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Penetration of a cooling convective layer into a stably-stratified composition
gradient: Entrainment at low Prandtl number
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We study the formation and inward propagation of a convective layer when a stably-
stratified fluid with a composition gradient is cooled from above. We perform a series
of two-dimensional simulations using the Bousinessq approximation with Prandtl number
ranging from Pr = 0.1 to 7, extending previous work on salty water to low Pr. We show
that the evolution of the convection zone is well described by an entrainment prescription in
which a fixed fraction of the kinetic energy of convective motions is used to mix fluid at the
interface with the stable layer. We measure the entrainment efficiency and find that it grows
with decreasing Prandtl number or increased applied heat flux. The kinetic energy flux that
determines the entrainment rate is a small fraction of the thermal energy flux carried by
convective motions. In this time-dependent situation, the density ratio at the interface is
driven to a narrow range that depends on the value of Pr, and with low enough values that
advection dominates the interfacial transport. We characterize the interfacial flux ratio and
how it depends on the interface stability. We present an analytic model that accounts for
the growth of the convective layer with two parameters, the entrainment efficiency and the
interfacial heat transport, both of which can be measured from the simulations.

DOI: 10.1103/PhysRevFluids.5.124501

I. INTRODUCTION

In astrophysics, there are many situations in which a convective zone coexists with a composition
gradient. A classic example is the convective core of a massive star, which is immersed in a
gradient of heavy elements that results from nuclear burning [1–4]. Gas giant planets, which undergo
strong convection in their gaseous envelopes, might develop composition gradients from either their
formation history, or collisions during their evolution [5,6]. Recently, the Juno mission [7] has found
evidence that an extended region of Jupiter’s interior is enriched in heavy elements [8,9].

The nature of convective mixing in these regions is not clear. It is well known that composition
gradients tend to stabilize the fluid against overturning convection [10], but the resulting transport
of heat and heavy elements is not well understood. In stellar evolution, mixing across the boundary
between a convection zone and a stable region can be extremely important because it can bring
fresh fuel for nuclear reactions into the convection zone. Evolution models for astrophysical objects
over long timescales rely on analytic prescriptions for transport both within the convection zone and
at the boundary. These are typically based on mixing length theory (e.g., Refs. [11,12]) and then
implemented into one-dimensional numerical models (e.g., Ref. [13]).

Observations and numerical simulations of geophysical fluids with composition gradients have
shown that under certain circumstances, double-diffusive instabilities lead to a series of convective
layers. The layers are well mixed in both composition and temperature, but separated by sharp
interfaces across which transport of heat and composition is by molecular diffusion (e.g., Ref. [14]
and references therein). Astrophysical fluids differ in a key aspect—that the Prandtl number Pr =
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ν/κT , which measures the ratio of kinematic viscosity ν to thermal diffusivity κT , is Pr < 1 as
opposed to Pr ≈ 7 for salty water. Recently, with the improvement of computational resources,
three-dimensional numerical simulations at low Prandtl numbers appropriate for planetary interiors
(Pr = ν/κT ∼ 0.001–0.1) have become possible. This work shows that while thermocompositional
convective layers can also exist at low Pr [15–18], there are fundamental differences in how and
whether layers form and the nature of doubly diffusive convection [18]. The reader is referred to the
excellent review by Garaud [19] for further details. These simulations have guided new transport
prescriptions that can be included in 1D evolution codes [18]. Conditions in stellar interiors, where
Pr � 10−6, are still inaccessible numerically.

Despite the progress in understanding layer formation when there are preexisting temperature and
composition gradients, less attention has been paid to situations in which the large-scale gradients
develop over time. An example is the penetration of a convective region into a neighboring stable
region with a composition gradient. This configuration is relevant in the evolution of gas giant
planets, in which a convective zone propagates inwards as the planet cools down, enriching its outer
regions by transporting heavy elements from below (e.g., Refs. [20,21]). In this context, there are
two relevant questions: (1) how quickly does the outer convective layer move inwards? and (2)
does the fluid become fully mixed? In the context of Jupiter, for example, recent 1D evolutionary
models find that global composition gradients can persist over long timescales, by separating into
a number of distinct convective layers, although not over as extensive a region as inferred from the
Juno data [20,21]. These simulations, however, lack a detailed model of how composition and heat
are transported at convective boundaries.

Several laboratory studies have been carried out in which stably-stratified salty water is heated
from below, creating a convective region that penetrates into the stably-stratified layer [22–25].
Motivated by experimental results, Turner [23] developed a simple analytical model for the growth
of the convective layer. The fluid is assumed to be initially isothermal with a linear salinity gradient
dS/dz < 0, and a constant heat flux F0 is applied at the bottom boundary. The model assumes
that at the top of the well-mixed convection zone there is an abrupt step of both temperature �T
and salinity �S (i.e., molecular diffusion of heat and salt are ignored). After a time t , when the
convective zone has a thickness h, from heat and salinity balance it follows that

ρ0cP�T h = F0t , (1)

�S = 1

2

∣∣∣∣dS

dz

∣∣∣∣h , (2)

where ρ0 is a background density and cP is the specific heat at constant pressure. The rate at which
the convection zone grows depends on the stability of the interface, β�S/α�T ≡ Rρ , where β and
α are the coefficients of solute contraction and thermal expansion (both assumed to be positive
constants). For a given value of Rρ , Eqs. (1) and (2) give

h(t ) = (2Rρ )1/2

(
αF0

ρ0cP

)1/2(
β

∣∣∣∣dS

dz

∣∣∣∣
)−1/2

t1/2 . (3)

Turner [23] considered two limits for Rρ . One possibility is that the convection zone grows by
Rayleigh-Taylor instabilities, when its temperature has increased enough to lower the density jump
at the interface to �ρ ≈ 0, i.e., Rρ ≈ 1. However, additional mixing mechanisms could in principle
transport heat and salt across a Rayleigh-Taylor stable interface, leading to a more rapid growth
of the convective layer. For example, Kelvin-Helmholtz instabilities at the boundary can lead to
entrainment of fluid from the stable layer [25]. As a limiting case, Turner [23] found Rρ = 3
under the assumption that the potential energy change from heating the convective layer is used
to redistribute the heavy elements.

Both experimental and numerical results for salty water suggest that entrainment at the interface
does in fact play a key role. While the initial measurements of Turner [23] suggested that Rρ ≈ 1,
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later experiments by Fernando [25] showed that the density interface is stable with a non-negligible
buoyancy jump across it (Rρ > 1 or �B ≡ −g�ρ/ρ0 < 0). Fernando [25] proposed that mixing
across the stable interface occurs due to shear motions near the interface, and predicted the same
relation as in Eq. (3) for the growth rate of the convective layer, but with Rρ replaced by a
different constant that depends on the entrainment efficiency. In an attempt to clarify the discrepancy
between Turner [23] and Fernando [25], Molemaker and Dijkstra [26] performed two-dimensional
numerical simulations, with a similar setup as in the classic laboratory experiments but cooled from
above instead of heated from below. Their results agreed with Fernando [25], giving support to
entrainment as the mixing mechanism. They also found that diffusive heat flux through the interface
is significant, modifying Eq. (3).

In this work, we investigate how low Pr affects the growth of a convective layer into a composi-
tion gradient. While there has been some work done with a time-dependent background temperature
profile at low Pr [27,28], it was focused on the formation and evolution of layers. Here we focus
on the physics behind the growth of the convective zone. In particular, we investigate the efficiency
of entrainment at lower Pr numbers. To accomplish this, we perform a series of two-dimensional
numerical experiments of an incompressible fluid with a linear composition gradient, cooled from
the top with a constant heat flux. Our simulations were performed with Pr ranging from 0.1 to 7 (i.e.,
we also include the salty water regime for comparison), at fixed diffusivity ratio τ ≡ κS/κT = 0.1
(with κS the solute diffusivity).

The paper is organized as follows. In Sec. II we describe the physical model and the numerical
code used to perform the simulations. Section III presents a description of the inwards propagation
of the convective layer. In Sec. IV we measure the entrainment efficiency at small Pr. In Sec. V we
discuss the relevance of the heat flux across the interface between the convection zone and the stable
layer, and its effect on the growth of the layer. In Sec. VI we discuss the relative sizes of heat and
composition transport across the interface. In Sec. VII we present an analytic model of the evolution
of the convective layer that reproduces our numerical results. Finally, we conclude in Sec. VIII.

II. MODEL AND NUMERICAL METHOD

We perform two-dimensional simulations in a horizontally periodic domain of height H and
width L. We impose impermeable and stress-free top and bottom boundaries with no composition
flux through them, no heat flux at the bottom, and a constant heat flux at the top. We use the
Boussinesq approximation [29], valid for a thin layer of fluid in which fluctuations in density (ρ)
are small with respect to the constant background density (ρ0). The density variations depend on
temperature and solute perturbations (T and S, respectively) via ρ = ρ0(βS − αT ), where β and α

are the coefficients of solute contraction and thermal expansion, respectively, both assumed to be
positive constants. The governing equations are

∇ · v = 0 , (4)

∂T

∂t
= −(v · ∇) T + κT ∇2T, (5)

∂S

∂t
= −(v · ∇) S + κS∇2S, (6)

∂v

∂t
= −(v · ∇) v − ∇P

ρ0
+

(
ρ

ρ0

)
g + ν∇2v, (7)
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TABLE I. Parameters used in the simulations.

Parameter Value

H Height (m) 0.25
L Width (m) 0.25
ν Kinematic viscosity (10−7 m2 s−1) 0.142, 1.42, 10
κT Thermal diffusivity (10−7 m2 s−1) 1.42
κS Solute diffusivity (10−7 m2 s−1) 0.142
k Thermal conductivity (W m−1 K−1) 0.6
ρ0 Background density (kg m−3) 1025
cP Specific heat capacity (J K−1 kg−1) 4182
α Thermal expansion coefficient (K−1) 2.3 × 10−4

β Solute contraction coefficient (1) 7.6 × 10−4

T0 Background temperature (K) 293.15
S0 Background solute (g kg−1) 12.78
δS0 Initial solute contrast across depth (g kg−1) 13
Fcrit Critical heat flux for stability (W m−2) 103
F0 Heat flux at the top boundary (W m−2) 5.4Fcrit , 10.8Fcrit

with boundary conditions

w
∣∣
z=0,H = 0,

∂u

∂z

∣∣∣∣
z=0,H

= 0,
∂S

∂z

∣∣∣∣
z=0,H

= 0, (8)

∂T

∂z

∣∣∣∣
z=0

= 0,
∂T

∂z

∣∣∣∣
z=H

= −F0

k
. (9)

In the above equations, v = (u,w) is the velocity of a fluid element, where u is the x component and
w is the z component, P denotes the pressure fluctuation resulting from the motion of the fluid, g is
the acceleration due to gravity, and k = ρ0cPκT is the thermal conductivity. Further, F0 corresponds
to the constant heat flux at the top boundary that cools the domain.

The fluid is initialized with constant temperature T0 everywhere and with a linear composition
profile S0(z) = S0 + δS0(1 − z/H ), with δS0 defined such that the solute concentration is larger by
a factor of two at the bottom of the domain. Afterwards, the fluid is destabilized by a constant heat
flux F0 at the top boundary that drives the evolution of the system in time. We choose the magnitude
of F0 in terms of the diffusive heat flux that would be present in the fluid if it was just marginally
stable against convection

Fcrit = k
β

α

∣∣∣∣dS0

dz

∣∣∣∣ = k
β

α

(
δS0

H

)
, (10)

i.e., we set F0 = f × Fcrit , where f is a positive number (5.4 and 10.8 in our numerical experiments).
The parameter values used in the simulations were chosen to reproduce the experiments of Turner
and Stommel [22] and are shown in Table I. Note that the solute diffusivity κS was increased by
an order of magnitude such that τ = 0.1, and the kinematic viscosity ν was varied to have a set of
simulations that covers Pr = 0.1, 1, and 7.

Since we are interested in the early evolution of the system, our numerical experiments were
performed until t ≈ 4500 s (i.e., t = 0.01tdiff , where tdiff is the thermal diffusion time across the
box). This is enough time to observe the formation of the outer convective layer and its inwards
propagation before the formation of secondary layers.

We solve linear terms implicitly and nonlinear terms explicitly using an implicit-explicit (IMEX),
third-order, four-stage Runge-Kutta time-stepping scheme RK443 with the Dedalus spectral code
[30]. The variables are decomposed on a Chebyshev (vertical) and Fourier (horizontally periodic)
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domain in which the physical grid dimensions are 3/2 the number of modes. Based on a resolution
study, we find that 512 modes in each direction are enough to resolve all the fluid flows given the
parameters used in this work. However, for a better resolution of small scale structures, we use 1024
modes in each direction.

Although we solve the equations in dimensional form, most of the relevant parameters analyzed
and presented in this work are dimensionless. Further, for a better interpretation of the results, when
plotting the quantities that are not dimensionless, we show them normalized to relevant reference
values. For example, the thickness of the convective layer is presented in terms of the height of the
box (H), time is presented in terms of the thermal diffusion time across the box (tdiff = H2/κT ), and
temperature and solute are presented in terms of the initial temperature and initial solute contrast
across the box (T0 and δS0, respectively). Further, the heat fluxes are presented in terms of F0, and
solute fluxes in terms of the initial solute flux across the box (ρ0κS|dS0/dz|). For the interested
reader, we present in Sec. II a set of dimensionless equations with the relevant dimensionless
parameters that control our simulations.

Dimensionless parameters

In the following, we nondimensionalize the Boussinesq equations presented above such that
length is in units of the box height (H), time is in units of the thermal diffusion time across the box
(H2/κT ), solute is units of the initial solute contrast across the box (δS0), and temperature is in units
of the imposed flux as F0H/k. By these choices, velocity is in units of κT /H and pressure has units
of ρ0κ

2
T /H2. The resulting dimensionless equations are

∇ · ṽ = 0, (11)

∂T̃

∂ t̃
= −(ṽ · ∇) T̃ + ∇2T̃ , (12)

∂ S̃

∂ t̃
= −(ṽ · ∇) S̃ + τ∇2S̃, (13)

∂ ṽ

∂ t̃
= −(ṽ · ∇) ṽ − ∇P̃ + RT Pr

[
T̃ −

(
F0

Fcrit

)−1

S̃

]
ẑ + Pr∇2ṽ, (14)

with boundary conditions

w̃
∣∣
z̃=0,1 = 0,

∂ ũ

∂ z̃

∣∣∣∣
z̃=0,1

= 0,
∂ S̃

∂ z̃

∣∣∣∣
z̃=0,1

= 0, (15)

∂T̃

∂ z̃

∣∣∣∣
z̃=0

= 0,
∂T̃

∂ z̃

∣∣∣∣
z̃=1

= −1. (16)

We clarify that dimensionless variables are written with a tilde and they should not be confused
with horizontally averaged (x-independent) variables, which are written with a line on the top.

The dimensionless parameters that control the simulations are F0/Fcrit , the Prandtl number (Pr),
the diffusivity ratio (τ ), and a modified Rayleigh number (RT ), defined respectively as

F0

Fcrit
= F0

(
k
β

α

δS0

H

)−1

, (17)

Pr = ν

κT
, (18)

τ = κS

κT
, (19)

RT = αgH3

κT ν

(F0H

k

)
. (20)
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TABLE II. Dimensionless parameters used in the simulations.

No. τ Pr F0/Fcrit RT RS ν (10−7 m2 s−1)

1 0.1 0.1 5.4 4 × 1012 7.5 × 1011 0.142
2 0.1 0.1 10.8 8 × 1012 7.5 × 1011 0.142
3 0.1 1 5.4 4 × 1011 7.5 × 1010 1.42
4 0.1 1 10.8 8 × 1011 7.5 × 1010 1.42
5 0.1 7 5.4 5.76 × 1010 1.06 × 1010 10
6 0.1 7 10.8 1.15 × 1011 1.06 × 1010 10

Note that RT (F0/Fcrit )−1 can be rewritten as

RT

( F0

Fcrit

)−1

= RS = βgH3δS0

κT ν
, (21)

which looks as the traditional Rayleigh number but for solute. In terms of the nondimensionalization
described above, the parameters used in our set of six simulations are given in Table II.

It is worth mentioning that in this problem convection is driven by the temperature difference
across the thermal boundary layer due to the imposed heat flux at the top, and the convective
layer grows in time. This means that, within the convection zone, the classic Rayleigh number and
Reynolds number have a time-dependent magnitude determined by the thickness of the convective
layer

Ra = αgh3δT

κT ν
, Re = vch

ν
, (22)

where vc is the convective velocity. By measuring δT , h, and vc at each time directly from the
simulations, we find Ra and Re varying from 0 (initially) until a maximum value of 109 and 105,
respectively.

III. INWARDS PROPAGATION OF THE CONVECTIVE LAYER

We find that the initial behavior of the system is qualitatively similar for all the simulations: after
turning on the heat flux at the top, the cooling rate is high enough that a convective layer, well mixed
in both temperature and composition, quickly forms and grows inwards by incorporating fluid from
below, as shown in the snapshots in Fig. 1.

To get some intuition on how temperature and composition change within the convective layer,
we look into the horizontally averaged profiles of heat and solute fluxes, which we define as

F H = ρ0cPwT − k dT /dz, (23)

F S = ρ0wS − ρ0κS dS/dz, (24)

respectively. The first and second term on the right hand side in Eqs. (23) and (24) correspond to
the advective and diffusive fluxes, respectively. As an example, we show in Fig. 2 the flux profiles
for the case Pr = 0.1 and F0 = 5.4Fcrit at t = 2280 s (t = 0.005 tdiff ), the same snapshot as shown
in Fig. 1. Despite the fluctuations due to the advective contribution to the fluxes, it is clear that in
the convective layer the total heat flux increases linearly with depth [Fig. 2(a)], meaning that the
fluid is cooling everywhere at a constant rate to keep its temperature uniform. A similar behavior is
observed in the composition flux [Fig. 2(b)]. In the convective zone the total flux decreases linearly
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FIG. 1. Instantaneous snapshots of the temperature field (divided by the initial temperature T0, left panel)
and solute field (divided by the initial solute contrast δS0, right panel) for the case Pr = 0.1 and F0 = 5.4Fcrit ,
at t = 0.005tdiff . Blue (red) color represents low (high) temperature. Dark (light) color represents low (high)
solute concentration. Note how convective eddies impinging on the interface incorporate fluid from below.

with depth; thereby, the solute content is increasing everywhere at the same rate to keep the fluid
with uniform composition.

Figure 3 shows the evolution in time of the thickness of the convective zone. To help compare
the different simulations, we remove the h ∝ √

F0/Fcrit scaling predicted by Turner’s analytic model
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FIG. 2. Horizontally averaged flux profiles for the simulation Pr = 0.1 and F0 = 5.4Fcrit at t = 2280 s
(t = 0.005tdiff ). Panels (a) and (b) show profiles of heat and solute flux, respectively. In both panels, the green,
blue, and orange lines correspond to the total, advective, and diffusive contribution to the flux, respectively.
The shaded areas denote the extent of the convective zone. Note that in panel (a) the heat fluxes are normalized
to F0 and in panel (b) the solute fluxes are normalized to ρ0κS|dS0/dz|. Further, in both panels the z coordinate
is normalized to the height of the box (H ).
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FIG. 3. Temporal evolution of the thickness of the outer convective layer, h, divided by H
√

F0/Fcrit . The
gray and black dashed lines correspond to the predictions by Eq. (3) using Rρ = 1 and 3, respectively. Colors
distinguish between different Pr, and line style distinguishes between different F0 (dotted lines in the case
F0 = 10.8Fcrit and solid lines for F0 = 5.4Fcrit .

[Eq. (3)] by plotting h/(H
√

F0/Fcrit ). For comparison, we show h/(H
√

F0/Fcrit ) as predicted by
Eq. (3) using Rρ = 1 and Rρ = 3. Comparing the different curves, we see that there is a weak
dependence of the rate of growth of the convection zone on Pr, such that the convective layer grows
faster as Pr decreases. For example, at t = 0.01 tdiff , the height of the convective zone at Pr = 0.1
is larger than for Pr = 7 by a factor of two. Comparing curves at the same Pr, we see also that the
growth rate of the convective layer increases slightly faster with flux than the expected

√
F0/Fcrit

scaling. This can be seen in Fig. 3 where the curves for F0 = 10.8Fcrit lie slightly above those for
F0 = 5.4Fcrit . The maximum deviations between the curves for different fluxes are 2.8%, 6.4%,
and 13.2%, for Pr = 0.1, 1, and 7, respectively. As we discuss below, the variations with Pr can be
understood in terms of differences in the entrainment efficiency with Pr, as well as the effect of the
heat flux at the boundary between the convection zone and stable layer, which is not included when
deriving Eq. (3).

The best-fit power law to the convection zone depth as function of time is close to but not
exactly h ∝ t1/2. Fitting a general power law to the data, we find h ∝ t0.467(5)−0.585(2), where the
lowest and highest rate correspond to the cases (Pr = 7, F0 = 5.4Fcrit) and (Pr = 0.1, F0 = 10.8Fcrit),
respectively (the values in parentheses correspond to the uncertainties in the last digit). For Pr = 7,
Refs. [25] and [26] found that their data was fit by h ∝ t0.36−0.5 depending on the magnitude of the
imposed flux F0.

IV. ENTRAINMENT AT THE CONVECTIVE BOUNDARY

In this section, we investigate entrainment at the convective boundary as the mechanism responsi-
ble for mixing and growth of the convective layer at Pr � 1. In particular, we show that (1) during the
propagation of the convective layer, a buoyancy jump across the interface is present, which suggests
that a process is needed to transport heavier fluid across the stable interface, and (2) the entrainment
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FIG. 4. Horizontally averaged profiles of the temperature (normalized to T0), solute (normalized to δS0),
and buoyancy field (normalized to the magnitude of the acceleration due to gravity, g), in panels (a), (b), and
(c), respectively. The results correspond to the simulation at Pr = 0.1 and F0 = 5.4Fcrit . Profiles are shown
at different times (where time evolves according to the direction of the arrows). All panels share the same
scale along the z axis. Note that the z coordinates are normalized to the height of the box, H . In panel (c), the
buoyancy profile at t = 0.005tdiff is shown in red and a zoomed region shows the buoyancy step using a thicker
line.

equation proposed and tested by Fernando [25] and Molemaker and Dijkstra [26] in experiments
and simulations of salty water (Pr = 7) gives a good description of our results at lower Pr.

A. Development of a buoyancy jump in a stable interface

Figure 4 shows horizontally averaged profiles of the temperature, T , composition, S, and buoy-
ancy, B = g(αT − βS), at different times for the case Pr = 0.1 and F0 = 5.4Fcrit . A buoyancy jump
at the base of the convection zone develops and persists over time. We found the same behavior
in all our simulations. To show this more clearly, we show in the inset of panel (c) the profile at a
particular time, with the region denoting the buoyancy jump using a thicker red line.

Figure 5 shows the jumps in solute, temperature, and buoyancy across the interface (�S, �T ,
and �B, respectively) as a function of the thickness of the convective layer, h. We measure the
jump in each quantity from horizontally averaged profiles, defined as the value below the interface
(stable region) minus the value above the interface (convective region), so that �T and �S are
positive quantities, whereas �B is negative for a stable interface. It is worth mentioning that the
dispersion in our measurements is due to the propagation of waves near the interface, which make
its location (start and end) time variable, especially in the simulated experiment with Pr = 0.1 and
F0 = 10.8Fcrit .

We observe that the jumps in solute, temperature, and buoyancy all exhibit a monotonic (positive)
trend with h, weakly dependent on F0. As expected, since solute is conserved during the evolution
of the convective layer, �S exhibits a linear trend with h [Eq. (2)], independent of Pr and F0. The
situation for �T is less clear and there are substantial differences between the simulations, probably
due to the effect of heat flux at the interface between the convective layer and stable region. The
buoyancy jump �B also exhibits a linear trend with h, but its magnitude is larger for simulations at
Pr = 0.1. It is interesting that the ratio |�B|/gβ�S increases slowly with h, being roughly constant
for each experiment. We clarify that roughly constant means maximum variations at the level of
20%. We find that the solute difference across the interface accounts for 20–80% of the buoyancy
jump, depending on Pr and F0. For comparison, Fernando [25] and Molemaker and Dijkstra [26]
found for salty water that the salinity jump across the interface accounts for 11% and 50% of the
buoyancy jump, respectively. The differences can be explained by the magnitude of the imposed
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FIG. 5. Jumps at the interface as a function of h/H (the thickness of the convective layer normalized to
the height of the box). Panels (a), (b), and (c) show the absolute jumps of composition (normalized to δS0),
temperature (normalized to T0 ), and buoyancy (normalized to the magnitude of the acceleration due to gravity,
g), respectively. Panel (d) shows the ratio |�B|/gβ�S versus h/H . As shown in the legends, colors distinguish
between different Pr and markers distinguish between different values of F0.

heat flux and the initial solute gradient. In terms of our units, Fernando [25] and Molemaker and
Dijkstra [26] used F0 ≈ 18Fcrit and F0 ≈ 5.6Fcrit , respectively.

B. Entrainment equation and mixing efficiency

A key parameter of the entrainment mechanism is the so-called mixing efficiency. The entrain-
ment hypothesis states that the rate of change of potential energy due to mixing is proportional to the
kinetic energy flux available near the interface (e.g., Ref. [31]). By assuming that a constant fraction
of the available kinetic energy is used to lift heavier fluid across the interface, Fernando [25] and
Molemaker and Dijkstra [26] derived an expression for the rate of change of the convection zone
thickness

(−�B)

g

dh

dt
= γ

(
αF0

ρ0cP

)
, (25)
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FIG. 6. Entrainment parameter γ as a function of t/tdiff (i.e., time normalized to the thermal diffusion time
across the box) for all our numerical simulations. As shown in the legends, colors distinguish between different
Pr and markers distinguish between different F0. For simulations at F0 = 5.4Fcrit , the averaged values of γ for
Pr = (0.1, 1, 7) are γ ≈ (0.85, 0.44, 0.08), whereas for simulations at F0 = 10.8Fcrit , the averaged values are
γ ≈ (0.84, 0.51, 0.12).

which defines the mixing efficiency, γ (see, e.g., the discussion in Sec. 3.2.4 in [26]). The en-
trainment rate is often also written in terms of a bulk Richardson number Ri = h�B/v2

c , where vc

is the rms convective velocity and we use the height of the convective layer as the length scale
of the turbulent motions. Using mixing-length theory to write vc ∼ (gαF0/ρ0cP )1/3h1/3, Eq. (25)
takes the form dh/dt ≈ γ vc/Ri. We find 10 � Ri � 100 for all our numerical experiments. Our
results fall within the same parameter range reported in previous laboratory experiments of turbulent
entrainment [32,33], and hydrodynamics simulations of stellar convective boundaries [34]. This
corresponds to the intermediate stability regime in which the convective zone expands and the
interface is moderately distorted by convective eddies. For much larger values of Ri the entrainment
process weakens and the evolution of the interface is expected to be controlled by diffusive processes
[25–27].

Fernando [25] and Molemaker and Dijkstra [26] found in their experiments at Pr = 7 that γ

increases slowly with time, with maximum variations at the level of 30%. They reported time-
averaged values of γ between 0.15 and 0.56 depending on the magnitude of the imposed heat flux
at the boundary. In the following, we test whether γ exhibits a similar behavior at lower Pr.

We compute γ at different times by using the buoyancy jumps �B from horizontally averaged
profiles, as the ones in Fig. 4, and dh/dt from differentiation of a power law fit to the curves h(t ) in
Fig. 3. Despite the dispersion due to measurement uncertainties in �B, the evolution of γ behaves
similarly at low and high Pr, increasing slowly with time, with maximum variations at the level
of 20–40% (Fig. 6). We find that the time-averaged values of γ take values between 0.08 and 1,
being higher at low Pr and high F0. The trend with F0 is less clear at Pr = 0.1 since the flow is more
turbulent and the dispersion in the measurements is higher. Our results make sense given that a larger
value of F0 provides more energy to the convective eddies; thereby they can entrain and mix more
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efficiently. Furthermore, low Pr fluids have strong velocity gradients near the interface, enhancing
shear motions and mixing. Finally, low Pr fluids are more turbulent (have a larger Reynolds number)
and deliver energy to smaller scales with the result that entrainment might be expected to be more
efficient. Note that decreasing Pr at a fixed thermal diffusivity means that the thickness of the viscous
boundary layer that separates the convective layer and the static fluid below gets smaller; thereby
convective eddies entrain through a thinner layer, mixing the fluid more easily.

Our results compare reasonably well with previous work. Our measurements of γ for simulations
at Pr = 7 (γ ≈ 0.08 for F0 = 5.4Fcrit and γ ≈ 0.12 for F0 = 10.8Fcrit) are expected to be smaller
than those reported by Fernando [25], who obtained γ ≈ 0.5 for F0 ≈ 18Fcrit . However, for the case
F0 = 5.4Fcrit , we expected consistency with Molemaker and Dijkstra [26], who obtained γ ≈ 0.15
for F0 ≈ 5.6Fcrit in Molemaker and Dijkstra [26], but our measurement is roughly smaller by a factor
of 2.

At this point, we have shown that, during the propagation of the convective layer, a buoyancy
jump develops over the interface. Further, using the entrainment equation [Eq. (25)], we have shown
that γ behaves in a similar way at low and high Pr, increasing slowly with time. We have also shown
that γ is higher at low Pr and high F0, which suggests that entrainment is stronger in the more
turbulent and energetic flow.

V. EFFECT OF THE INTERFACIAL HEAT FLUX

For Pr = 7, Molemaker and Dijkstra [26] pointed out that there is a significant heat flux across
the interface between the convection zone and stable layer below. This has the effect of heating
the convective layer from below and thereby reducing the rate at which it penetrates into the stable
layer. In this section, we present our measurements of the interfacial heat flux as the convective layer
evolves, and test whether it is significant at low Pr.

The change in the heat content within the convective layer of thickness h [26] is determined by

ρ0cPh
d�T

dt
= F0 − F

i
H , (26)

where F
i
H = ρ0cP�T dh/dt + F a is the total heat flux through the interface. The term

ρ0cP�T dh/dt corresponds to heat flux through the interface that results from a change dh = ḣ dt
in the thickness of the convective layer and F a is additional heat flux from below. Note that, with
F a = 0, Eq. (26) reduces to Eq. (1). We measure F

i
H from the flux profiles in Fig. 2(a) as the value

of the total heat flux at the edge of the convective zone.
Figure 7 shows for all our simulations the temporal evolution of the total heat flux through the

interface, F
i
H , normalized to the imposed cooling flux F0. For comparison, we also include the

contribution of the ρ0cP�T dh/dt term. Interestingly, we find that F
i
H is weakly dependent of Pr

and F0, and it fluctuates around a constant value ≈0.6F0. The contribution from ρ0cP�T ḣ also
fluctuates around a constant value but it is slightly different depending on F0 and Pr. We subtract
ρ0cP�T ḣ from F

i
H , and take the temporal average between 1000 and 4500 s to quantify F a for all

our simulations.
We find that F a is a fixed fraction of the imposed heat flux at the top, F a = εF0, with ε varying

between 0.25 and 0.5; therefore, it significantly affects the growth rate of the convection zone
(Fig. 8). Further, we observe that F a increases with Pr and, for all the simulations at F0 = 5.4Fcrit , it
is ≈25% larger than for F0 = 10.8Fcrit . This result makes sense because at high Pr the thickness
of the convective layer is smaller; thereby the temperature of the convective layer drops more
quickly. This implies a higher temperature contrast with the fluid below [Fig. 5(b)], resulting in
more diffusion of heat upwards. The fact that increased F a slows the convection zone growth is
consistent with the curves of h(t )/H

√
F0/Fcrit in Fig. 3, which show that for F0 = 10.8Fcrit the

curves lie above the ones for F0 = 5.4Fcrit , and the difference between them increases from low to
high Pr.
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FIG. 7. Heat flux through the interface (normalized to F0) as a function of t/tdiff (time normalized to the
thermal diffusion time across the box). As shown in the legends, colors distinguish between different Pr and
markers distinguish between different F0. All panels share the same scale in both axes. In all panels, filled and
unfilled colors distinguish between the total heat flux and the resulting flux due to a change dh = ḣdt in the
convective zone, respectively.

VI. BUOYANCY TRANSPORT ACROSS THE INTERFACE

The buoyancy jump at the bottom of the convective layer suggests that there must be a net trans-
port of buoyancy across the interface as the convection zone grows. In this section we investigate the
relative heat and solute fluxes at the interface. First, similar to the heat flux in Sec. V, we measured
the solute flux at the interface. This is shown in the left panel of Fig. 9. We find that the solute flux

0 2 4 6
Pr
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ε
=

F
a
/F

0

FIG. 8. Ratio F a/F0 as a function of Pr. As shown in the legends, colors distinguish between different Pr
and markers distinguish between different F0 (for a given Pr). The error bars correspond to one sigma from the
mean.
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FIG. 9. Solute flux through the interface (normalized to the initial diffusive solute flux, ρ0κS|dS0/dz|) as a
function of t/tdiff (i.e., time normalized to the thermal diffusion time across the box). As shown in the legends,
colors distinguish between different Pr and markers distinguish between different F0. In all panels, filled and
unfilled colors distinguish between the total heat flux and the resulting flux due to a change dh = ḣdt in the
convective zone, respectively.

agrees well with flux implied by the growth rate of the layer, ρ0�Sḣ. We also observe that the solute
transport is higher at low Pr and high F0, consistent with the fact that the convective layer grows
faster in these cases. All of these results are consistent with and expected from mass conservation.

An indication of the nature of the transport at the interface is the relation between the buoyancy
flux ratio

RF ≡ βF
i
S

αF
i
H c−1

P

(27)

and the stability of the interface characterized by the density ratio parameter, Rρ ≡ β�S/α�T
(defined here such that Rρ > 1 indicates a stable interface). For example, if the transport were only
by diffusion in the interface, the solute and heat fluxes are given by

F
i
S ≈ ρ0κS

(
�S

δS

)
, F

i
H ≈ ρ0cPκT

(
�T

δT

)
, (28)

where δS and δT are the thicknesses of the diffusive boundary layers of solute and temperature,
respectively. If δS ≈ δT , this gives

RF = τRρ. (29)

However, it might be expected that δS and δT would have a different thickness. Fernando [35]
suggested that the interface thickness is set by a balance between the diffusion time across the layer
and the convective turnover time. Using mixing length theory for the convective flux and equating
it to the diffusive flux across the layer gives

RF = τ 1/2Rρ (30)

instead.
Experimentally, different relations between RF and Rρ have been reported for the transport across

a single interface bounded by two convective layers in salty water (rather than an interface between a
convective layer and a stable layer as we study here). Turner [36] found that, for 2 < Rρ < 7, the flux
ratio RF is a constant, independent of Rρ . This was confirmed by Linden and Shirtcliffe [37] who
found that the value of RF was consistent with RF = (κS/κT )1/2 = τ 1/2. Further analysis by Newell
[38] showed that, at very large Rρ , the flux ratio obeys Eq. (29). The differences in the behavior of RF
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FIG. 10. Ratio between the buoyancy fluxes of solute and temperature, RF , as a function of the density
ratio parameter, Rρ . Panels (a) and (b) show the results for F0 = 5.4Fcrit and F0 = 10.8Fcrit , respectively. Panel
(c) shows the results for the simulations at Pr = τ = 0.1 and the results reported by Moll et al. [40]. As shown
in the legends, colors distinguish between different Pr and markers distinguish between different F0 as well as
different flux ratios (filled markers consider the total flux, whereas unfilled markers consider just the diffusion
flux). The black lines in all panels correspond to different predictions (see text for more details).

were attributed to the nature of the transport across the interface. At low Rρ , advection dominates
the fluxes and enhances the transport of salt, whereas at large Rρ , the transport is dominated by
molecular diffusion. Note that, in the latter case (transport by diffusion), both relations RF = τ 1/2Rρ

and RF = τRρ have succeeded at explaining different experimental data [38,39]. More recently, in
the context of the transport of heavy elements between the core and the gaseous envelope of Jupiter,
Moll et al. [40] performed three-dimensional simulations for Pr = τ = 0.03–0.3. They identified the
advective and diffusive regimes of the interface described above, but in both regimes the buoyancy
flux ratio was roughly independent of Rρ and significantly greater than τ 1/2.

Figure 10 shows our measurements of the buoyancy flux ratio as a function of Rρ . We find
that RF increases with Rρ , so that as the convection zone deepens and the interface becomes more
stable (larger Rρ), there is a larger solute flux compared to heat flux. As expected, since the total
heat flux through the interface is approximately the same for all our experiments, we find that the
evolution of RF scales in the same way as the solute flux F

i
S , i.e., RF decreases with increasing Pr

and increases with increasing F0. The range of values of RF seems to converge towards τ 1/2 as Pr
increases, consistent with the measurements for Pr = 7 in laboratory experiments. However, in all
cases we find that RF > τ 1/2, consistent with the results in Moll et al. [40], although our values of
RF are significantly larger than theirs, as shown in Fig. 10(c). In particular, we find for the cases
Pr = τ = 0.1 that RF ≈ 1.5–2, whereas Moll et al. [40] found RF ≈ 0.7.

Also shown in Fig. 10 are the values of RF computed using the diffusive fluxes of solute and
heat only. In this case, the values are consistent with RF = τRI , as in the laboratory experiments
by Newell [38]. As mentioned above, this implies that the diffusive boundary layers of solute and
temperature have the same thickness. Indeed, direct measurement of the boundary layer thicknesses
confirms this, and is shown in Fig. 11.

VII. ANALYTIC MODEL FOR THE INWARDS PROPAGATION OF THE CONVECTIVE LAYER

The fact that the excess heat flux across the interface F a is a fixed fraction of the imposed heat
flux, F a = εF0 (Sec. V), and that the entrainment parameter γ varies slowly in time (Sec. IV),

124501-15



J. R. FUENTES AND A. CUMMING

0.002 0.004 0.006 0.008 0.010
t/tdiff

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

δ S
/δ

T

FIG. 11. Ratio between the thickness of the diffusive boundary layer of solute and temperature (δS/δT ), as
a function of t/tdiff . As shown in the legends, colors distinguish between different Pr and markers distinguish
between different F0.

suggest the following set of equations to describe the location of the interface:

h
d�T

dt
= −�T

dh

dt
+ F0

ρ0cP
(1 − ε), (31)

�S = 1

2

∣∣∣∣dS0

dz

∣∣∣∣h, (32)

−�B
dh

dt
= γ

(
gαF0

ρ0cP

)
, (33)

where �B = g(α�T − β�S). This extends the analytic models of Turner [23] and Fernando [25]
to include both entrainment and the heat flux across the interface.

It is worth noting that there is a separation of energy scales in this problem that allows us
to write the global energy balance in Eq. (31) separately from the energy considerations that
lead to the entrainment equation (33). The energy required to mix the heavy elements, Emix =
βρ0g|dS0/dz|H3/12 per unit area [23], is a small fraction of the total thermal energy lost by the
layer,

Emix

ρ0cP�T H
= 1

6

(
β�S

α�T

)(αgH

cP

)
∼ αgH

cP
∼ 10−7, (34)

where we write �S = H |dS0/dz|/2. Using mixing length estimates F ∼ ρvconvcPδT and v2
conv ∼

gHαδT (where vconv is a typical convective velocity and δT a typical temperature fluctuation in the
convection zone), we see that the kinetic energy flux FKE associated with the convective motions is
smaller than the thermal energy carried by convection by the same factor,

FKE

F
∼ ρ0v

3
conv

ρ0vconvcPδT
∼ v2

conv

cPδT
∼ αgH

cP
. (35)
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Equation (33) describes how this much smaller component of the energy, the kinetic energy, is used
to entrain heavy fluid and move it across the interface. These contributions to the energy, however,
are only small corrections to the overall thermal energy balance described by Eq. (31).

We now explore the consequences of this model. For simplicity and to get an analytic solution,
we assume ε and γ constants (this choice is justified by the fact that both quantities vary slowly
with time, with maximum variations at the level of less than 40%). The set of equations (31)–(33)
has a solution h ∝ t1/2, which is

h(γ , ε, t ) = [2C(γ , ε)]1/2
( F0

Fcrit

)1/2

(κT t )1/2, (36)

where Fcrit is given by Eq. (10). This is the same as Eq. (3) but with a different prefactor. The
constant C is given in terms of the parameters γ and ε as

C(γ , ε) = 1 − ε + 2γ . (37)

Note that γ and ε can be measured directly from the simulations: see Fig. 6 for γ and Fig. 8 for ε.
For example, taking γ ≈ 0.85 (0.1) and ε ≈ 0.3 (0.45) gives C ≈ 2.4 (0.75) for Pr = 0.1 (7). Note
that, in the original model by Turner [23], the constant C is identified as Rρ which must be larger
than unity (since an interface mixes by Rayleigh-Taylor instability as soon as it reaches Rρ = 1), so
the fact that we infer C = 0.75 for Pr = 7 implies that additional physics must be at work.

We can also use Eqs. (31)–(33) and the solution Eq. (36) to calculate the fluxes at the interface,
and derive the expected relation between RF and Rρ . First, Eqs. (32), (33), and (36) give

�B

gβ�S
= − 2γ

1 − ε + 2γ
, (38)

Rρ = β�S

α�T
= 1 − ε + 2γ

1 − ε
. (39)

The first of these explains the ratio �B/gβ�S found in Fig. 5(d). To the extent that γ and ε vary
slowly in time, so is the stability of the interface, which is determined by the values of γ and
ε. Again taking γ ≈ 0.85 (0.1) and ε ≈ 0.3 (0.45) for Pr = 0.1 (7), we find Rρ = 3.4 (1.4) and
�B/gβ�S = R−1

ρ − 1.0 = −0.3 (−0.7) (compare Figs. 5 and 10).
Equation (39) shows that the range of values of Rρ depends on the maximum value of γ . The

definition of γ in Eq. (33) suggests that γ should not be much larger than unity, since in that case
the energy required to mix fluid across the interface would exceed the available kinetic energy.
With ε = 0, Rρ = 1 + 2γ , which has a value Rρ = 3 when γ = 1. This matches Turner’s argument
[23] based on energetics for the maximum stability of the interface. When the heat flux across the
interface is included, larger values of Rρ are possible, as seen in our simulations. For example, for
the Pr = 0.1 value ε = 0.45, Rρ ≈ 4.6 for γ = 1. The continued cooling of the convection zone
continuously destabilizes the interface, preventing large values of Rρ .

The constant C in Eq. (36) can be rewritten

C(γ , ε) = Rρ (1 − ε), (40)

so we see that, compared to Turner’s estimate in Eq. (36), the height of the interface at a given time
is smaller by a factor (1 − ε)1/2.

Equations (31), (32), and (36), also give expressions for the total flux of solute and heat through
the interface

F
i
S = ρ0�Sḣ =

(
α

β

)(F0

cP

)(
1 − ε + 2γ

2

)
, (41)

F
i
H = ρ0cP�T ḣ + εF0 = F0

2
(1 + ε). (42)
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FIG. 12. Comparison of the analytic model given by Eqs. (31)–(33) with the results of our simulations.
Panels (a), (b), (c), and (d) show, for Pr = (0.1, 1, 7) and F0 = 10.8Fcrit , the temporal evolution (normalized
to thermal diffusion time, tdiff ) of h/H , the ratio |�B|/gβ�S, the solute flux through the interface normalized
to the initial diffusive solute flux, F

i
S/(ρ0κS|dS0/dz|), and the heat flux through the interface normalized to

F0, F
i
H/F0, respectively. Panel (e) shows the relation between the buoyancy flux ratio, RF , and the density

ratio parameter, Rρ . In all panels the shaded regions represent the predictions from the model by considering
one-sigma uncertainties in γ and ε. As shown in the legends, colors distinguish between different Pr.

The buoyancy flux ratio is

RF = βF
i
S

αF
i
H c−1

P

=
(

1 − ε + 2γ

1 + ε

)
=

(
1 − ε

1 + ε

)
Rρ, (43)

which increases with Rρ as observed.
We compare the model predictions and the measurements from the simulations in more detail

in Fig. 12. By using the temporal averages and standard deviations of γ and ε, we propagate their
errors to get the uncertainties in the predictions above. We find that, within the uncertainties, there
is a good agreement between the model predictions and our numerical results.

VIII. SUMMARY AND CONCLUSIONS

We studied the penetration of a cooling convection zone into a stably-stratified composition
gradient at low Pr. Our goal was to extend previous work on salty water at Prandlt number Pr ≈ 7
to low values Pr < 1 found in planetary interiors. Our main conclusions are as follows.

(1) A non-negligible buoyancy jump develops over the interface between the convective layer
and the stratified region [Fig. 5(c)]. The stability of the interface as measured by the density ratio
Rρ = β�S/α�T increases slowly with time as the convective layer grows, with a value ranging
between 1 � Rρ � 4 depending on Prandtl number.
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(2) Our results are well described by an entrainment prescription in which a fixed fraction of
the kinetic energy associated with the convective motions is used to lift heavier fluid across the
interface, as proposed by Fernando [25] and Molemaker and Dijkstra [26] for salty water. The
entrainment efficiency γ [Eq. (25)] is approximately constant in time (with variations at the level
of 20–40%). This confirms and extends to lower Pr previous work identifying entrainment as the
mixing mechanism responsible for the growth of the outer convective layer rather than Rayleigh-
Taylor instabilities.

(3) Entrainment is stronger at low Pr and high imposed flux F0. This implies that mixing is more
efficient when the flow is more turbulent and energetic, with the result that the convective layer
grows more quickly in those cases (Fig. 3). The entrainment parameter γ changes from ∼0.1 at
Pr = 7 to ∼0.9 at Pr = 0.1, so while entrainment is a relatively minor effect at Pr = 7, it is much
more significant at low Pr.

(4) As pointed out previously by Molemaker and Dijkstra [26], additional interfacial heat flux,
presumably associated with the transport of solute across the interface, is a significant fraction of
the imposed heat flux at the top boundary (see Fig. 8). The flow of energy into the convective layer
reduces the effective cooling rate of the convection zone.

(5) We find that the interfacial heat and composition fluxes are dominated by advection rather
than diffusion (this can be seen in Fig. 2). Because the stability of the interface is limited to Rρ � 3–5
(depending on Pr), it is always in a regime where advection dominates the interfacial transport. The
interface adjusts so that the thickness of the temperature and salinity boundary layers are the same to
≈10%, despite the fact that the molecular diffusivities are different by a factor of ten (τ = κS/κT =
0.1).

(6) Equations (31)–(33) provide a simple analytical model that reproduces our numerical results
with two parameters (assumed constant): the entrainment efficiency γ (Fig. 6) and the heat flux
across the interface as a fraction of the applied heat flux at the top of the convection zone ε = F a/F0

(Fig. 8). The growth of the convection zone thickness follows h ∝ t1/2 and is given by Eq. (36).
Equation (39) gives Rρ in terms of γ and ε.

Our focus in this paper has been on the growth of the outer convection zone, with the goal of
addressing how low Pr affects the rate at which it moves into the stably-stratified region. Another
important question is whether secondary layers develop, slowing the progress of the convective
region, and in principle preventing the system from mixing fully. Secondary layers are seen in salt
water experiments, but it is not known when and how they arise in time-dependent cooling at low
Pr. In this regard, a few attempts have been made [27,28]. Biello [27] found that gravity waves can
break near the interface and mix the composition gradient across, making the formation of secondary
layers difficult to occur at low Pr. On the other hand, Zaussinger and Kupka [28] found that multiple
layers can form at low Pr either by a thermal instability at the interface ahead of the main convective
layer or spontaneously develop due to double-diffusive instabilities, as the ones observed in Radko
[14] and Mirouh et al. [16]. We will discuss these issues in a companion paper.

We based our simulations on the pioneering salt-water experiments of Turner and Stommel [22],
reducing the fluid viscosity to lower the Prandtl number. The lowest value of Pr we consider, Pr =
0.1, is at the upper end of values expected to occur in planetary interiors, where Prandlt numbers
may extend down to ∼10−3. In stellar interiors, even lower values Pr ∼ 10−6 are expected. Our
results suggest that the entrainment rate may be near maximum already at Pr = 0.1, since γ ∼ 1,
implying that a large fraction of the available kinetic energy is taken up by entrainment. Recent
calculations of convective boundary mixing in stars also find entrainment rates that scale linearly
with the convective flux [41–43], or in terms of bulk Richardson number as ∼Ri−1 [34,44,45],
supporting the kind of entrainment relation we have used here. An interesting difference is that in
stars the composition difference is produced internally by nuclear burning and so the interface can
be a lot stiffer than in our problem, where cooling of the convection zone quickly drives the stability
of the interface Rρ to smaller values Rρ � 4.

Even though entrainment at low Pr involves a substantial fraction of the kinetic energy of convec-
tion, this energy is a small part of the overall energy budget [see Eqs. (34) and (35) and discussion

124501-19



J. R. FUENTES AND A. CUMMING

in Sec. VII]. The relevant energy is the kinetic energy because ultimately shear instabilities at the
interface mix the fluid; the fact that buoyancy drives convective motions means that the kinetic
energy is naturally of the same scale as the energy required to overcome the buoyancy of the stable
interface. This is important for core erosion in Jupiter: Moll et al. [40] used the buoyancy flux ratio
RF from their simulations to derive an expression for the core erosion rate that was substantially
smaller than the earlier suggestion based on the total thermal flux integrated over the core radius
[46]. The ratio between the new erosion rate and the old rate is exactly the ratio [Eq. (35)] between
the kinetic energy in convection and the thermal energy. The distinction between kinetic energy flux
and heat flux is an important one in Boussinesq convection with α � 1 (note that as in salty water
α is also �1 in Jupiter’s interior [47]). In stellar convection, the distinction is less important since
there the equation of state is closer to ideal gas with α ∼ 1; still the kinetic energy flux can be as
small as ∼0.01 of the total heat flux (see discussion in [34]).

We have made a number of approximations which should be relaxed in future work. Although
two-dimensional simulations have been successful at reproducing the classic laboratory experiments
by Turner [36] and Fernando [25] (e.g., see Appendix A of [28]), it would be interesting to compare
3D simulations with the same setup with our 2D results, particularly at low Pr. Differences between
3D and 2D may explain the factor of ≈2 lower values of RF measured at Pr = 0.1 by Moll et al. [40],
although their interface was between two convection zones rather than a convection zone and stable
layer. In addition, in a planetary context, rotation and compressibility are important (see [48] for a
study of layer formation with rotation at low Pr), and so simulations that go beyond the Boussinesq
approximation and include rotation would be of great interest.
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Correction: Equation (14) contained a minor typographical error and has been fixed.

Second Correction: Further changes were needed to be consistent with First Correction to Eq. (14):
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