
PHYSICAL REVIEW FLUIDS 5, 124002 (2020)

Conditions of inertial-viscous transition and related jetting
in large cavity collapse

D. Krishna Raja,1 E. J. Hopfinger,2 and S. P. Das 1,*

1Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
2LEGI, CNRS/UGA, 38058 Grenoble Cedex 9, France

(Received 12 June 2020; accepted 4 November 2020; published 3 December 2020)

In this paper, we present results on the effect of viscosity and surface tension on the
collapse of large cavities produced by overdriving Faraday waves in a cylindrical container.
The forcing amplitude of the container excitation has been increased at a rate such that the
last stable wave amplitude b was close to bs, referred to as the singular wave amplitude. The
collapse of the wave-depression cavity that follows b � bs gives rise to the largest surface
jet velocities; when b > bs, cavity collapse occurs with a bubble pinch-off. Viscosity has
been varied by two orders of magnitude using water and glycerine-water (GW) solutions.
Surface tension effects are highlighted by comparing with previously obtained results with
FC 72, a low-surface-tension and low-viscosity liquid. The main objective has been to
clarify how these fluid properties affect the cavity shape and cavity collapse dynamics. It
is shown that the initial cavity depth depends only weakly on fluid properties, whereas the
initial radius decreases with increasing viscosity and increases with decreasing surface
tension. The collapse of the cavity is initially inertial with minimum cavity radius rm

varying with time in the form rm ∼ τα , with α � 0.5, where τ = (t0 − t ), with t0 being
the time at singular collapse. In high-viscosity fluids, there is an inertial-viscous transition
to α = 1, whereas in water the transition is to α > 1/2 and is close to 2/3, indicating
an inertial-capillary transition. In low-viscosity and low-surface-tension fluid (FC 72),
collapse remains inertial up to singular collapse. The transitions are characterized by the
evolution of the relevant dimensionless flow parameters. It is shown that inertial-viscous
transition occurs when the capillary number, Ca = Urμ/σ , defined with the local radial
velocity, Ur , changes from Ca < 1 to Ca > 1, while the local Ohnesorge number is
large, Oh = μ/

√
ρσ rm � 0.1. The local Reynolds number at transition remains large and

decreases with decreasing τ to Re ∼ 1. The velocity of the jet, emerging from the free
surface following singular collapse, increases with viscosity, and reaches a maximum
in GW. Numerical simulations give an indication of the increase and localization of the
pressure that drives the liquid jet with a high-speed precursor air jet.

DOI: 10.1103/PhysRevFluids.5.124002

I. INTRODUCTION

Cavity formation and its subsequent collapse with related jetting is a frequently encountered
event. It is observed when objects enter or exit from a liquid surface [1,2] or when axisymmetric
wave-depression cavities collapse [3–7]. At a smaller scale, similar phenomena are observed in
surface bubble bursting [8–13]. In this case the collapse is surface tension driven with a viscous
cutoff at large Ohnesorge number, Ohc > 0.037 [11,12,14]. On the contrary, in the collapse of
wave-depression cavities or cavities formed by objects, of the size of order 1 cm or larger, inertia
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is dominant. Inertia-driven cavity collapse can lead to finite-time singularities and high-velocity
jets as has been demonstrated in experiments by Zeff et al. [4], Das and Hopfinger [5], and Raja
et al. [6,7], where the cavities have been created by overdriving a subharmonically forced standing
wave in a cylindrical container up to the desired last stable wave amplitude b that precedes collapse
of the following wave-depression cavity. When this wave amplitude is less than the critical wave
amplitude bs, referred to as singular wave amplitude [4], the domain remains simply connected
during cavity collapse and jet initiation. When the wave amplitude is driven to a height beyond
this singular wave amplitude, i.e., to b > bs, cavity pinch-off occurs so that the domain becomes
multiply connected. Such multiply connected topologies are also observed in free surface bubble
collapse [11,13], disk impact [1], or drop impact processes [15,16]. In large-viscosity fluids the
collapse process is regularized by damping of any perturbations, hence leading to greater critical
wave amplitudes [7], and following smaller cavity radii.

Longuet-Higgins and Oguz [17] derived a power-law dependence of cavity radius r on time of
the form r ∼ τα , where τ = (t0 − t ), with t0 being the time at singular collapse (jet initiation). The
exponent α, in their theory, is asymptotically limited to 2/3 with the lower value close to 0.5. The
exponent 2/3 is observed in bubble bursting [10,18], whereas in collapse of a giant bubble, created
by a moving disk [1], α approaches 1/2 with increasing disk Froude number. The radial collapse of
cavities generated by drop impact on liquid pool also follows a similar power law with an exponent
α ≈ 1/2 [16]. During wave-depression cavity collapse in viscous fluids, Raja et al. [6] showed
that the minimum cavity radius decreases with time with an exponent α ≈ 0.5 with a transition
to a larger exponent, when the cavity radius approaches the singular radius at time t0. In fluids of
high viscosity the exponent α increases to α � 1 with the inertial-viscous transition taking place
at Ca = Urμ/σ ≈ 1 [7]. Similarly, in numerical simulations of the contraction of a small hole in a
fluid sheet, Lu and Corvalan [19] showed an inertial-viscous transition that occurs at a local capillary
number Ca ∼ 1. An inverse, viscous-inertial transition, from α = 1 to α = 0.5, has been identified
by Burton and Taborek [20] in the coalescence of two, initially circular, lenses.

Concerning jetting, in the experiments by Raja et al. [6] jet velocities as high as 50 m/s have been
measured in water with 1% detergent added. Measured jet velocities have also been shown to agree
well with a finite-time singularity scaling as first proposed by Zeff et al. [4]. In distilled water, Das
and Hopfinger [5] measured jet velocities that are less than in water with 1% detergent, although the
fluid properties are practically the same. In FC 72 (perfluorohexane, C6F14) which is an electronic
coolant liquid generally used for low-temperature heat transfer applications, considerably lower jet
velocities have been observed, with the jet being irregular [5]. In high-viscosity fluids, jet velocities
of 100 m/s and more have been measured by Raja et al. [7] that are associated with cusp formation
at singular collapse.

There is an incentive for clarifications of the effects of viscosity and also surface tension on
inertial-viscous transition and/or inertial-capillary transition as well as on cavity shapes. In the
present experiments, fluids of widely different viscosity are considered. Surface tension effects
are discussed with respect to results previously obtained by Das and Hopfinger [5] with FC 72.
Cavity collapse and inertial-viscous or inertial-capillary transitions are characterized by determining
the different dimensionless flow parameters governing collapse. The present experiments focus on
conditions where the subharmonic forcing is chosen such that the last stable wave amplitude b � bs

at which the jet velocities are largest. In Sec. II the experimental methods and the conditions are
discussed. The results are presented in Sec. III, where the cavity shapes are first discussed, followed
by the collapse dynamics and effect of viscosity and surface tension on jet velocity. The conclusions
are presented in Sec. IV.

II. EXPERIMENTAL METHODS AND CONDITIONS

The experiments have been conducted in a container similar to that used by Raja et al. [6] with
fluids at room temperature, generally around 25◦C and widely different viscosities. A schematic
diagram of the experimental set-up is shown in Fig. 1. A circular, cylindrical container, made
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FIG. 1. Experimental setup consisting of function generator, electrodynamic shaker, and the imaging
facility. The imaging facility includes a light source, light diffuser, and a high-speed camera. A function
generator is used to control the shaker and displacement sensor to measure the shaker response.

of Plexiglas, of diameter 2R = 10 ± 0.04 and 10 cm deep is mounted on a vertically oscillating
vibrator APS 400 ELECTRO-SEIS of peak force 440 N. After calibration, the vibration amplitude
was controlled within 0.30% of the nominal value and the frequency within 0.02%. Since the forcing
is normal to the fluid surface, the waves are subharmonically excited. The fluid depth to radius ratio
was d/R = 1.2, which is sufficient to satisfy deep-water conditions for the axisymmetric mode [21]
with tanh(k01d ) ≈ 1, where k01 is the wave number of the lowest axisymmetric mode. The container
acceleration in present experiments is given by a(t ) = Aω2

f sin(ω f t ), with a � 6 m/s2, where
ω f is the forcing frequency, equal to twice the wave frequency ω, and A the forcing amplitude.
Measurements were made by visualizations and image analysis. A high-speed camera with an
acquisition speed of 2000–8000 frames per second was used.

The experiments are performed in a controlled environment to limit surface contamination from
the atmosphere. The container used for experiments is cleaned and dried properly. Also, distilled
water is used for the experiments and for preparing the different glycerin-water solutions. The
surface tension is measured in the laboratory using tensiometer with collected samples of the
working fluid. The properties of the fluids used, water and glycerin-water solutions (GW solutions),
are given in Table I, together with the stability threshold forcing amplitude Ac/R. The corresponding
frequency is ω0 = ω01(1 − δ), where δ is the damping coefficient [21], with natural frequency ω01

given by the dispersion relation [22],

ω2
mn = gkmn

(
1 + k2

mnσ

gρ

)
tanh(kmnd ), (1)

where the wave mode (m, n) expresses m nodal diameters and n nodal circles with m = 0, 1, . . .

and n = 1, 2, . . . . For wave growth leading to wave breaking, it is necessary to overdrive the
wave motion with an amplitude A > Ac, where Ac is the forcing amplitude stability threshold.
Experiments have been conducted at ω/ω0 = 0.995 by increasing A/R at a rate such that the last
stable wave amplitude b � bs, the singular wave amplitude.

Figure 2 shows the definitions of the variables used, with b the last stable wave amplitude,
Zc the corresponding wave-depression cavity depth, and its radius ri. The initial cavity shape is
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TABLE I. Fluid properties at 25◦C and experimental conditions. The suffix numbers of GW refer to the
percentage by volume of glycerine in water. Ac is the stability threshold forcing amplitude and A the forcing
amplitude that gives final wave amplitude b close to bs, the singular wave amplitude.

ρ ν σ Ac/R A/R
Fluid (g/cm3) (cm2/s) (dyne/cm) (ω/ω0 = 1) (ω/ω0 = 0.995) bs/R

Water (distilled) 1.000 0.010 72.0 0.0056 0.020 0.936
GW 60 1.160 0.090 67.0 0.0062 0.022 0.990
GW 80 1.205 0.500 64.0 0.0130 0.027 1.002
GW 90 1.230 2.160 63.4 0.0215 0.032 1.027
FC 72a 1.680 0.004 11.0 0.0010 0.010 0.880

aConditions for FC 72 (perfluorohexane, C6F14), which is an electronic coolant liquid of low surface tension
and low viscosity taken from Das and Hopfinger [5].

characterized by radius ri and Zc, the wave-depression cavity depth, when cavity collapse starts
(beginning of radial shrinkage of the cavity). The final cavity shape (radius r0 and depth Z0) is the
shape of cavity recorded one frame before jet formation, i.e., rapid vertical shrinkage of the cavity.
The changes with time τ of cavity depth and radius are denoted by Z and rm, where τ = (t0 − t )
with t0 the time when the cavity reaches the singular radius r0 with depth Z0. The radius of the jet
r j is measured when the jet emerges above the free surface.

III. RESULTS AND DISCUSSION

A. Cavity shapes

The initial cavity depths Zc and radius ri are presented as a function of dimensionless viscosity,
ν/

√
R3g = 1/ReI in Fig. 3, where ReI = (

√
R3g/ν) is a Reynolds number defined with the inertial

velocity scale
√

Rg. Results obtained with FC 72, taken from Das and Hopfinger [5], are included
for comparison. This is of interest because its kinematic surface tension σ/ρ is 10 times less than
that of water while the kinematic viscosity is of the same order. It is seen from Fig. 3 that the

FIG. 2. Definitions of Zc, ri, r0, r j , and Z0, where Zc is the depth and ri the corresponding radius of the
full-grown wave-depression cavity formed by the last stable wave amplitude b. rm and Z are the minimum
radius and depth at any instant τ . r j is the radius of the jet when it emerges at the free surface. The dotted
horizontal line at z = 0 represents the unperturbed free surface.
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FIG. 3. Initial radius ri/R (the left y axis) and depth Zc/R (right y axis) of cavity as a function of
dimensionless viscosity ν/

√
R3g. The filled symbols correspond to the initial cavity radius (left y axis, ←−)

and the open symbols indicate the depth, (right y axis −→). The solid line indicates ri/R ∝ ν/
√

R3g when
surface tension (σ ) is nearly constant.

initial cavity radius decreases by about 30% when the viscosity is increased by a factor of 102

while the cavity depth increases by less than 10%. In FC 72 that has somewhat lower viscosity
than water but much lower kinematic surface tension σ/ρ, the cavity depth is slightly less but the
cavity radius is noticeably larger. The last stable wave amplitude is also lower and is more irregular
(see Das and Hopfinger [5]) because inertia is largely dominating over surface-tension and viscosity
effects.

In Fig. 4, images of the different cavity shapes in water [Fig. 4(a)], GW 80 [Fig. 4(b)], and
GW 90 [Fig. 4(c)] are presented, with the left column showing the initial cavity shapes, ri and
Zc, and the middle column the singular states, r0 and Z0. As expected, the cavity boundaries are
smoother in GW than in water, especially at the singular state as is clearly seen in the enlarged
view of the cavity tip region (right column of Fig. 4). In water the cavity boundary has an
irregular shape with perturbations in the form of capillary waves which results in rupture at a
larger r0.

The wavelength that is damped by viscosity can be evaluated from linear theory [23] of internal
damping rate κ = 2νk2, where k is the wave number. Krishnan et al. [11] showed that this damping
rate is a good approximation for damping of small amplitude capillary waves on the cavity boundary
of bubble bursting in water as well as in glycerine water. Raja et al. [6] considered a decay rate
κ = Cνk2 showing that wavelengths

λ

R
� 3.98

√
C

ReI
(2)

will be damped, where C � 2 has been experimentally determined for capillary waves in water. With
C = 2 [6,24], capillary waves of wavelength of about the cavity depth are damped in a container
2R = 10 cm and fluid viscosity ν = 1 cm2/s. The wavelengths that are damped are indicated in
Fig. 5 for water [Fig. 5(a)], GW 80 [Fig. 5(b)], and GW 90 [Fig. 5(c)]. In GW 90, wavelength
of the order of the cavity depth are damped indicating a smooth boundary as shown in Fig. 5(c),
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FIG. 4. Stages of cavity collapse (from left to right): Full-grown cavity radius, ri, final cavity radius, r0,
and enlarged views at final collapse. (a) Water, bs/R = 0.936, λ/R = 0.03; (b) GW 80, bs/R = 1.002, λ/R =
0.213; (c) GW 90, bs/R = 1.027 with λ/R = 0.44.

whereas in water as shown in Fig. 5(a), perturbations of less than the cavity radius are damped [see
also Fig. 4(a), right column] and in GW 80 wavelengths λ/R ≈ 0.25 are damped. The calculated
wavelengths are indicated by vertical lines in Fig. 5.

FIG. 5. Cavity shapes at τ = 1 ms (a) water, (b) GW 80, and (c) GW 90. The calculated wavelengths λ are
indicated by the vertical lines. The dotted horizontal lines in (a) shows the measured wavelength.
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FIG. 6. Minimum cavity radius rm/R as a function of dimensionless time τ ∗ = τ/
√

R/g. The symbols �,
�, and ◦ represent water, GW 80, and GW 90, respectively. FC 72 (�) data have been taken from Das and
Hopfinger [5]. The solid and dashed lines correspond to rm/R ∝ τ ∗1/2 and rm/R ∝ τ ∗, respectively.

B. Cavity collapse dynamics

The rate of change of cavity radius is shown in Fig. 6 where the cavity radius rm/R is plotted as a
function of the dimensionless time τ ∗ = τ/

√
R/g for the fluids with widely varying viscosity. Water

and GW 80 exhibit at the beginning of collapse a clear inertial regime of rm/R ∝ τ ∗α

, with α � 1/2.
As the singular collapse is approached, the exponent in GW 80 changes to α � 1, characteristic
of a viscous regime. In water, no viscous regime is approached with the final slope being closer
to α � 2/3 indicating a capillary regime. Experiments in water with added detergent seemed to
suggest an inertial-viscous transition [6]. This misinterpretation was due to the low camera speed
available for these experiments. The intermediate regime spans half a decade in τ ∗, which is about
one-third of the total time span of cavity collapse. The time dependency of the cavity radius in GW
90 is mostly in an intermediate regime of α > 1/2, indicating that collapse is affected by viscosity
from the beginning, with a change to a clear viscous regime α � 1 near the singular collapse. In FC
72, the available data indicates an inertial collapse over the whole time span. There exists no data
very close to the singular radius, but since the kinematic viscosity and the kinematic surface tension
are much lower than in water, no viscous or capillary effects are expected.

Assuming the cavity collapse to be spherically symmetric of radius rm close to the cavity base
(during collapse, the minimum radius location moves toward the cavity tip) and using the analytical
approximate solution of Duclaux et al. [25], the equation of collapse can be written in dimensionless
form as:

d2r∗2
m

dτ ∗2
+

(
dr∗

m

dτ ∗

)2

= −2Z∗ + 1

BoR r∗
m

+ 2

ReI

1

r∗
m

dr∗
m

dτ ∗ , (3)

where r∗
m = rm/R and τ ∗ = τ/

√
R/g with length scale R and the characteristic time

√
R/g. The

cavity is initially at rest and driven radially by the hydrostatic pressure. The first term in left-hand
side is balanced by the first term of right-hand side. The last two terms on the right-hand side
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FIG. 7. Cavity shapes at times τ ∗ = 0.0056, 0.028, 0.084, and 0.14. (a) Water, (b) GW 80, and (c) GW
90. The horizontal solid and dotted lines indicate respectively z = Zc and final cavity depth z = Z0 in water.

of Eq. (3) are at least two orders of magnitude less than Z∗ because BoR = ρgR2/σ and ReI =
R
√

Rg/ν are large and r∗
m is finite. This is similar to the equation (4.10) of Duclaux et al. [25] with

solution r∗
m ∼ (4r2

i gZc)1/4τ ∗1/2. In the late stages of collapse, viscous and capillary forces become
important. It is seen from experiments that the velocity becomes nearly constant close to collapse;
hence, the first term of left-hand side can be neglected. For low-viscosity fluids like water, the
inertia is then balanced by the capillary force, which gives an inertial-capillary transition with a
crossover from τ ∗1/2 to τ ∗2/3. In fluids of high viscosity like GW 80, when rm → 0, the viscous
term is equal or larger than the capillary term which gives r∗

m � τ ∗/CaR, where CaR = μ
√

Rg/σ . In
order to highlight the inertial-viscous transition with respect to inertial-capillary transition, cavity
contours at different times are presented in Fig. 7 for water and GW. In water [Fig. 7(a)], the cavity
boundary has a pronounced kink at the curvature change which persists up to the singular radius.
This is indicative of dominant capillary forces so that no inertial-viscous transition is expected. In
GW the cavity boundary is more cylindrical, and the cavity base has practically no curvature; the
lower part of the cavity looks more like a cylindrical tube (see also Fig. 5). The radial velocity of
cavity collapse is shown in Fig. 8 as a function of τ ∗. In the beginning, the radial velocity is small
(the radial velocity is zero just before Zc is reached) and then the cavity boundary of radius rm is
accelerated inward by the base pressure ρgZm. Here Zm is the depth corresponding to rm, the location
of which depends on the cavity shape. It moves toward the cavity tip during collapse. The inward

FIG. 8. Measured radial velocity Ur/
√

Rg as a function of time. The symbols �, �, and ◦ represent water,
GW 80, and GW 90, respectively. The dashed line is −1/2 slope corresponding to rm ∼ τ 1/2.
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FIG. 9. (a) Reynolds number Re = Urrm/ν as a function of dimensionless time τ/
√

Rg, with the dashed
lines representing the expected decrease of Re with decreasing τ/

√
Rg. (b) Weber number We = ρU 2

r rm/σ and
Bond number Bo = ρgr2

m/σ as a function of dimensionless time. The symbols ◦, ∇, and � are, respectively,
GW 90, GW 80, and water. The open symbols correspond to We (left y axis ←−) and filled symbols indicate
Bo (right y axis −→).

velocity increases with decreasing radius and is larger in GW as the singular collapse is approached,
in accordance with the rate of radial cavity change shown in Fig. 6.

In Fig. 9, local Reynolds [Fig. 9(a)] and Weber numbers [Fig. 9(b)], calculated with Ur and rm, are
plotted as a function of τ ∗. As seen in Fig. 9(a), Re = Ur rm/ν in water is very large and is practically
constant. In GW 80, Re � 100 at transition and decreases toward singular collapse to a value of
Re ≈ 50 at τ ∗ ≈ 5 × 10−3. The experimental data points are limited by the frame rate. The value of
the Reynolds number at singular collapse can be evaluated by extrapolating rm and Ur to τ ∗ → 0.
Figure 6 (dashed line) indicates that in the viscous regime rm/R � 3.1 τ ∗ and Ur/

√
gR � 3.1, (see

Fig. 8). Hence, in GW 80 Re = Urrm/ν � 9.61
√

gR3τ ∗/ν � 1 when τ ∗ = 1.5 × 10−4 and Re  1
when τ ∗ → 0. A similar extrapolation of water data gives Re ∼ 103. In GW 90, Re ≈ 10 at τ ∗ > 0,
indicating that viscous effects cannot be neglected from the beginning of collapse. The importance
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FIG. 10. Log-log plot of Oh and of Ca as a function of τ ∗. Oh is indicated by open symbols with values on
the left y axis ←− for (�) water, (∇) GW 80, and (◦) GW 90. The values of the corresponding capillary number
Ca (filled symbols) are given on the right y axis −→. The horizontal and vertical dashed lines respectively
indicate Ca = 1 and τ ∗ ≈ 0.03.

of capillary effects with respect to inertia is expressed by the Weber number We = ρU 2
r rm/σ shown

in Fig. 9(b). It increases with decreasing τ ∗ to a maximum 102 in GW and to about 50 in water. In
FC 72 the Weber number is of order 103. The very low values of the Weber number, We < 10, at the
beginning of collapse would suggest that surface-tension forces are important. However, initially,
the Bond number ρgr2

m/σ also plotted in Fig. 9(b) is large, indicating that acceleration is dominant.
Most informative about respective viscous and capillary effects are the capillary number, Ca =
μUr/σ (Ca = We/Re), and Oh = μ/

√
ρσ rm (Oh = √

We/Re), shown in Fig. 10 as a function of
τ ∗. During collapse Ca increases. In GW 80 its value at inertial-viscous transition is Ca � 1 at
τ ∗ ≈ 0.03, indicated by dashed lines in Fig. 10, which corresponds to the beginning of transition
from inertial regime (see Fig. 6). The capillary number reaches a value Ca � 2.4 at τ ∗ = 0.0056
increasing further as singular collapse is approached. The corresponding Ohnesorge number is Oh ≈
0.12 > Ohc at transition, with Ohc ≈ 0.037 [11,14]. In GW 90, capillary number is always greater
than 1 and the inertial regime is nearly nonexistent (see Fig. 6). In water, Ca  1 and Oh  Ohc

indicate that the surface tension dominates over viscosity so that the transition should be inertial-
capillary. In FC 72, the Oh is close to that of water, and Ca is 5 times larger than in water but
still Ca  1. This, in addition to large We and Re numbers, indicates that collapse is inertial up to
singular collapse at τ ∗ = 0.

C. Effect of viscosity and surface tension on jet velocity

The velocity of the jet that emerges at the free surface following singular cavity collapse is shown
in Fig. 11 as a function of dimensionless viscosity. The jet velocity is highest in GW 80, reaching
Uj ≈ 120 m/s, with local capillary number Ca > 1 at singular collapse and with the shape of the
cavity base forming a cusp [7]. This occurs at a dimensionless viscosity ν/

√
R3g ≈ 0.0014. The

emerging jet is very thin (2r j ≈ 0.2 mm) and straight. At larger viscosity the emerging jet is similar
but of lesser velocity (Uj ≈ 87 m/s) because there is viscous damping during jet emergence. The
jet velocity would further decrease if the viscosity is increased. A decrease in viscosity also results
in a lesser jet velocity, which is demonstrated by the experiments in GW 60 (Uj ≈ 63 m/s). In
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FIG. 11. Log-log plot of dimensionless jet velocity Uj/
√

gR, filled symbols with values on left y axis
(←−) and of last stable wave amplitude, b/R, open symbols (right y axis −→) as a function of dimensionless
viscosity ν/

√
R3g. Insets: (a) Jet in FC 72, jet radius r j/R ≈ 5.4 × 10−2; (b) water, r j/R ≈ 10−2; (c) GW 80,

r j/R ≈ 2 × 10−3; and (d) GW 90, r j/R ≈ 2 × 10−3. Note that the jet images are at different time after singular
collapse occurring at τ ∗ = 0. The horizontal and vertical bars in the insets represent 1 cm.

water the singular cavity shape is parabolic, and hence jet velocity is much less with a jet diameter
2r j ∼ 1 mm and the jet is not straight and breaks up rapidly into drops (see inset image). The jet can
be straight in water but this is not generally the case. In FC 72 the jet velocity is considerably lower,
which is a combined effect of very low kinematic viscosity and low kinematic surface tension. It is
also seen in inset images that the jet diameter in FC 72, as it emerges at the free surface, is large
(2r j ≈ 5.4 mm), is very irregular, and forms sheets and spray.

The last stable wave amplitude shown in Fig. 11 depends on the way the wave motion is
overdriven, i.e., on forcing amplitude that depends on fluid properties. It increases with increasing
viscosity and is largest at the largest viscosity which would suggest a larger jet velocity. However,
as discussed above and seen in Fig. 11, the jet velocity decreases because of viscous damping of the
jet. There is thus an optimal viscosity for highest jet velocity.

IV. CONCLUSION

Experiments, conducted with large cavities produced by overdriving Faraday waves in fluids of
kinematic viscosity ν ranging from ν = 0.004 cm2/s to 2 cm2/s in a cylindrical container demon-
strate three distinct collapse processes: (i) In high-viscosity fluids, such as GW 80 (ν = 0.50 cm2/s),
an inertial-viscous transition takes place with a time dependency of cavity radius rm ∼ τα , with
α � 0.5 in the inertial regime, increasing to α � 1 toward singular collapse, indicative of a viscous
regime, where τ = (t0 − t ), with t0 being the time at singular collapse. This inertial-viscous transi-
tion occurs when the capillary number Ca = Urμ/σ , based on the local radial velocity Ur , changes
from Ca < 1 to Ca > 1, while the local Ohnesorge number Oh = μ/

√
ρσ rm ≈ 0.12 > Ohc with

Ohc ≈ 0.037 [11]. The local Reynolds number at transition is Re = Urrm/ν � 100 decreasing to
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Re < 1 at singular collapse; (ii) in low-viscosity fluids, here water, local Ca  1, Oh  Ohc, and
Re � 100, while the local Weber number We < 100, indicating increasing capillary effects with
possible inertial-capillary transition; (iii) in fluids of low viscosity with, in addition, low kinematic
surface tension such as FC 72 (σ = 11 dyne/cm and ν = 0.00406 cm2/s), collapse remains inertial
up to singular collapse because the local Ca  1, Oh  Ohc, and Re � 100, while the local Weber
number is We ∼ 103. Concerning the initial cavity shape, the cavity depth is only weakly dependent
on fluid properties while the initial radius ri increases with increasing surface tension and decreases
with increasing viscosity. In particular, viscosity prevents perturbations in the form of capillary
waves so that the cavity boundary is smooth and the cavity is axisymmetric.

The velocity of the jet that is emerging from the free surface following singular collapse increases
with viscosity and reaches Uj ≈ 120 m/s, when there is a viscous transition, as observed in GW 80.
These high velocities are the result of cusp formation as has been shown by Raja et al. [7]. In this
case, Ca > 1, Oh > Ohc, and Re →∼ 1 as τ ∗ → 0. The emerging jet is very thin and straight.
When the viscosity is larger such that the local capillary number is always Ca > 1, as in GW 90,
viscosity has a damping effect and the jet velocity is less even though the last stable wave amplitude
and following initial cavity depth are larger. In water, the jet velocity is much less, and the jet may
not be straight and breaks up rapidly into droplets. In FC 72 the jet velocity is considerably lower
and the jet is irregular, which is a combined effect of very low kinematic viscosity and low kinematic
surface tension.

Numerical simulations conducted for conditions of GW 90, presented in the Appendix, are
qualitative but demonstrate the intensity and localization of the pressure increase that drives the
jet. These simulations also include the air jet, not seen in experiments, coming out from the cavity
that is largest just before liquid jet formation. The interest of these simulations is to show the large
pressure increase at the cavity tip.
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APPENDIX: NUMERICAL SIMULATIONS OF CAVITY COLLAPSE

1. Numerical methodology

The numerical simulations are carried out with the aim to understand the pressure build-up and
its location as well as the velocity field during cavity collapse. The simulations are performed with
widely used software Ansys Fluent, which performs reasonably well in the case of free surface
problems. The VOF method implemented in Fluent (explicit formulation with Geo reconstruct
scheme) is able to track the sharp liquid-gas interface quite accurately. The computational domain
corresponding to the experiments, is a cylindrical container of radius 5 cm and height 20 cm (10 cm
in experiments). Since the cavity collapse and jet formation is axisymmetric for (0,1) mode, a
two-dimensional axisymmetric domain is used for representing the cavity. Grid is generated in
the domain using ICEM CFD with refined mesh sizes near the axis and the interface. Boundary
conditions are no-slip on the side and the bottom walls, and a pressure boundary condition at the
open top of the container. The container is excited by implementing a user-defined function that
imposes the sinusoidal motion. The solution is initialized with an unperturbed free surface formed
in GW 90 and air. GW 90 is chosen for the calculations because of its larger viscosity.

The time steps are chosen to limit the Courant number far below 1. The jetting and the cavity
dynamics have been simulated with very small time steps of the order 10−6 to capture the transients
as accurate as possible. Surface tension effects are included using the continuum surface force
model, which considers the surface tension as a volume force at the interface.
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FIG. 12. The contours of dimensionless axial velocity, U/
√

gR (left column) and dimensionless pressure
P/(ρgR) (right column) for collapsing cavity in GW 90, (a) τ = 0.5 ms, (b) at collapse (τ = 0), and
(c) 0.5 ms after collapse. The velocity U gives the liquid jet velocity Uj ≈ 15 m/s as well as the air
velocity, Ua ≈ 90 m/s.

2. Velocity field and pressure build-up

As in the experiments, the forcing frequency is fixed at ω/ω0 = 0.995, and the forcing amplitude
is increased until wave breaking followed by wave-depression cavity collapse is observed. Contours
of vertical velocity (left panel) and pressure (right panel) are shown at three different times in
Fig. 12. Figure 12(a) represents 0.5 ms before singularity and is comparable with Fig. 5(c).
Figure 12(b) corresponds to singular collapse τ = 0, where a singularity is formed at the cavity
tip with a high-pressure build-up at the tip, reaching P ≈ 500ρgZc. In the corresponding left panel
[Fig. 12(b)], an air jet of velocity 130

√
Rg m/s is formed. This air jet is caused by the pressure

build-up at the cavity tip and is not visible in experiments. Such high-speed air jets are also observed
in collapse of impact cavities both experimentally (smoke particle imaging) and numerically [26].
The liquid jet velocity in Fig. 12(c) is Uj ≈ 15 m/s. This value is much less than in experiments (see
Fig. 11). The reason is that it was not possible to resolve the singular point properly at τ = 0 because
of the extremely small time steps and spatial accuracy needed and of possible numerical viscosity.
Nevertheless, it shows qualitatively jet initiation and maximum pressure location. To obtain a jet
velocity close to the experimental value, the local pressure impulse would have to be of the order of
104ρgZc.
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