Eq. (31) within the definition
of E , Eq. (13). This is shown in Fig. 3(c) where the confined case deviates from the unconfined
one at times even shorter than 1/(2π2) to reach its final plateau. This shorter mixing time can be
understood analyzing the scalar dissipation rate, discussed below.

We compute the corresponding concentration gradient considering only the dominant term m =
2, and we have

∇c(x, t ) ≈ 4πsin(2πx)e−4π2t . (44)

The above expression for the concentration gradient, whose value is denoted by gc, can be inverted
and differentiated to compute its probability density function as

pg(gc) ≈ exp(4π2t )

8π2
√

1 − [
1

4π
gc exp(4π2t )

]2
, (45)

where its minimum and maximum values are reached at the steady locations x = 1/4 and x = 3/4,
respectively:

gm = ∇c(x = 1/4, t ) = 4πe−4π2 t and gM = ∇c(x = 3/4, t ) = −4πe−4π2t . (46)

Note that for the unconfined case the locations where ∇c = gm, gM are moving as
√

t away from
x0. As for the concentration, also the gradient profile flattens at large times and its PDF pg(gc)
deviates from the unconfined 1/c scaling to become constant at low c values where it gets the value
β ≈ exp(4π2t )

8π2 , as shown in Fig. 2(d) and its inset. From the spatial profile Eq. (44), we compute the
scalar dissipation rate as

ε(t ) ≈ 8π2e−8π2t , (47)

which is shown in Figs. 5(c) and 5(d) in a semilogarithmic and double-logarithmic plot, respectively,
to highlight its exponential decay which is much faster than the power-law scaling of the unconfined
case. We note that the exponential decay characteristic time is 1/(8π2) and it is shorter than the
1/(2π2) characteristic of mixing for the front case, as observed also in the dilution index analysis,
discussed above.

3. Numerical solutions as control

We tested all our analytical derivations against numerical solutions of the diffusion equation in
a confined domain. We adopted a backward finite difference simulation scheme for the diffusion
equation in a one-dimensional and confined domain, with no-flow boundary condition. The initial
conditions we impose to the front and pulse initial conditions are defined as Eqs. (10) and (18)
for t = t0 = 10−8, respectively, which corresponds to the two theoretical initial configurations
that underwent a little diffusion. The numerical results show that our derived solutions accurately
describe the physical problem (the mean-squared error between the two profiles is below 10−8c0

at all times). All expressions we derived for concentration profiles and mixing measures are in
excellent agreement with the numerical simulations.

III. IMPACT

We showed that diffusion in a confined domain is qualitatively and quantitatively different from
diffusion in an unconfined and continuous domain. To illustrate the potential impact of the discussed
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FIG. 6. (a) Concentration field in a porous medium composed of round grains (gray disks) for Pe = 2500
after rescaled time t/τA = 40. (b) Zoom-in of the same concentration field in a pore. (c) The blue line shows a
diffusive unconfined concentration profile; the red line represents the interpolated concentration profile along
the blue segment in (b).

results on mixing within confined media, we simulate, as a proof of concept, the displacement of
a mixing front in a porous material. We run a numerical simulation for Stokes flow in a 1 mm
× 3 mm porous medium with a prescribed geometry, no-slip boundary conditions at grains walls
(gray disks in Fig. 6), characterized by an average pore throat size of l = 0.05 mm, resulting in an
average fluid velocity of 1 mm/s (Reynolds number Re = lu/ν = 0.05). In this flow we solve the
transport of a passive solute Eq. (1) continuously injected from the left-hand side of the system, with
no-flux boundary conditions at the grain walls. A snapshot of the concentration field transported
within a porous medium for a Péclet number Pe = τD/τA = ul/D = 2500 (a measure of the relative
importance of advective and diffusive mechanisms) is given in Fig. 6(a) after 40 advective time
steps (t = 40tA). For the Pe = 2500, this corresponds to ≈1.5% of the diffusive time, which would
imply a very sharp front where diffusion has not had the time to play a role at the scale of a pore.
Instead, the figure shows that diffusion had the time to smear the pore-scale concentration gradients
within the pores. This would be consistent with the much smaller Pe = tε/τA = 250, defined with
respect to the confinement-limited diffusion timescale tε , defined in terms of the scalar dissipation
rate, for which 40 advective timescales correspond to ≈15% of it.

The concentration field is heterogeneously distributed across the pores and along the fluid
displacement front, which is stretched and elongated resulting in a lamellar structure. In Fig. 6(b)
we show a zoom-in view of mixing at a single pore throat, to highlight the pore scale nonmixed
condition, which is quantified in Fig. 6(c) where the interpolation of the concentration field across
the pore throat is shown in red. We observe that the concentration profile confined in a pore
is qualitatively different from its unconfined counterpart (blue line); indeed the presence of an
impermeable boundary (i) prevents the solute from diffusing freely, (ii) enhances the diffusive
flux decreasing the scalar dissipation rate, (iii) resulting in a rise of the small concentration values
[left-hand side of the red line in Fig. 6(c)]. This example qualitatively illustrates the potential impact
of the impermeable boundary conditions on mixing state and rate in confined environments. To
properly capture the mixing dynamics taking place in these porous systems, the derived confined
solution for diffusion must be incorporated with the stretching dynamics in a lamellar framework,
where the distribution of the confinement length scale l and the stretching of the front associated to
the host medium heterogeneity are coupled in a nontrivial way. A detailed study of mixing in such
a complex and confined flow system goes beyond the research presented in this article, but must
incorporate the results presented here for diffusion alone.

IV. CONCLUSIONS

Diffusion is the key mixing mechanism in fluid systems, since it ultimately homogenizes concen-
trations, also in the presence of stretching and compression by velocity heterogeneity. We present
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analytical results of the one-dimensional diffusion equation in a confined domain, characterized by
the presence of no flux boundaries, separated by a distance λ, that prevent the solute concentration
from diffusing freely and explore wider areas of space. We show how diffusion is affected by the
confined nature of the considered spatial domain and we quantify its impact on mixing.

The general solution of the diffusion equation in a confined domain, Eq. (31), expresses the
concentration profile of a diffusive tracer as the superposition modes m (functions that do not
change shape as the system diffuses) that are periodic and fluctuating in space between the domain
boundaries, and temporally decaying exponentially fast, scaling as exp(−m2π2t ). As far as the
diffusing tracer does not experience the presence of the impermeable boundaries [e.g., right after
the injection of a pulse in the middle of the domain t < 1/(m2 π2)] the exponential decay of the
modes is not substantially changing their amplitude and a large number of modes must be taken
into account to describe the tracer concentration profile, recovering the solution of the unconfined
case. In such conditions space and time are coupled and the concentration profile can be expressed
in terms of the classical dimensionless coordinate for diffusion, ξ = x/

√
2Dt , making the profile

self-similar and scale independent, which is reflected in the slow, power-law decay of several mixing
measures. However, as soon as a single mode m dominates the sum, space and time are decoupled
and the exponential decay of the solution defines a characteristic timescale [1/(m2π2)], as reflected
by the exponential decay of the mixing measures considered.

Physically, in a confined space the no-flux boundary condition ∇c(0, t ) = ∇c(λ, t ) = 0 imposes
a flat profile at the domain edges leading to an overall steeper gradient and higher mass flux com-
pared to the unconfined case where mass can freely diffuse exploring wide areas of space, slowly
dissipating the concentration gradients. Therefore local and global measures of mixing display
significantly different dynamics. We show that, maximum concentration gradients and scalar dissi-
pation rate drop exponentially fast and the dilution index E reaches a plateau, while they typically
follow a slower power-law decrease in an unconfined domain and E grows indefinitely. Also the con-
centration and gradient distribution (PDF) significantly change their shape and dynamics. This expo-
nential time scaling of mixing measures in confined conditions leads to the definition of a new char-
acteristic timescale for diffusion, which depends on the initial condition, and it is fixed by the leading
mode (e.g., m = 1 for a front and m = 2 for a pulse), λ2/(m2Dπ2), which is much shorter (one order
of magnitude shorter) than the characteristic λ2/D defined to rescale the diffusion equation.

These observations show that the homogenization dynamics (mixing) is significantly faster
under confinement, i.e., no-flux boundary conditions. In more complex scenarios, where the host
medium heterogeneity must be taken into account, diffusion must be coupled with flow and fluid
stretching variability [1,8] as well as confinement scale λ that can change considerably [20]. For
example, in a lamellar framework [8,21], the local confinement scale λ should be normalized by
the lamella width s(t ) and time is rescaled by the characteristic diffusive time over a lamella width
t̄ = D

∫ t
0 1/s(t ′)2dt ′, since fluid stretching affects the local diffusion process by keeping the gradi-

ents steep. In such scenario, the boundary conditions become space and time dependent and given by

∂c

∂ n̄

∣∣∣
n̄=0,λ/s(t̄ )

= 0. (48)

Furthermore, in a heterogeneous medium λ must be defined locally, leading to a space-dependent
characteristic timescale. Implementing a full mixing model taking into account no-flux boundary
conditions at domain boundaries is nontrivial and requires further work. However, neglecting
confinement-limited diffusion to describe mass transport phenomena may lead to an incorrect
description of mixing.
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