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Electro-osmotic properties of porous permeable films
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Permeable porous coatings on a flat solid support significantly impact its electrostatic
and electrokinetic properties. Existing work has employed the mean-field Poisson-
Boltzmann theory by focusing on simplified cases, such as weakly charged and/or thick
porous films compared to the extension of an electrostatic diffuse layer. In this paper, we
obtain a closed-form analytical solution for electrostatic potential profiles by lifting the
assumptions of both a small volume charge density and a thick film. Our analysis provides
a framework for interpreting and predicting superproperties specific to porous films of
an arbitrary thickness, from an enhanced ion absorption to a consequent amplification
of electro-osmotic flows due to emergence of slip velocity at an interface with an outer
electrolyte leading to a large zeta potential. The latter can be tuned by varying the amount
of added salt and remains finite at even high concentrations. Our theory is valid for systems
obeying the nonlinear Poisson-Boltzmann equation and the results are relevant for hydrogel
coatings, porous carbon and silica, polyelectrolyte brushes, and more.

DOI: 10.1103/PhysRevFluids.5.123701

I. INTRODUCTION

Charged porous materials that are permeable to water and ions, such as polyelectrolyte networks,
ion-exchange resins, silica gels, porous membranes, and electrodes, have found use in a large
body of applications including water desalination [1], tissue engineering [2,3], and electrochemical
systems [4]. Thanks to a recently discovered extremely strong electrokinetic flow near porous
surfaces [5], new opportunities in microfluidics and advanced colloid technologies are emerging.
Porous films on a variety of supports are similarly capable of providing such properties as improved
transport and storage capacities for ions that they did not have when impermeable. However,
the quantitative understanding of novel equilibrium and transport properties, which could not be
achieved without porosity, is still challenging.

Considerable progress has been made over the last decades in understanding the equilibrium
properties of porous surfaces in electrolyte solutions. Analytic solutions based on a linearized
Poisson-Boltzmann theory are known [6–9], but these results do not apply to highly charged
coatings, where nonlinear electrostatic effects could become significant. The nonlinear electrostatic
problem has been treated using numeric and semianalytic approaches [7,10,11], and some simple
analytic expressions for the static surface potential �s have been derived for thick coatings compared
to the Debye screening length, λD, which is a measure of the thickness of the electrostatic diffuse
layer [7,12]. Nevertheless, approaches to calculate �s analytically are sill lacking and general
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FIG. 1. Porous film of thickness H in contact with an electrolyte solution. Anions and cations are denoted
with bright and dark circles. An outer electrostatic diffuse layer of a thickness of the order of λD ≡ κ−1 is
formed in the vicinity of the coating. A tangential electric field, E , leads to a solvent flow of velocity v (shown
by right arrows).

principles to control it have not yet been established in the case of strongly charged coatings of
a thickness smaller or comparable to λD.

The electrokinetic properties of porous surfaces in electrolyte solutions are relatively less under-
stood, although there is some literature describing attempts to provide a theory of electro-osmosis
near porous surfaces. It has been found that �s of porous surfaces does not define unambiguously
the electro-osmotic flow properties [6], and that bulk velocity is controlled, besides �s, by the
Brinkman and inner Debye screening lengths [8]. These authors, however, failed to propose a
physical interpretation of their results, which generally indicate that porous surfaces can amplify
electro-osmotic pumping at micron scales, where pressure-driven flows are suppressed by viscosity.
These theories and subsequent attempts at their improvement [10,13–15] are often invoked in the
interpretation of the electro-osmotic data, but their relation to electrokinetic (zeta) potential, Z ,
which is the measure of electrokinetic mobility, has remained somewhat obscure. Some authors
concluded that it “loses its significance” [8] or “is undefined and thus nonapplicable” [14], while
others reported that Z typically exceeds �s [11,16]. Recent analysis has included a more systematic
treatment of the zeta potential of the porous coatings and proposed a mechanism of its enhancement,
but is suitable for thick films only [17]. Thus, crucial aspects of the electrokinetics near highly
charged porous films of an arbitrary thickness have been given insufficient attention so far, so they
still remain poorly understood.

In this paper, we present a solution of the nonlinear Poisson-Boltzmann equation, which de-
scribes analytically the profiles of potentials induced by a planar porous coatings of any thickness,
from very thin to thick compared to the Debye length. Our simple analytic expression is valid
even when the volume charge density of a coating is quite large, and can be used for any salt
concentration. From this theory, we are interpreting enhanced absorption properties of porous films,
and show that due to these mobile absorbed ions the electro-osmotic flow inside the porous film
emerges. The latter, in turn, leads to the finite slip velocity at the porous interface, which is the reason
for an enhancement of the electro-osmotic velocity in the bulk electrolyte and of zeta potential.
Finally, we obtain an upper bound on an attainable zeta potential that provides guidance for a giant
amplification of electro-osmotic flows.

II. ELECTRO-OSMOTIC EQUILIBRIA

The system geometry is shown in Fig. 1. The permeable film of a thickness H and a fixed volume
charge density � (taken positive without loss of generality) is placed in a 1:1 electrolyte solution of
bulk concentration c∞ and permittivity ε. To describe electrostatics of the system, we employ the
classical nonlinear Poisson-Boltzmann approach [18], but the porous film is permeable for ions of
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the electrolyte solution, so that its potential builds up self-consistently. In this approach, ions obey
Boltzmann distribution, c±(z) = c∞ exp[∓ψ (z)], where ψ (z) = e�(z)/(kBT ) is the dimensionless
electrostatic potential, e is the elementary positive charge, kB is the Boltzmann constant, T is the
temperature, and the upper (lower) sign corresponds to the cations (anions). The inverse Debye
screening length of an electrolyte solution, κ ≡ λ−1

D , is defined as κ2 = 8π	Bc∞, with the Bjerrum
length 	B = e2

εkBT . Note that as any approximation, the Poisson-Boltzmann formalism has its limits
of validity but it always describes very accurately the ionic distributions for monovalent ions in the
concentration range from 10−6 to 10−1 mol/L [18].

A. Electrostatic potentials

The profile of a potential, ψ (z), inside the porous film and in the outer solution satisfies the
nonlinear Poisson-Boltzmann equation, which for our geometry can be formulated as

ψ ′′
i,o = κ2[sinh ψi,o − ρ�(H − z)], (1)

where ′ denotes d/dz, with the index {i, o} standing for in (z � H ) and out (z � H ), ρ = �

2ec∞
, and

the Heaviside step function �(z). The solution of the Poisson-Boltzmann equation with prescribed
boundary conditions, in general, requires a numerical method since it is nonlinear. Below we show
that Eq. (1) can be integrated and propose its closed-form analytical solution. Although formally
this solution is approximate, we will see that for all κH and ρ it practically coincides with exact
numerical calculations.

Integrating Eq. (1) twice by applying conditions ψ ′
o → 0 and ψo → 0 at z → ∞, we find that

the ψo-profile is identical to that near an impenetrable wall with the same surface potential [18],

ψo = 4artanh[γ e−κ (z−H )], (2)

where γ = tanh ψs

4 and ψs = ψ (H ) is the surface potential. Using ψ ′
i (0) = 0 and ψi(0) = ψ0, we

obtain that ψ0 and ψs are related as

ψs ≡ ψ0 − cosh ψ0 − 1

ρ
, (3)

derived before only for a limit of κH � 1, i.e., for thick films [12]. Note that Eqs. (2) and (3) are
exact and valid for any κH and ρ.

Further insight can be gained by recalling that local osmotic pressure of an electrolyte solution is
P = kBT c, where c(z) = c+(z) + c−(z) is the total concentration of ions at given z. This clarifies that
cosh ψ represents a dimensionless local osmotic pressure, p = P/2c∞kBT , which takes its largest
value of p0 = cosh ψ0 at z = 0. Since p(∞) = 1, Eq. (3) indicates that an excess osmotic pressure
at the wall, p0 − 1, grows linearly with a self-induced potential difference across the porous film,
ψ0 − ψs. It will be clear below that this is a main parameter that ascertains most of its properties.

In the limit of a thin film, κH � 1, the asymptotic approach suggested before [19] can be
employed. Expanding the potential in Eq. (1) about z = 0, we obtain, to second order in κz:

ψi(z) 	 ψ0 − ρ

2
(κz)2

[
1 − sinh ψ0

ρ

]
. (4)

Note that the value of sinh (ψ0)/ρ � 1 represents the degree of screening of the film intrinsic charge
at z = 0.

One can find ψs by substituting z = H into Eq. (4). It follows then from Eq. (3) that ψ0 satisfies

ρ2 − ρ sinh ψ0 − 2(cosh ψ0 − 1)

(κH )2
	 0, (5)
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and standard manipulations then yield

ψ0 	 ln

[
2 + (ρκH )2 + ρκH

√
4 + (κH )2(1 + ρ2)

2 + ρ(κH )2

]
. (6)

Consequently, the inner ψ-profile of a thin film is given by

ψi(z) 	 ψs − [sinh ψ0 − ρ]

2
κ2(H2 − z2), (7)

where ψs and ψ0 are described by Eqs. (3) and (6). Note that in some cases these two equations can
be simplified. For instance, when ρ � 1, Eq. (6) may be reexpressed as

ψ0 	 ln

⎡
⎣

(
ρκH

2 +
√

1 + (
ρκH

2

)2)2

1 + ρ(κH )2

2

⎤
⎦, (8)

which is equivalent to

ψ0 	 2arsinh
(ρκH

2

)
− ln

(
1 + ρ(κH )2

2

)
. (9)

Besides, ψs and ψ0 given by Eqs. (3) and (6) can be expanded in series for small ρκH , and we can
easily find that in this case the ψ-profile is almost constant throughout the film:

ψ0 	 ψs 	 ρκH. (10)

The startling conclusion from analysis of Eq. (5) is that it is also valid for κH � 1, i.e., for thick
films. Indeed, in this case the last term on its left-hand side becomes very small compared with the
first two, and we obtain a well known for thick films result [7]:

ψ0 = arsinh(ρ). (11)

Note that the last equation immediately follows from Eq. (1) if we set ψ ′′
i = 0, which is equivalent

to a constant inner potential. This constant potential portion of thick films is globally electroneutral
since absorbed electrolyte ions completely screen the intrinsic film charge. We recall that the
potential of such an electroneutral area is usually referred to as the Donnan potential, ψD, so for
thick films ψ0 ≡ ψD. As a side note, for thin films sinh ψ0/ρ is normally smaller than 1, as follows
from Eq. (5), so ψ0 should be below the Donnan potential of the porous medium. Returning to thick
films, we note that Eq. (3) can be transformed to

ψs = ψ0 + 1 −
√

1 + ρ2

ρ
. (12)

Near the surface, electrolyte ions screen volume charges of the thick coating only partly, and an
inner diffuse layer is formed. The inverse inner screening length can be found as

κi = κ (cosh ψ0)1/2 ≡ κ
√

p0. (13)

From Eq. (11), it then follows that κi 	 κ (1 + ρ2)1/4, which indicates that when ρ � 1, a sensible
approximation should be κi 	 κ . However, when ρ � 1, κi 	 κ

√
ρ, and the criterion of a thick film

can be relaxed to κH
√

ρ � 1.
Since the thick film behaves as an electrolyte solution of the inverse Debye length κi, to obtain

the exact equation for ψi it is enough to simply change the variables in Eq. (2). Namely, substitution
of z by −z, ψs by ψ0 − ψs, and ψo by ψ0 − ψi would immediately give

ψ0 − ψi = 4artanh[γie
−κi (H−z)], (14)
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FIG. 2. A distribution of a potential built up by a film of ρ = 10, calculated numerically for κH = 0.3
(dashed curve) and 3 (solid curve). Filled circles correspond to calculations from Eqs. (7) and (14), when
z/H � 1, and from Eq. (2), when z/H � 1. Open squares are obtained from Eq. (15).

where γi = tanh ψ0−ψs

4 . Using Eqs. (11) and (12), we obtain γi = tanh (
√

1+ρ2−1
4ρ

), which reduces to

γi 	 ρ/8 if ρ � 1, and γi 	 1
4 (1 − 1

ρ
) when ρ � 1. This implies that γi is always smaller than 1/4.

For such a small γi, the inner potential can be expanded about ψ0, and to first order in ψ0 − ψs we
obtain

ψi(z) 	 ψ0 + (ψs − ψ0)eκi (z−H ). (15)

This derivation differs from conventional arguments, which assume low volume charge density [7].
Our treatment clarifies that Eq. (15) constitutes a sensible approximation for ψi of a thick film of
any ρ.

To assess the validity of the above approach, we employ numerical simulations. We perform a
numerical resolution of a multipoint boundary value problem for the nonlinear Poisson-Boltzmann
differential Eq. (1) with prescribed boundary conditions, using the numerical approach based on the
collocation method [20].

In Fig. 2, we plot ψ (z/H ) computed for two different values of κH that are close to limits of
thick and thin films, and a large fixed ρ. The form of the ψ-profile depends on κH . For κH = 3, the
inner potential shows a distinct plateau, indicating that the intrinsic charge of the film is completely
screened by electrolyte ions, i.e., global electroneutrality. The plateau potential is equal to ψD, as
discussed above. However, when κH = 0.3, there is no electroneutral region inside the film, and the
potential at wall, ψ0, is, as expected, much smaller than ψD. Also included in Fig. 2 are theoretical
results obtained from Eqs. (2), (7), (14), and (15) and we conclude that in relevant areas they are in
excellent agreement with numerical data.

It is tempting to speculate that Eq. (6) will be applicable for any κH , and that a more elegant
result, Eq. (9), can be used provided ρ is large enough. Clearly, Eq. (5) could become less accurate
for intermediate κH , and it is of considerable interest to determine its regime of validity. To test
ansatz (5), numerical and theoretical ψ0 and ψs have been calculated as a function of κH for
ρ = 2 and 20. Specimen results are plotted in Fig. 3, demonstrating the unprecedented accuracy
of Eqs. (6) and (9) for all κH at chosen (large) values of ρ. As expected, Eq. (10), which can
also be obtained using linear theory [7], is valid only when ρκH is very small and significantly
overestimates potentials, which saturate at some κH , in other cases.

The charge density dependence of ψ0 and ψs is also of some interest. Figure 4 illustrates the
growth of ψ0 and ψs with ρ for the films of κH = 0.2 and 3. It is well seen that for a thinner film
ψ0 	 ψs up to ρκH 	 1. On increasing ρ further, ψ0 − ψs increases. For a thick film of κH = 3,
the drop of a potential in the inner diffuse layer is always finite and ψ0 − ψs 	 1 as ρ is increased.
We again conclude that Eq. (6) fits accurately the numerical data. So does Eq. (9), except for ρ � 1,
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FIG. 3. Potentials at wall (solid lines) and surface (dashed) as a function of κH computed for fixed ρ = 20
(upper set of curves) and ρ = 2 (lower curves). Filled squares illustrate calculations from Eq. (6), circles are
then obtained using Eq. (3). Open squares show results obtained using Eq. (9). Dash-dotted line is calculated
from Eq. (10).

where some very small discrepancy is observed. Below we use Eq. (9) for all calculations [together
with exact Eq. (3) for ψs] by omitting a discussion of its accuracy.

B. Ion concentrations

The problem we address here is the calculation of the profile of a cloud of counter-ions inside
the porous film and in the electrolyte solution. Since ions obey Boltzmann distribution, their local
concentrations c±/c∞ = exp (∓ψ ) are determined solely by the ψ-profile calculated above.

Representative concentration profiles computed for films of ρ = 10 and two different values of
κH are shown in Fig. 5. Also included are theoretical calculations of c±/c∞ using ψo obtained from
Eq. (2) and ψi given by Eqs. (7) and (14). We see that in the inner region, anions are significantly
enriched and cations are depleted. The degree of this enrichment and depletion depends on the
values of ρ and κH . At the given ρ, the degree of enrichment is ca. 20 for a thick film of kH = 5
but is a few times smaller when kH = 0.2. Note that in the latter case the concentration of anions is
nonuniform throughout the film. We also stress that for a chosen value of ρ, inner concentrations of
cations practically vanish for both κH .

To boost absorption of ions, coatings of larger ρ can be used, as illustrated in Fig. 6, where the
total concentration of ions at the wall, c0 = c+(0) + c−(0), scaled by the sum of anion and cation

0 5 10 15 20
ρ

0

2

4

ψ
0,

ψ
s

FIG. 4. Potentials at wall (solid lines) and surface (dashed) as a function of ρ computed for fixed κH = 3
(upper set of curves) and κH = 0.2 (lower curves). Filled squares illustrate calculations from Eq. (6), circles
are then obtained using Eq. (3). Open squares show predictions of Eq. (9).
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FIG. 5. Ion concentration profiles computed at ρ = 10 using κH = 0.2 (dashed curves) and 5 (solid
curves). Local concentrations of anions (filled circles) and cations (open circles) are calculated using Eq. (2)
when z/H � 1, and from Eqs. (7) and (14) when z/H � 1.

concentrations at infinity, 2c∞, is plotted as a function of ρ. We note that c0/2c∞ = cosh ψ0 ≡ p0.
It follows from Eq. (11) that for thick films p0 =

√
1 + ρ2. This equation describes perfectly

numerical data for κH = 3, and it is clear that this curve corresponds to an upper attainable value
of ion enrichment at the wall. In other words, the absorption capacity cannot be further improved
by making the coating thicker. Note that p0 	 1 + ρ2/2 at small ρ, and p0 	 ρ at large ρ. This
is exactly what we observe for an upper curve in Fig. 6. However, the decrease in κH could
significantly reduce the concentration of absorbed anions, especially when ρ � 5. The c0/2c∞ curve
computed for κH = 0.3 is included in Fig. 6 together with theoretical results obtained using Eq. (6).
It can be seen, it is located much lower than the curve for a thick film. An expansion of ψ0 defined
by Eq. (6) for small κH leads to p0 	 1 + (ρκH )2/2 that fits the lower curve in Fig. 6 very well
when ρ � 5 (not shown). Clearly, an excess osmotic pressure, p0 − 1, is always extremely small for
thin films of ρ = O(1) since it scales with (ρκH )2, indicating their low absorption capacity.

III. ELECTROOSMOTIC VELOCITY AND ZETA POTENTIAL

Another relevant problem is an electro-osmotic flow of a solvent of the dynamic viscosity η in an
applied tangential electric field, E . The origin of the electro-osmotic flow is traditionally attributed
to diffuse layers [21]. For porous coatings, the electroosmosis is defined both by diffuse layers and
absorbed ions and, as we will see, the second mechanism is responsible for a flow amplification and
dominates at high salt.

0 5 10 15 20
ρ

0

10

20

c 0
/2

c ∞

FIG. 6. Ion-enrichment at the wall, c0/2c∞ = cosh ψ0, vs ρ computed using κH = 3 (upper curve) and 0.3
(lower curve). Open and filled circles indicate results obtained using ψ0 calculated from Eqs. (6) and (11).
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We are now about to relate the dimensionless velocity, v(z) = 4π	Bη

eE V (z), of such a flow to ψ0 and
ψs. We assume a weak field, so in the steady state, ψ (z) is independent of the fluid flow. Since for
our planar geometry the concentration gradients at every location are perpendicular to the direction
of the flow, it is legitimate to neglect advection. Therefore, the liquid flow satisfies the generalized
Stokes equation

v′′ − K2v�(H − z) = ψ ′′ + κ2ρ�(H − z), (16)

where K is the inverse Brinkman length. At the wall, we apply a classical no-slip condition, v0 =
v(0) = 0, and far from the surface v′

z→∞ = 0. We consider the limits of small flow extension into
the porous medium, KH → ∞, and of KH → 0, where an additional dissipation in the porous film
can be neglected, to obtain bounds on the electro-osmotic velocity that constrain its attainable value.

From analysis of Eq. (16), it follows that the outer v-profile and velocity in the bulk are given by

vo(z) = v∞ + ψo(z), v∞ = vs − ψs = −ζ , (17)

where ψo is defined by Eq. (2), vs = v(H ) is the liquid velocity at surface—below we refer it to as
slip velocity—and ζ = eZ/(kBT ). Equations (17) indicate that enhanced electro-osmotic mobility
can be a consequence of large equilibrium ψs, as well as of large (negative for a positively charged
coating we consider here) vs that depends on the hydrodynamic permeability of the coating. The
amplification of the electro-osmotic flow (compared to the no-slip case with the same ψs) can be
expressed as

ζ

ψs
= 1 − vs

ψs
. (18)

The problem thus reduces to calculation of vs. Below we provide analytical results together with
exact numerical calculations.

If we suppose KH → ∞, the slip velocity nearly vanishes, ψs 	 ζ , and v∞ 	 −ψs, which is
equivalent to the Smoluchowski result. When KH → 0, integrating Eq. (16) twice, and imposing
the continuity of v and v′ at z = H , we find

vi 	 (ψi − ψ0) − ρκ2

(
Hz − z2

2

)
, (19)

where for films of any thickness ψ0 is given by Eq. (6). The first term reflects the reduction of
the potential inside the porous coating. The second term is associated with a body force ρκ2 that
drives the inner flow by acting on the accumulated mobile ions. This contribution resembles the
usual no-slip parabolic Poiseuille flow. It follows from Eq. (19) that −vs 	 ψ0 − ψs + ρ(κH )2

2 . Since
ψ0 − ψs � 1, the second term should dominate even at moderate ρ.

The outer velocity vo is given by Eqs. (17) with

v∞ 	 −
(

ψ0 + ρ(κH )2

2

)
	 −ζ . (20)

Figure 7(a) includes typical numerical and theoretical v-profiles calculated for this case using
κH = 1 and ρ = 5 that leads to ψs 	 1.47. Since with these parameters κi 	 2.26, such a film is
of intermediate thickness, i.e., it is neither thin nor thick. When KH → ∞, the flow is the same as
near the no-slip impenetrable wall, and the sole role of a porous film is to set ψs. The v-profile for
KH → 0 is also shown. It turns out that even at moderate ρ and κH taken here, one can induce
significantly enhanced v∞, which is associated with the emergence of a large slip velocity, vs. Also
included in Fig. 7(a) is the curve computed using KH = 2. With such a value of KH , the Brinkman
length of a porous material of a given film (of κH = 1) is two times smaller than λD. We see that
the computed curve is located between two limiting cases and demonstrates quite large vs.

We now verify Eq. (20) and plot theoretical v∞ vs κH in Fig. 7(b) together with numerical data.
Upon increasing κH at fixed ρ, the amplitude of v∞ grows nonlinearly, and in the case of ρ � 1

123701-8



ELECTRO-OSMOTIC PROPERTIES OF POROUS …

43210
z/H

0

−2.5

−5.0

v

(a)

3210
κH

0

−25

−50

−75

v ∞

(b)

FIG. 7. (a) Electroosmotic velocity profiles computed using κH = 1, ρ = 5, and KH = 0, 2, and ∞ (solid
curves from top to bottom). Filled and open symbols indicate calculations from Eqs. (17) and (19). Squares are
obtained using vs = 0, circles correspond to vs = ψs + v∞, where v∞ is given by Eq. (20); (b) computed upper
bounds (KH → 0) on v∞ vs κH (solid curves). From top to bottom ρ = 20, 10, and 2. Circles show results of
calculations from Eq. (20).

becomes several tens of times faster compared to a no-slip case, even at moderate κH . It is tempting
to speculate that one can further amplify v∞, making porous film thicker. However, when the film
becomes thick enough, the condition KH → 0 violates, and Eq. (20) is no longer valid. We note
that the magnitude of v∞ also grows on increasing ρ, confirming predictions of Eq. (20). Finally,
we mention that calculations made from Eq. (20) with ψ0 calculated from Eq. (6) perfectly fit the
numerical data.

These results point strongly that mobile ions absorbed within the porous layer actively participate
in the flow-driving mechanism by reacting to the field. The porous film acts as a charged immobile
surface layer with absorbed mobile ions of the opposite sign, but note the difference from a
known example of mobile surface charges at the slippery wall [22]. In the latter case, slippage
is of a hydrodynamic origin and mobile surface charges induce a backward flow, reducing the
amplification of electro-osmotic flow caused by hydrodynamic slip. By contrast, in the current
work an inner solvent flow induces a forward flow and vs itself. However, similarly to hydrophobic
electrokinetics [22,23], our large ζ no longer reflects the sole ψs. Finally, we would like to stress that
a massive amplification of electro-osmotic flow that can be achieved near porous surfaces is of the
same order of that at charged superhydrophobic surfaces [24], and such a fast flow is in agreement
with recent observations [5].

So far, we have considered the potentials and electro-osmotic velocity at fixed dimensionless ρ

and κH . Additional insight into the problem can be gleaned by calculating an upper bound on ζ as
a function of c∞ ∝ κ2 at fixed H and �. Let us now keep fixed H = 25 nm and � = 150 kC/m3,
usually referred to as moderate [25], and vary c∞ from 10−5 to 10−2 mol/L. Upon increasing c∞
in this range, κH is increased from about 0.25 to 8, and ρ is reduced from about 78 down to 0.1.
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FIG. 8. ζ as a function of c∞ computed for a film of H = 25 nm, � = 150 kC/m3, using KH = 0, 1.5, and
∞ (solid curves from top to bottom). Dashed curve shows |vs| at KH = 0. Squares, open and filled circles plot
results of calculations from Eqs. (21)–(23).

Therefore, for a given film, the required regimes (e.g., of thin and thick films, or highly and weakly
charged coatings) can be tuned simply by adjusting the concentration of salt.

The bounds on ζ are shown by lower and upper curves in Fig. 8. If KH → ∞, ζ 	 ψs decays
from ca. 5 (Z 	 125 mV) practically to zero as c∞ increases, leading to a suppression of a flow. In
dilute solutions, the lower bound is given by

ζ 	 ln
( �

ec∞

)
− 1, (21)

which perfectly fits numerical data. When KH → 0, ζ becomes much larger. Thus, with our
smallest concentration, ζ 	 8 (or Z 	 200 mV). In a dilute solution,

ζ 	 ln
( �

ec∞

)
+ 2π	B�H2

e
, (22)

where the first term is associated with the potential at the wall. Note that such a logarithmic decay
fits well the obtained for real porous materials data [5]. For concentrated solutions, a large, and
independent on salt, zeta potential is observed. The computed slip velocity, also included in Fig. 8,
indicates that this occurs when ζ 	 −vs and ψs 	 0. Thus, a large zeta potential emerges solely due
to a forward electro-osmotic flow inside a porous film. It is easy to show that it is given by

ζ 	 2π	B�H2

e
, (23)

which clarifies the status of second term in Eq. (22). This result is relevant for the understanding
zeta-potential measurements with “hairy” surfaces, where it remains finite even at high salt concen-
trations [6,26]. We recall that Eqs. (21) and (22) represent the lower and upper bounds for ζ attained
at limiting values of KH . Any finite KH would lead to ζ confined between the above bounds, as
seen in Fig. 8, where we use KH = 1.5.

IV. CONCLUSION

Using the Poisson-Boltzmann approach, we derived simple analytic equations that provide
considerable insight into the electro-osmotic equilibria and flows in the presence of porous coatings
of an arbitrary thickness, and are suitable even when they are strongly charged. Our theory describes
absorption capacity of porous films, which is, in turn, responsible for an enhanced electro-osmotic
flow. The bounds on zeta potential we have derived can guide the design of coatings to amplify and
control electrokinetic phenomena. We have also shown that electrokinetic properties of the porous
films can easily be tuned by adjusting the concentration of an electrolyte solution.

123701-10
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Since the Poisson-Boltzmann formalism is a mean-field approximation, corrections to our theory,
such as, for instance, due to correlations and fluctuations of charge densities, may play a substantial
role for multivalent electrolyte ions or for concentrations above 10−1 mol/L. It would be of some
interest to extend our work to account for these and other possible deviations from the mean-field
description.
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