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A remarkable variety of organisms and wet materials are able to endure temperatures
far below the freezing point of bulk water. Cryotolerance in biology is usually attributed to
“antifreeze” proteins, and yet massive supercooling (<—40°C) is also possible in porous
media containing only simple aqueous electrolytes. For concrete pavements, the common
wisdom is that freeze-thaw (FT) damage results from the expansion of water upon freezing,
but this cannot explain the high pressures (>10 MPa) required to damage concrete, the
observed correlation between pavement damage and deicing salts, or the FT damage of ce-
ment paste loaded with benzene (which contracts upon freezing). In this work, we propose
a different mechanism—nanofluidic salt trapping—which can explain the observations,
using simple mathematical models of dissolved ions confined between growing ice and
charged pore surfaces. When the transport time scale for ions through charged pore space
is prolonged, ice formation in confined pores causes enormous disjoining pressures via the
ions rejected from the ice core, until their removal by precipitation or surface adsorption
at lower temperatures releases the pressure and allows complete freezing. The theory is
able to predict the nonmonotonic salt-concentration dependence of FT damage in concrete
and provides some hint to better understand the origins of cryotolerance from a physical
chemistry perspective.
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FIG. 1. Physical picture of nanofluidic salt trapping. (a) In an open pore, where ions and water molecules
can easily exchange with a nearby reservoir, no significant pressure or freezing point depression is predicted.
(b) Nanoscale bottlenecks, especially in poorly connected porous networks, with charged surfaces can signif-
icantly hinder this exchange by size or charge exclusion of the co-ions, and counterions are forced to stay to
maintain charge neutrality. (c) Once ice nucleates, even an initially open pore will eventually trap a nanoscale
thin film of supercooled, concentrated electrolyte near the charged surface, until surface ion condensation or
solid salt precipitation occurs. (d) In biological cells, the charged cytoskeleton (indicated by fibers) could
enable such passive nanofluidic salt trapping, while further active control of water and ion flux across the cell
membrane is performed by ion channels and pumps. In all cases, nanofluidic salt trapping can lead to dramatic
supercooling and, once ice nucleates, severe damage to the solid matrix.

I. INTRODUCTION

The durability of wet porous materials against freeze-thaw (FT) damage is critical in many areas
of science and engineering. In biology, it is a matter of life and death. Living cells must somehow
maintain a liquid state within the cellular membrane during winter [1-3], while avoiding anoxia
due to external ice encasement [4]. Various antifreeze proteins have been identified in cryotolerant
animals, and cryoprotectant chemicals have been used for cryopreservation and in vitro fertilization
[2,5-7]. In addition, the complex thermodynamics of supercooled water could play a role. Even
in bulk water, deep supercooling can lead to multiple metastable disordered states [§—10]. Phase
transitions under nanoconfinement [11,12] can lead to exotic new phases, as well as modified ice
nucleation, in both experiments [13—15] and molecular simulations [16,17] of water in nanopores.

In engineering, the most familiar example of FT damage is the fracture of concrete pavements
during the winter [18], commonly attributed to the expansion of water transforming to ice within
the pores [19,20]. However, this contradicts the observation that FT damage occurs when cement
is loaded with benzene [21], a normal liquid that shrinks upon freezing. Recent experiments have
challenged the prevailing hypothesis that FT damage is directly caused by solid phase transfor-
mations, not only ice formation [18,19], but also salt crystallization [22,23]. Interestingly, there
is a strong correlation between FT damage and the use of deicing salts on concrete pavements
[24], which are often less durable than concrete structures without salt exposure in the same cold
climates. Moreover, FT damage only occurs when the water saturation level exceeds a critical value
[25]. Previous models of “frost heave” (see, e.g., Ref. [26]) achieved some successes in explaining
the deformation of saturated soils due to the dynamics of premelted liquid and its coupling with
the solid. However, the applicability of these theories to hardened cement is questionable, due to
its much higher stiffness compared to capillary stresses [27,28]. In summary, despite the societal
importance of FT damage in cement, a physics-based theory has not yet been developed that can
predict the enormous pressures required (>10 MPa), as well as all puzzling observations above.

In this article, we develop a predictive theory of freezing point depression and FT damage in
charged porous media, based on a simple new mechanism sketched in Fig. 1: nanofluidic salt
trapping. It is well known in colloid science that when two charged surfaces are separated by a
liquid electrolyte, the crowding of ions in solution results in large repulsive forces whenever the
electric double layers overlap, at the scale of the Debye screening length (1-100 nm in water).
This “disjoining pressure” is responsible for the stabilization of colloidal dispersions in aqueous
electrolytes [29], surface forces in clays and other porous media [30], and electrostatic properties
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of membranes [31]. Disjoining pressure has been successfully modeled by the Poisson-Boltzmann
(PB) mean-field theory for solutions of monovalent ions, and extensions are available to describe
correlation effects involving multivalent ions [32,33]. Here we treat the disjoining pressure between
the ice core and the charge pore surface with a mean-field approximation. Although the physics
of electrolyte freezing under confinement has been considered for nanoporous materials [34], we
propose that nanofluidic salt trapping is the key mechanism for large supercooling and FT damage
in cement and other charged nanoporous materials. This physical picture is consistent with all the
available experimental evidence for concrete.

A. Physical picture

Consider a heterogeneous porous material saturated with liquid and subjected to continuously
decreasing temperatures. As in most organisms and construction materials, suppose that the pore
surfaces and suspended materials are hydrophilic and charged [35-41], e.g., by the dissociation of
surface functional groups or the adsorption of charged species. The large capillary pores (>5 nm)
are typically also filled with water but can be replaced with other fluids such as benzene. However,
the small “gel” pores (~1-5 nm) are always filled with liquid water due to the strong surface charge
and hydrophilicity even in benzene-loaded cement samples. Importantly, the liquid must contain
dissolved salts, possibly at a low concentration, as well as excess counterions to screen the pore
surface charges and preserve overall electroneutrality. Ions in solution mediate surface forces [30],
which play a crucial role in the mechanical properties of concrete [32,33,42-45] and the function of
biological systems. In most cases, the ions are assumed to have negligible solubility in the frozen
solid, as is the case with pure ice.

Freezing begins in the larger “macropores” (>100 nm), where bulk water easily transforms to
ice, slightly below the thermodynamic melting point of the solution, which may be depressed from
that of the pure solvent by the dissolved salt and any antifreeze solutes. This bulk ice can form
by homogeneous nucleation, spinodal decomposition, or (most likely) heterogeneous nucleation on
impurities. Regardless of its origin, the advancing ice rejects ions, causing the salt concentration to
rise in the nearby, increasingly confined liquid electrolyte.

What happens next depends on the degree of supercooling, the surface charge, and, importantly,
the pore connectivity. As shown in Fig. 1(a), even after partial freezing, an individual pore may
remain open, allowing ions and water molecules to exchange freely with a reservoir of bulk solution
via a percolating liquid path to neighboring unfrozen pores or an external bath [46-50]. In this
scenario, the liquid electrolyte and any solid ice within the pore remain at quasiequilibrium with
the bulk reservoir at a constant chemical potential. The connected path to the reservoir may pass
through liquid-saturated pores or partially frozen pores with sufficiently thick liquid films to allow
unhindered transport.

As freezing proceeds, many ions and water molecules will inevitably be trapped out of global
equilibrium, although still at local quasiequilibrium within each nanoscale pore. The simplest case
is that of a pore connected to an external reservoir only via a bottleneck, sketched in Fig. 1(b).
Water molecules that are not closely associated with ions can still go through the bottleneck, with
a possibly different viscosity. The bottleneck may block solvated ions (with their solvation shells)
from passing by steric hindrance or charge exclusion. Even if some solvated ions can diffuse through
a given bottleneck, their electrokinetic transport rate may be too slow to allow many to escape prior
to more complete freezing [51-53]. Such slow ion transport may be enhanced by long, tortuous
pathways through a series of bottlenecks [54—57] and compounded by a large volume of micropores,
effectively cut off from the macropores with insufficient time for salt release, in materials of low
pore-space accessivity [50]. Even in relatively well-connected porous structures, nanofluidic salt
trapping can also result from bottlenecks created by the advancing ice, as shown in Fig. 1(c),
where the larger open pore on the right side freezes almost completely first. Due to the surface
hydrophilicity, a supercooled liquid film often remains between the pore surface and the ice core
prior to complete freezing [11,16,58], which is now the only pathway for water and ions in the
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smaller pore shown on the left side. As the temperature decreases further, ice formation starts in the
left pore, but transport of solvated ions through the thin liquid film is now slow, and the entropy of
these confined ions builds up a pressure. In biological cells, as shown in Fig. 1(d), electrolytes
are contained within the cell walls, and nanofluidic salt trapping is facilitated by the charged
cytoskeleton and abundant charged macromolecules (including cryoresistant proteins). Internal salt
concentrations are also actively maintained by ion channels and pumps in the cell membrane [59].

To quantitatively calculate the time scales of freezing and ion transport, one needs to solve a
proper electrokinetic model of the three-dimensional charged pore structure, with information on the
tortuosity and connectivity in addition to the pore sizes. Here we assume the asymptotic behavior
of a very long ion transport time scale vs a freezing time scale, which is hereafter referred to as
the limit of trapped ions. The phenomenon of ion trapping in charged nanochannels, while water
remains free to diffuse and flow to a nearby reservoir or larger pore, is well established in the field
of nanofluidics and forms the basis for various devices, such as electro-osmotic micropumps [60],
nanofluidic diodes and bipolar transistors [54,61,62], and nanofluidic ion separators [63].

The supercooling of confined liquids can be greatly enhanced by the salt rejected by freezing, as
the remaining solution becomes more concentrated inside a trapped freezing pore. High disjoining
pressures are then produced in the very concentrated liquid solution and transmitted to the solid
matrix, potentially causing damage.

At sufficiently low temperatures, salt-enhanced supercooling and freeze-thaw pressure are re-
lieved by the sudden precipitation of ions from the concentrated liquid, thus allowing complete
freezing of the pores. Ions may also be cleared by adsorption reactions on the pore surface, which
regulate and neutralize the surface charge.

II. THEORY

As mentioned above, under the assumption of separated time scales for ion transport and
freezing, we approximate the dynamic problem as a quasiequilibrium problem: in the limit of free
ions, ion and water transport is much faster than freezing; in the other limit of trapped ions, ion
transport is much slower than freezing. The solutions of both limits can be unified in the same
quasiequilibrium mean-field framework. Below we present details of these solutions.

The mean-field free energy for a liquid electrolyte and its frozen solid inside a charged pore can
be described by

Fot = Fliquid + Fsolid + Finterface

_ C = S 4 Tk
—/Vde(ux i 2||V¢||)+fv’dv[g<{c,}>+p¢ =

+ ) /‘S.dS(Vj +4;9). (1)

j=s,l,s1 %"

where the integrations are performed over volumes of solid (V;) and liquid (V;) with permittivities
€ and ¢;, respectively, and over surfaces of the solid-liquid interface (Sy;), the liquid-pore interface
(81) and the solid-pore interface (S;), with corresponding surface charge densities, gy, g;, and gj,
and interfacial tensions, vy, y;, and y,; us — g is the bulk chemical potential difference between
solid and liquid phases; — V¢ is the electric field; g({c;}) the nonelectric part of homogeneous liquid
electrolyte free energy; c; the concentration of ion species i having charge z;e; and p = ), zec; the
net charge density, assumed to be negligible in the solid phase. We focus on situations of complete
wetting by the liquid, y; — y; 3> y4, in which case we can neglect S; and assume that S; covers the
entire pore surface.
Setting 6 Fioi /8¢ = O for bulk and surface variations, we obtain Poisson’s equation,

aVi¢p=—p in V, V=0 in V, 2)
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and electrostatic boundary conditions,
qa = (6B —E)) -fys on  Sq, q=¢Ve-A; on §. 3)

The equilibrium state of liquid-solid coexistence is found by minimizing the total free energy
with respect to the position and shape of the solid-liquid interface, Sy;. Here, we consider two cases:
(i) an open pore where ions of species i exchange freely with a reservoir of concentration ¢{° and
(ii) a pore with trapped ions, whose total number is fixed by screening the pore surface charge
in the liquid, prior to freezing, by the mechanisms shown in Fig. 1. Importantly, we neglect the
effects of volume changes due to the water/ice transformation, under the assumption that liquid
water molecules (of size ~3 A) are mobile and small enough to escape the pore as freezing
progresses, regardless of whether solvated ions are trapped. In contrast to the common wisdom
about freeze-thaw damage in pavements, this picture must also hold for well-connected hierarchical
porous materials such as concrete.

The preceding thermodynamic framework for confined electrolyte phase transformations can
be extended in various ways, e.g., to account for ion-ion correlations [64] (especially involving
multivalent ions), finite ion sizes [65], and hydration surface forces [66,67], but here we focus
on the simplest PB mean-field theory [31], which suffices to predict the basic physics of freezing
point depression and material damage. The homogeneous free energy is then given by the ideal-gas
entropy for pointlike ions, g; = ¢;[In(v;c;) — 1], with v; the molecular volume, and the electrostatic
potential in the liquid electrolyte is then given by the PB equation:

—e Vi =p =Y zec, c=cF et )
i

Since we focus on highly confined electrolyte liquid films, we set the relative permittivity, €, = 10e,
to that of water near dielectric saturation at a high charge density [68,69].

To assess the prevalence of nanofluidic salt trapping within PB theory, the state of a bottleneck
shown in Fig. 1 can be estimated by comparing the double-layer thickness Ap (or hydrated ion size
a) inside with its radius R: if Ap ~ R (or a 2 R), then the double layer(s) spans across and the
bottleneck is approximated as “closed” to ions, since the freezing rate may exceed the ion transport
rate, given a high tortuousity of the pore network. If Ap < R (or a < R), then the channel may be
viewed as open to ion exchange. For an initial salt concentration of 0.1 M in a binary monovalent

electrolyte (with relative permittivity €, ~ 10), we find Ap ~ ,/ % ~ 0.5 nm.

A. Symmetric pores

In order to obtain analytical results, we consider isotropic electrolyte freezing in d dimensions,
where ice nucleates to form a plate (d = 1), cylinder (d = 2), or sphere (d = 3) of radius r within
a pore of the same symmetry, whose surface is located at x = R. The total pore volume is V (d)r9,
and S(d)r?~! is the surface area of the ice core (x < r), surrounded by aliquid electrolyte shell (r <
X < R). At thermodynamic equilibrium, the location r* of the solid-liquid interface is determined
by minimizing the total free energy with respect to r, § Fio /6r = 0,

r* = argmin, Fi (1), (5)

which yields the equilibrium ice volume fraction, x = (+*/R)?. Once r* is found, the mechanical
equilibrium at the solid-liquid interface gives the pressure of both phases, which is transmitted to

the pore boundary:
9 Fsoii 9 Fliqui
p— [ Zoolid — ( ZHiquid . (6)
or ), .« or ), .

The first equality describes the tendency to form more ice and hence expand its volume, while the
second equality shows the free energy cost to squeeze the electrolyte, resisting the growth of ice.
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For a symmetric pore, after freezing starts, the free energy of ice is given by

Fiee = (15 — p)V(d)r?, (7)

where (us — ;) is the Gibbs free energy change per volume for bulk water freezing, which can be
calculated [58] using the Gibbs-Helmholtz relation, as shown in Ref. [70]. In principle, the electric
field energy of the ice core (x < r) depends on its shape and the electrostatic boundary conditions
but vanishes here by symmetry. The interfacial energy is Fyurface = ¥5.5(d)r?~", which gives rise to
the Gibbs-Thomson [71] effect of freezing point depression for confined pure water. The free energy
of the electrolyte shell is given by

e gpRIR / " taxfattah + 00 - L1917 v
S(d) — q[ ; g 1 p 2 )

where the first term is the electrostatic energy of surface charges, and the integrand takes the form
given above for mean-field theory of pointlike ions. To summarize, we are solving a free boundary
problem where the liquid-ice boundary position r is unknown beforehand. We adopt a numerical
algorithm to search for the r that minimizes the total free energy at a given temperature 7', surface
charge density g, and initial salt concentration cy:

(1) Starting from r = 0, compute the total free energy F (0).

(2) Increment r by a small amount, dr, and compute the total free energy F (r).

When computing the total free energy at a given r value, we always solve the Poisson-Boltzmann
equation, (4), to obtain the electric potential profile ¢ and insert it into the integration of Eq. (8).

(3) After sweep r from O to the pore size R, find the minimum of F and the corresponding r
gives the position of the quasiequilibrium ice front.

B. Free ions

As freezing proceeds in an open pore, where all ions can escape to a reservoir, the surface charge
is eventually screened in a thin liquid film containing only counterions, which corresponds to one-
component plasma [72,73]. The PB equation for the one-component plasma can be integrated for
symmetric pore shapes [70] to obtain the mean electrostatic potential. For a slit pore (d = 1), we

obtain to first order
P Bl Rge?
Pl an [ JIEV_Rae”_ ) _ o )
2 2 AdmekgT

where Q is the latent heat of bulk water freezing, 7y the bulk freezing point, and AT =T — Ty
the freezing point depression. Note that for the one-component plasma limit, the total amount of
counterions does not depend on the pore size but is simply determined by the surface charge density.
Hence, the quasiequilibrium solution depends only on the distance between the ice front and the pore
surface, which we here denote L.

Inserting typical values, we can estimate the freezing point depression in the slit pore as AT ~
0.1 K and the pressure as P ~ 0.1 MPa. In this case, the freezing point is only depressed by
<1 K, and no significant pressure is generated, as shown in Fig. 2. As shown in Ref. [70], the
effects of ions in open cylindrical (d = 2) or spherical (d = 3) pores are even smaller than in a
slit pore (d = 1) and may often be neglected compared to the Gibbs-Thompson effect of interfacial
tension in such curved geometries. In general, if excess salt ions (and water molecules) are free
to escape the pore during freezing, then we expect very little freeze-thaw damage in a wet porous
material.

AT

5| ~ A ekpTyZ?
To

|P

g2
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FIG. 2. Electrolyte freezing and pressure generation in a parallel-slit pore (d = 1) with free ions exchang-
ing with a reservoir. There is no effects of interfacial tension. The freezing point depression, AT ~ 0.1 K, and
disjoining pressure, P ~ 0.1 MPa, are quite small, in the limit of one-component plasma of only counterions. In
this case the total number of counterions is determined by the surface charge density only and does not depend
on the pore size. And AT and P depend only on the distance between the ice front and the pore surface, which
is denoted by L = 5 nm here.

C. Trapped ions

The situation is completely different in the opposite limit, where all ions in the original liquid
binary electrolyte remain trapped within the pore during freezing. Total ion number conservation is
then imposed on the PB equations, er ¢;S(d)x?~'dx = N;, and significant freezing point depression
can be achieved. The mathematical details can be found in a companion paper [70], and here we
focus on explaining the physical predictions of the theory. To separate the effect of curvature, here
we focus on the slit symmetry (d = 1).

First, we consider a binary 1:1 liquid electrolyte freezing in a parallel-slit pore (d = 1). In this
case, there is no effect of solid-liquid interfacial tension, as the interface area does not change
as the ice front advances (zero curvature). As shown in Fig. 3, the freezing point is substantially
decreased by increasing the initial salt concentration ¢ in the confined liquid. After freezing starts
at temperature Tr, due to the resistance of the electrolyte, the equilibrium ice volume fraction x
monotonically increases as the temperature decreases. The freezing process continues until the
trapped ions are suddenly removed from the thin liquid film at the temperature of freezing finished
Tyr, when the salt solubility limit is reached, and x suddenly jumps to 1. The pore is completely
frozen now. Complete freezing may also occur if the trapped ions are adsorbed on the pore surface,
thereby neutralizing the surface charge (as shown below).

As shown in Fig. 4, significant disjoining pressures (~10 MPa for R = 5 nm) can be generated
by confined ions during the freezing process. The pressures at the freezing start temperature 7y and
the complete freezing temperature Ty are labeled Py and Py, respectively. The disjoining pressure
varies approximately linearly with the temperature between these values during the freezing process
in a slit pore.

D. Salt solubility limit and surface charge regulation

As the ice volume fraction increases, the salt concentration goes up. At some point the concen-
trated electrolyte will become saturated and the salt will crystallize. The volume of salt crystal
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FIG. 3. In contrast to Fig. 2, for a binary electrolyte with trapped ions, a freezing point depression as
large as —40 K can occur. The quasiequilibrium approximation gives a continuous freezing temperature range
marked by two T values: the temperature to start freezing, T¢, and that of complete freezing of the pore, Ty,
when ions are removed by precipitation.

precipitate is neglected. The solubility equilibrium for 1:1 electrolyte (M™ + B™) at saturation

is Kog = % = (%)2. Here cqo1iq is the concentration in the solid crystal phase, which is
typically regarded as a constant 1. Once c{", the saturated concentration of salt ions, is reached
the equilibrium position of the ice front becomes thermodynamically unstable and all the liquid
turns into solid phases of ice and salt crystal. In Fig. 3, all the curves at some point reach the
solubility limit and undergo sudden crystallization, when the ice volume fraction discontinuously
jumps from x < 1 to x = 1. The pressure at this point is denoted Py, in both Fig. 4 and Fig. 5. As
opposed to the concept of “crystallization pressure” [22,23], which has been proposed to account
for pressure and damage (under room temperature) in construction materials, here the pressure of

60 —g—71—T1 1 I R — 0

- d10

= 4
Q? 0 n Py E
2 o Py -202

20
-30
0 L1 -40

1 2 3 4
Co[]\/f]

FIG. 4. High disjoining pressures, up to ~10 MPa, occur during the freezing process, below the temper-
ature to start freezing, Ty, and above that of complete freezing of the pore, T;;. The range of pressure is
marked by Py and Py, correspondingly. Blue squares and red circles show numerical results, while solid lines
connecting them are a guide for the eyes.
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FIG. 5. (a) Typical experiment protocol reproduced from [24]. T; and Ty correspond to the temperature
where ice formation is initiated and the solubility limit reached, as indicated in Fig. 3. (b) The shaded area
shows the pressure range after freezing starts in a trapped pore. P; and Py correspond to the pressure where
ice formation is initiated and the solubility limit reached, as indicated in Fig. 4. The dashed line shows open
pores with free ions, which is close to the horizontal line of 0. Data points show the measured damage in
the cement paste FT experiment [24], a nonmonotonic function of the salt concentration. The tensile strength
of hardened cement paste is ~3 MPa. (a) cement FT experiment protocol and (b) predicted pressure ranges
compared with damage measurement.

the freezing pore is determined by thermodynamc equilibrium between freezing and precipitation,
thus salt crystallization is merely a consequence, instead of the cause, of pressure.

When the concentration of trapped ions is high enough, counterion recombination with the
surface charge becomes important. This effect can be included by a modified boundary condition
for the PB equations, where the surface charge is computed self-consistently based on a charge
regulation model [74] (see more details in [70]).
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III. APPLICATION TO CONCRETE

The predictions of this theory are semiquantitatively consistent with experimental observations
of freeze-thaw damage in cement. Below the critical degree of water saturation, plenty of large pores
remain open transport pathways for ions during freezing, hence no significant damage is observed
[25]. The volume expansion of water during freezing is irrelevant in this theory, so it can also explain
the qualitatively similar results observed in freeze-thaw experiments on cement samples loaded with
benzene, which shrinks upon freezing [21]. It is noted that the expansion reported in Ref. [21] is
much smaller than the typical expansion caused by water freezing, hence more detailed investigation
of benzene-loaded systems may help to clarify this scenario. The nonmonotonic dependence of the
damage on the NaCl concentration [24] can be explained by crossover from salt trapping to channel
opening though charge regulation, as shown in Fig. 5. A fully quantitative comparison requires
the plasticity and fracture mechanics of the solid matrix due to these local high pressures and
the connectivity of the pores, which is currently a missing link. Also, to quantify the transport
time scales for ions as freezing proceeds, pore connectivity is key information. Nevertheless,
to our knowledge, for the first time this mechanism shows the potential to encompass all these
observations. This work may complement engineering models for cement FT such as that in [75].

IV. DISCUSSION AND CONCLUSIONS

In this article, we present a theory of the freezing of electrolytes in charged porous media. The key
insight is that if ions become trapped by the advancing ice front, high disjoining pressures can cause
material damage, until further supercooling triggers salt precipitation and complete freezing. The
freezing point depression, ice volume fraction, and pressure are calculated using a simple mean-field
theory.

Many extensions of the theory could be considered in future work. Ion correlations, including
the strong-coupling limit [76-78], can be introduced via higher-order terms in Eq. (8), resulting in
modified PB equations [64]. At larger length scales, models of interfacial instabilities leading to
dendritic growth [79-81] could be extended to account for electrokinetic phenomena in charged
pores [82,83]. Here we always assume that the bulk phase of ice (the Ih phase) is formed, since the
freezing conditions discussed here (T > 200 K, P < 100 MPa, d < 100 nm) are not very extreme.
Exotic phases of ice (non-Ih phases) are known to dominate under more extreme conditions [9,84—
89]. Salt ions can also affect the surface tension of the ice-electrolyte interface, as well as other
aspects of nucleation under confinement, described in a companion paper [70]. The effect of salt on
the solution viscosity is neglected here but has been discussed in, e.g., [90,91].

As a first application to material durability, our theory is consistent with complex trends of freeze-
thaw damage in hardened cement paste. These predictions could influence industrial practices in
road deicing and pavement design. The theory may also provide some perspective on the physics
of cryotolerance and cryopreservation in biological materials, which abound in electrolyte-soaked
macromolecules, nanopores, and membranes.
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