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Rheology of a dilute ferrofluid droplet suspension in shear flow:
Viscosity and normal stress differences
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We report the rheology of a dilute ferrofluid droplet suspension under simple shear flow,
using the three-dimensional lattice-Boltzmann simulation and the phase-field model. In our
simulation, we utilize 12M computational grids to fully resolve the droplet deformation,
and GPU parallelization is used to speed up the computation. The droplet deformation
is determined by both the background shear flow and the external magnetic field effects.
The ferrofluid droplet has a character to elongate in the direction of the external field, and
a uniform static magnetic field is applied to the system to control the droplet shape. By
changing the external field strength and direction, we found that the suspension rheologies
can be drastically modified. The viscosity increase (decrease) with the external field when
the external field is applied to the velocity gradient direction (velocity direction). Just by
imposing the external magnetic field, the specific viscosity becomes 12 ∼ 620% of the
viscosity under no external magnetic field. The magnetic force is also practical to control
the normal stresses, since the normal stress in ith direction decreases when the magnetic
field is applied to the ith direction. Therefore, in order to increase (decrease) the first normal
stress difference N1, the external magnetic field should be applied to the velocity direction
(velocity gradient direction). To increase (decrease) the second normal stress difference N2,
the external magnetic field should be applied to the velocity gradient direction (vorticity
direction). By applying the magnetic field, we also show that the normal stresses N1, N2

even show opposite sign from the normal droplet solution (N1 > 0, N2 < 0) under small-
Reynolds-number conditions. Our work suggests that the ferrofluid droplet would be a
practical complex fluid to control the suspension properties, just by changing the external
magnetic field strength and directions.

DOI: 10.1103/PhysRevFluids.5.123603

I. INTRODUCTION

Magnetic force allows to control and micro-sized object in viscous fluids. Using magnetic
colloids, there have been many applications suggested [1,2] in recent years such as magnetic
swimmers [3–5], magnetic pump and cilia [6], magnetic mixers [7,8], and particle sorting and
segregations [9–14]. A ferromagnetic colloid feels torque by applying a uniform magnetic field
and aligned itself to the direction of the magnetic field. When a uniform, static magnetic field is
applied to a ferrofluid droplet, the droplet elongates in the direction of the external field [15–18].
In recent years, there are several interesting works [19] that utilize this character of the ferrofluid
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FIG. 1. A schematic illustration of the problem statement.

droplet to control the fluid properties. Wang and his coauthors [13,14] reported that the destination
of the ferrofluid droplet inside a microfluidic channel can be controlled by the external magnetic
field, using both two-dimensional (2D) simulation [13] and experiments [14]. When a droplet is
flowing inside a small channel under the Poiseuille flow, the droplet usually migrates toward the
channel center because of its deformation and image stresslet effect [11,12,20]; the particles show
cross-streamline migration due to the hydrodynamic interaction with the channel wall. Controlling
the elongational direction of the droplet by the external magnetic field, they showed that the droplet
position can be controlled not only to the channel center but also toward the channel wall.

Cunha et al. [21,22] showed that the ferrofluid droplet can be utilized to control the suspension
rheology. In their works, they evaluated the viscosity [21] and the normal stress differences [22] of
the droplet suspension that is located between two parallel plates using 2D simulation. Depending on
the elongational direction of the droplet, the viscosity changes drastically: The suspension viscosity
increases by five times when the external field is applied perpendicular to the shear velocity, while
it decreases to half when the magnetic field is applied parallel to the shear flow. They also presented
for the first time how the droplet breaks up because of the external magnetic field.

Compared to the understanding of the droplet deformations, the rheological properties of this
solution are not well known. In this work, our motivation is to systematically investigate the
rheology of dilute solutions of a ferrofluid droplet under the shear flow, using three-dimensional
lattice-Boltzmann simulations. We consider a ferrofluid droplet that is placed between two parallel
plates and evaluate the properties of the solution under both effects of the background shear flow and
the external magnetic field. In order to fully resolve the droplet deformation, 12M computational
grids are utilized in our 3D simulation. Note that most of the simulations in the previous works
were done in 2D systems [13,21–23] because of the heavy computational load, except an advanced
work of the 3D simulation [24]. In this work, we first evaluate how the droplet elongations and
deformations are modified due to the external magnetic field. Second, we report how the suspension
rheologies, such as the specific viscosity and the normal stress differences N1 and N2, are revised due
to the external magnetic field. Controlling the magnetic field direction and strength, we show that
the viscosity can be controlled and the normal stress differences can be opposite from the normal
droplet solution (N1 > 0, N2 < 0) [25] under the small-Reynolds-number conditions.

II. PROBLEM STATEMENT AND METHOD

A. Problem statement

Figure 1 shows the problem statement of our present work. Consider a ferrofluid droplet with
a radius a located in between two parallel plates which has a width Ly, and the domain size
is Lx × Ly × Lz = 7.5a × 5.0a × 10.0a. A simple shear flow with a shear rate γ̇ is generated
by moving the top wall with a velocity u = (γ̇ Ly/2, 0, 0) and the bottom with a velocity u =
(−γ̇ Ly/2, 0, 0). The periodic boundary condition is applied to both x and z directions. The droplet
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consists of a fluid with the viscosity ηd , density ρd , magnetic permeability μd , while the surrounding
fluid has the viscosity η0, density ρ0, and magnetic permeability μ0. In this paper, we do not consider
the viscosity and density difference between two fluids, and the permeability ratio is fixed to 2
(i.e., ηd/η0 = 1, ρd/ρ0 = 1, and μd/μ0 = 2). Note that μ0 is assumed to be equal to the vacuum
permeability.

In this paper, we analyze the droplet deformation under both effects of the simple shear flow and
a uniform external magnetic field H0.

B. Governing equations

1. Two-phase flow dynamics

The two-phase flow hydrodynamics is solved by using incompressible Navier-Stokes equation
with additional forcing term:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + η∇2u + f s + f m, (2)

where u is the velocity field, p is the pressure, ρ is the density, η is the viscosity, f s is the
surface tension force, and f m is the magnetic force. To capture the interface dynamics, we solve
the conservative phase-field equation [26],

∂φ

∂t
+ u · ∇φ = ∇ ·

{
M

[
∇φ − 4

ξ
φ(1 − φ)n

]}
, (3)

where φ ∈ [0, 1] is the phase function, ξ is the interface thickness, M is the mobility, and n =
∇φ/|∇φ| is the unit normal vector on the interface that points outward (surrounding fluids). The
surface tension force f s is calculated by using the continuum surface force model [27],

f s = σκ∇φ, (4)

where σ is the surface tension and κ is the curvature defined as

κ = −∇ · n. (5)

2. Magnetic field

The magnetic flux density B can be described using the magnetization M and the magnetic field
strength H as

B = μ0(H + M). (6)

By assuming that the ferrofluid is superparamagnetic M = χH , Eq. (6) is modified as

B = μ0(1 + χ )H = μH, (7)

where μ = μ0(1 + χ ) is the magnetic permeability and χ is the magnetic susceptibility. Note that
we consider that the magnetic field H is small enough to assume the linear relationship between the
magnetization and the magnetic field. In the absence of electric currents, B and H satisfy following
magnetostatic Maxwell’s equations [13,23],

∇ · B = 0, (8)

∇ × H = 0. (9)

Since a scalar potential ψ that satisfies

H = −∇ψ (10)
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can be defined because H is a curl-free field, we obtain

∇ · (μ∇ψ ) = 0, (11)

from Eqs. (7)–(10). The magnetic force f m is now calculated [13,23,28] as

f m = ∇ ·
{
μH ⊗ HT − μ

2
(H · H )I

}
, (12)

where I is the identity tensor.

3. Boundary condition

The no-slip boundary condition u = uw is applied to the two parallel walls: uw = (γ̇ Ly/2, 0, 0) at
the top wall and uw = (−γ̇ Ly/2, 0, 0) at the bottom wall. As a boundary condition for the magnetic
field, H = H0 is given at both top and bottom walls. The periodic boundary conditions are applied
in the x and z directions for both velocities and magnetic fields.

C. Numerical methods

To solve nearly incompressible multiphase flow, we employed the diffuse-interface lattice Boltz-
mann method [29]. The time evolution of the distribution function g for direction α is given as

gα (x + cα
t, t + 
t ) − gα (x, t ) = �α + 
t F̃α, (13)

F̃α = ωα

[
1 + cα · u

c2
s

+ (cα · u)2

2c4
s

− |u|2
2c2

s

]
(cα − u) · ( f s + f m), (14)

where cα is the discrete velocities, �α is the collision operator, 
t is the discrete time, ωα is the
weight coefficient depending on the direction α, and cs is the speed of sound. In this work, we use
a multiple-relaxation time (MRT) model [30] for the stable computation, and the collision operator
� in this model is given as

�α = −(M−1SM)αβ

[
gβ (x, t ) − geq

β (x, t )
]
, (15)

where M is the transform matrix, S is the diagonal relaxation matrix, and geq is the equilibrium
distribution function, which is given by

geq
α = pωα + ρc2

s ωα

[
cα · u

c2
s

+ (cα · u)2

2c4
s

− |u|2
2c2

s

]
− 1

2
F̃α. (16)

Now the macroscopic variables are calculated as

u(x, t ) = 1

ρc2
s

∑
α

cαgα (x, t ) + 
t

2ρ
( f s + f m), (17)

p(x, t ) =
∑

α

gα (x, t ). (18)

In the lattice Boltzmann framework, the conservative phase-field equation [Eq. (3)] is discretized
into

hα (x + cα
t, t + 
t ) − hα (x, t ) = − 1

τφ

[
hα (x, t ) − heq

α (x, t )
]
, (19)

where hα is the phase-field distribution function and τφ = 1/2 + M/(c2
s 
t ) is the relaxation time.

The equilibrium phase-field distribution function heq
α is given by

heq
α = φωα

[
1 + cα · u

c2
s

+ cα · u)2

2c4
s

− |u|2
2c2

s

]
+ ωα

(
τφ − 1

2

)

t

[
4φ(1 − φ)

ξ

]
(cα · n). (20)
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The phase function φ is calculated as

φ(x, t ) =
∑

α

hα (x, t ). (21)

The magnetic permeability μ at the interface is calculated by a linear interpolation based on the
phase function φ as

μ = φμd + (1 − φ)μ0. (22)

It should be noted that the incompressible Navier-Stokes equation and phase-field equation are
recovered from the lattice Boltzmann equations by applying the Chapman-Enskog expansion under
small Mach number condition [31,32]. The diffuse-interface lattice Boltzmann method has been
successfully applied to several multiphase flow problems [33–35].

We use the grid size 
x = a/32 and 12M computational grids to fully resolve the droplet motion
inside the computational domain (Lx × Ly × Lz = 7.5a × 5.0a × 10.0a), and GPU parallelization
(NVIDIA Tesla P100) is used to speed up the computation. Equations (10), (11), and (12) are
dicretized with a second-order finite-difference scheme. The Poisson equation for the magnetic
scalar potential is solved by using BiCG-stabilization method.

D. Dimensionless parameters

Our system can be characterized by three dimensionless parameters: Reynolds number (Re),
capillary number (Ca), and Bond number (Bo),

Re = ρ0γ̇ a2

η0
, (23)

Ca = η0γ̇ a

σ
, (24)

Bo = aμ0H2
0

2σ
. (25)

In this paper, Re is fixed to 0.1 while Ca and Bo are varied. Other dimensionless parameters are as
follows: λ = ηd/η0 = 1, ρd/ρ0 = 1, and μd/μ0 = 2.

III. RESULTS

In this section, we apply the magnetic field in three directions (x, y, and z directions), and
report the droplet deformations and suspension rheologies. Our implementation is validated in the
Appendix A. Figure 2 shows that the droplet deformation is drastically different by changing the
external magnetic field, and the droplet shape is obtained by extracting the isosurface of the phase
function φ = 0.5. As is well known, the ferrofluid droplets elongate in the direction of the applied
magnetic field. Figure 3 shows corresponding streamlines and the magnetic fields. As also reported
in a previous work [21], the streamlines are less distorted when the magnetic field is in the x direction
(velocity direction) and significantly distorted for the y direction (velocity gradient direction). When
the magnetic field is applied to the z direction (vorticity direction), the cross-sectional area of the
droplet at the shear plane becomes smaller compared to the other two directions and there is only
partial distortion in the flow field. The magnetic fields have qualitative agreement with the previous
2D [13,22] and 3D [24] simulations.

A. Droplet deformation

Figure 4 shows the droplet deformation under three different directions of the external magnetic
fields. In order to characterize the droplet deformation, we calculate the inertia tensor from the
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FIG. 2. Visualizations of the droplet deformation under different external magnetic field directions under
the capillary number Ca = 0.15 and Bond numbers Bo = 8.0. The color of the droplet surface indicates the
mean curvature of the surface shape.

droplet isosurface (φ = 0.5) and fit the deformation into ellipsoidal shape [36] that has three
principal lengths, �1, �2, and �3. Note that the droplet size is �1 = �2 = �3 = 2a at the initial resting
state (Bo = 0 and Ca = 0), and Fig. 4 shows the deformation change 
�i/a = (�i − 2a)/a, where
i = 1, 2, 3. In this figure, we assign two length �1 and �2 (�1 > �2) for deformations in the shear
plane (x, y plane) and �3 for the z directional length as shown in Fig. 4(a).

Figures 4(b)–4(d) show that the droplet elongates in the direction that the external magnetic field
is applied and shrinks in the two other directions. The qualitative tendency of the deformation has
good agreement with the previous 2D simulations [13,21] and 3D theory and simulation (both under
the magnetic field in y direction [24]) as shown in Appendix A. Note that we omitted the plots under

FIG. 3. (a) Streamlines and (b) magnetic fields under different external magnetic field directions under the
capillary number Ca = 0.15 and Bond numbers Bo = 8.0. Both panels (a) and (b) show the cross section that
includes the droplet center. Since the magnetic field is almost perpendicular to the (x, y) plane, the magnetic
field in the (y, z) plane is also shown for z magnetic field.
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FIG. 4. (a) Schematic showing the definition of lengths �1, �2, and �3. [(b)–(d)] The droplet deformation

�i = (�i − 2a)/a (i = 1, 2, 3) under the magnetic field in different directions: (b) x direction (velocity
direction), (c) y direction (velocity gradient direction), and (d) z direction (vorticity direction). Dashed lines
show 
� under Ca = 0.1 and solid lines are 
� under Ca = 0.2.

a high-magnetic-Bond-number condition in the y direction (Bo > 4), because the droplet breaks up
into several small droplets in these conditions [21,23], as also shown in Appendix B. Comparing
the longest lengths 
� of Figs. 4(b)–4(d) (i.e., 
�1 for x and y external magnetic field and 
�3 for z
magnetic field) under Ca = 0.1, which are shown with dashed lines, there are no drastic differences
and they all reach 
�/a ∼ 2 at Bo = 8. The magnetic field direction has a small dependence on
the deformation level because the Mason number, Mn = Ca/Bo [13,24,37,38], which characterizes
the magnetic force compared to the applied shear, is small Mn ∼ O(10−2) in this capillary number
Ca = 0.1. Although there are only small changes by increasing the capillary number to Ca = 0.2, as
shown in Figs. 4(b) and 4(d), deformation of the droplet under y magnetic field starts to deviate and
it has steeper deformation change. The y magnetic field gives the largest deformation because the
elongation in the y direction would result in elongation in the x direction as well, since the droplet
experiences the large velocity difference.

We now term the direction that exhibits the longest length as a major axis, and the directions
of two shorter lengths as minor axes. When there is no shear flow applied to the droplet (Ca = 0),
two minor axes of the droplet have same lengths and the droplet shape would be a prolate spheroid,
which can be easily understood from the system axisymmetry [16,18]. Comparing the length of two
minor axes appeared in Fig. 4, the droplet shapes are again prolate spheroids when the magnetic
field is applied to the x and y directions: i.e., 
�2 ∼ 
�3 for Figs. 4(b) and 4(c). On the other hand,
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the droplets show nonaxisymmetric shapes (
�1 �= 
�2) when the magnetic field is applied to the
z direction even up to Bo = 8. The difference between 
�1 and 
�2 becomes smaller with the Bo
increase, and spheroidal shapes are expected by further increasing Bo. The droplet is not spheroidal
only for the z direction (Bo < 8) because the magnetic field is not applied to the shear plane for
this condition. Since the magnetic effect is dominant over the shear effect in our current setup
[Mn ∼ O(10−2)], the shear flow has only minor effect on the droplet shape and the magnetic field
tends to change the droplet shape from a nonspheroidal shape (Bo = 0) to a spheroidal shape. When
the magnetic field is in the z direction, however, the shear effect is still present and the droplet keeps
the nonspheroidal shape because this magnetic field has weaker effect on the droplet deformation in
the shear plane.

B. Viscosity and normal stress difference

Next, we report how the suspension rheology is altered due to the external magnetic field. Since
the Reynolds number in this system is small, stress due to the presence of droplets is evaluated using
a particle stress tensor �(p) [25,39,40]:

�(p) = 1

V
S = 1

V

∫
A

(x ⊗ q + η(λ − 1)(u ⊗ n + n ⊗ u))dA, (26)

where V = LxLyLz is the domain size, S is the stresslet, A is the droplet interface, and q is the load
acting on the interface. The second term of the right-hand side of Eq. (26) vanishes for the current
work because viscosity ratio is λ = 1 in this study. Notice that q corresponds to the stress jump
[σ] · n across the interface, where σ is stress tensor and [ ] represents the jump condition. Since we
use the diffuse interface model, q can be calculated as q = ∫

h f dh = ∫
h( f s + f m)dh, where h is a

coordinate that is perpendicular to the fluid interface, and the stresslet can be rewritten as

S =
∫

A

∫
h
(x ⊗ f )dhdA ≈

∫
V

(x ⊗ f )dV. (27)

Note we used in this conversion a fact that the body force f (x) = 0 if the position x is not at the
droplet interface. The specific viscosity ηsp represents the increase in the suspension viscosity due
to the particle shear stress [41,42] that is defined as

ηsp = �
(p)
yx

η0γ̇
, (28)

and Einstein [43] derived that the value is ηsp = 2.5� for a dilute solution of a single sphere (radius
a) with a volume fraction � = 4πa3/(3V ). In order to check the validity of the viscosity evaluation
above, we also evaluate the viscosity in a different way: an evaluation based on the wall shear stress
(WSS) [22]. The specific viscosity ηsp can also be calculated from the average shear stress at the
wall as

ηWSS
sp =

1
W

∫
W η0

∂ux
∂y dW − η0γ̇

η0γ̇
, (29)

where W is the area of the wall and ux is the x component of the velocity vector. Figures 5(a)–
5(c) show the specific viscosity ηsp when the magnetic field is applied to three different directions,
and two different evaluation of the viscosities ηsp and ηWSS

sp have perfect agreements in all three
directions. Modifying the system to 2D, we also evaluate the viscosity and compare the result with
the previous 2D simulation [22]. Again, our simulation has quantitatively good agreement with the
previous study.

Figure 5(d) summarizes the specific viscosity for different magnetic field directions and the
capillary number. Note that the specific viscosity again has weak dependence of the capillary
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FIG. 5. The specific viscosity ηsp under (a) x, (b) y, and (c) z external magnetic field for Ca = 0.2. In
(a) and (b), the results are compared with the previous 2D study reported by Cunha et al. [22]. (d) The specific
viscosity ηsp of the droplet suspension under three different external magnetic directions.

number, because the conditions are in the Bond number dominant regime, Mn � 1. The viscosity
decreases with the Bond number when the magnetic field is applied to the x direction, while
it increases for the y direction, and these tendencies agree well with the previous reports in
2D simulations [21,22]. At large Bond number, Bo = 8, the viscosity becomes 620% or 12%
compared to the viscosity at Bo = 0 when the magnetic field is applied to the y and x directions,
respectively.

From the flow field shown in Fig. 3(a), the small viscosity ηsp is expected when the magnetic
field is in the z direction since there is less flow disturbance. Surprisingly, the viscosity slightly
decreases with the Bond number and its change is not as drastic as in the other two directions when
the magnetic field is in this direction. In order to reveal the viscosity difference in two magnetic
field directions, the x and z directions, we now show the orientation angle of the droplet in the
shear plane θd in Fig. 6. Note that the angle is evaluated from the eigenvectors of the inertia tensor,
which was also used to fit the droplet shape into ellipsoidal shape in the previous section. The
orientation angle θd = arctan(vy/vx ) is evaluated from an eigenvector (vx, vy, vz ) that has the largest
eigenvalue in the shear plane. As shown in Fig. 6(a), the angle increases [y direction; also Fig. 6(c)]
or decreases [x direction; Fig. 6(b)] when the magnetic field is applied to the shear plane, while the
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x magnetic field

y magnetic field z magnetic field

(a) (b)

(c) (d)

FIG. 6. (a) The orientation angle of the droplet θd . The solid lines show θd under Ca = 0.2 and the dotted
lines show Ca = 0.15. [(b)–(d)] The black solid lines show the cross sectional shape of the droplet under no
magnetic field (Bo = 0 and Ca = 0.15), while the red solid lines show the shape under the magnetic field (Bo
= 8.0 and Ca = 0.15) in three different directions. Dashed lines show the corresponding orientation angles.

angle stays relatively the same θd = 0.20π − 0.25π for the z direction [Fig. 6(d)]. This difference
in the orientation angle is directly connected to the difference in the viscosity ηsp. When there is no
external force applied to the particle, such as the pure droplet or capsule suspensions, we showed in
our previous study [41] that the shear component of the stresslet Syx can be rewritten as

Syx = (S1 − S2) sin 2θs (30)

when the particle is ellipsoidal, where S1 and S2 (S1 > S2) are the eigenvalues of the stresslet in the
shear plane and θs is the orientation angle of the stresslet obtained from the eigenvector of S1. Note
that two orientation angles become the same θd = θs when the droplet is a perfect ellipsoidal shape.
From Eq. (30), the viscosity ηsp would reach maximum when the angle is θs = θd = π/4. Although
the particle is not torque free in the present study, this discussion can be extended and utilized to
understand the viscosity ηsp difference in Fig. 5(d). When the magnetic field is applied to the flow
direction (x direction), the viscosity decreased because the orientation angle θd decreased and the
principal directions of the stress �p (symmetric component) become closer to the x and y axes. When
the magnetic field is applied to the vorticity direction (z direction), on the other hand, the orientation
angle is still facing θd ∼ π/4 even for high-Bond-number conditions, and as a result, the visocsity
stays relatively the same. The orientation angle θd has weak dependence on the Bond number for
this case because the magnetic field is not applied to the shear plane. This angle difference resulted
in the viscosity difference shown in Fig. 5(d).
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FIG. 7. [(a)–(c)] The first normal stress difference N1 under different directions of the external magnetic
field (a) x, (b) y, and (c) z directions. [(d)–(f)] The second normal stress difference N2 under three directions of
the external magnetic field, the x, y, and z directions, respectively.

Finally, we evaluate the first N1 and second N2 normal stress differences defined as

N1

ηγ̇�
= �

(p)
xx − �

(p)
yy

ηγ̇�
, (31)

N2

ηγ̇�
= �

(p)
yy − �

(p)
zz

ηγ̇�
. (32)

When the droplet deforms under the shear flow but under no external field (Bo = 0) and Re � 1,
the droplet tries to shrink in the velocity direction (x direction; Sxx > 0) and to expand in the two
other directions (y and z directions; Syy < Szz < 0). Therefore, the first normal stress difference is
positive while the second normal stress difference is negative for a droplet suspension under Bo = 0
[25,44–47], and we confirmed that our numerical results satisfy these relations, N1 > 0 and N2 < 0.

Figure 7 shows the normal stress differences under three different directions of the magnetic
field, and it indicates that values N1 and N2 can be controlled by imposing the external magnetic
field to the relevant direction. When the magnetic field is applied to the ith direction, the stresslet
component Sii decreases because the droplet expands and elongates in this direction due to the
magnetic force f m. Using this character, N1 increases (decreases) when the magnetic field is applied
to the y direction (x direction) and N2 increases (decreases) when the magnetic field is applied
to the z direction (y direction). The quantitative tendency of N1 has good agreement with recent
publication using 2D simulation [22]. Interestingly, even the sign of normal stress differences can
be changed by imposing the external field. By imposing magnetic fields in the x direction and the
z direction under high-Bond-number conditions, N1 becomes negative and N2 becomes positive,
respectively, which are opposite from the normal droplet suspensions [25]. Previous papers [45,47]
reported that the same sign reversals of the normal stress differences, N1 < 0 and N2 > 0, occur for
the droplet suspension when the Reynolds number is high, Re ∼ O(1). Our current results show that
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the ferrofluid droplets are practical material to change the sign of the normal stress differences even
under small-Reynolds-numbers Re < O(10−1).

In summary, we can conclude from our simulation that the ferrofluid droplet can be a practical
tool controlling the rheological properties of the suspension.

IV. CONCLUSION

In this paper, we reported the rheology of a dilute ferrofluid droplet suspension under simple
shear flow using the 3D lattice-Boltzmann simulation and the phase-field model. In our simulation,
we utilize 12M computational grids to fully resolve the droplet deformation, and GPU paralleliza-
tion is used to speed up the computation. The droplet deforms due to the background shear flow,
and its shape can be altered by imposing the external magnetic field. By changing the external
field strength and direction, we found that the suspension rheologies are drastically different. The
viscosity increase (decrease) with the external field when the external field is applied to the velocity
gradient direction (velocity direction). Note that we call the x, y, and z directions the velocity
direction, velocity gradient direction, and vorticity direction, respectively. Just by imposing the
external magnetic field, the specific viscosity becomes 12 ∼ 620% compared to the condition under
no external field. The magnetic force is also practical to control the normal stresses, since the
stresslet Sii decreases when the magnetic field is applied to the ith direction. In order to increase
(decrease) the first normal stress difference N1, the external magnetic field should be applied to
the velocity gradient direction (velocity direction). To increase (decrease) the second normal stress
difference N2, the external magnetic field should be applied to the vorticity direction (velocity
gradient direction). By applying the magnetic field, we also show that the normal stresses N1, N2

even show opposite sign from the normal droplet solutions (N1 > 0, N2 < 0).
The major advance of this work was to report the rheological properties that can be only revealed

under 3D system, such as the normal stress difference N2 and the suspension rheology under z
directional magnetic field, with the help of parallelized large-scale lattice Boltzmann method (LBM)
simulations. Our results suggest that the ferrofluid droplet can be a practical material to control the
suspension rheology by imposing the magnetic field. We believe that our findings would be an
essential building block for the future findings in the ferrofluid suspensions.
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APPENDIX A: BENCHMARK

In this section, we validate our simulation result with three different benchmarks. Note again that
we fixed the following conditions: the domain size Lx × Ly × Lz = 7.5a × 5.0a × 10.0a, grid size

x = a/32, Reynolds number Re = 0.1, density ratio ρd/ρ0 = 1, viscosity ratio ηd/η0 = λ = 1,
and permeability ratio μd/μ0 = 2 (i.e., magnetic susceptibility of the droplet χ = 1).

1. Dilute droplet suspensions under simple shear flow

First, we validate the droplet deformation and the suspension rheology under simple shear flow
but with no magnetic field Bo = 0. At small deformation limit, Taylor [49,50] predicted that the
Taylor deformation parameter D would converge to

D = 19λ + 16

16λ + 16
Ca, (A1)
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FIG. 8. (a) Droplet deformation (Taylor parameter, D) under simple shear flow. The solid line shows the
Taylor’s prediction (A1). (b) The specific viscosity ηsp under simple shear flow. Dashed line is the Taylor’s
prediction ηsp = 1.75�. The result of our present simulation (LBM) is compared with our BEM simulation
[48] and another previous work [44]. (c) The first and second normal stress differences under simple shear
flow.

where λ is the viscosity ratio. Note that the estimation is valid under negligible Reynolds number
Re � 1 and with no walls (Ly → ∞) or walls with large separate distance Ly/a � 5 [51]. Fig-
ure 8(a) shows that our result has good agreement with the prediction. The deformation starts
to deviate from the estimation because the estimation only stands under small deformation limit
Ca � 1.

Taylor [52] also predicted that the specific viscosity of a dilute droplet solution is

ηsp = 2.5�
ηd + 2η0/5

ηd + η0
= 2.5�

λ + 2/5

λ + 1
(A2)

under the small deformation limit (Ca → 0) where � is the volume fraction of the droplet.
Figure 8(b) shows the specific viscosity and Fig. 8(c) the normal stress differences of the droplet
solution under no external magnetic field from our simulations. Note that the stress due to the
particle is evaluated by the particle stress tensor (26). The obtained ηsp curve converges to the
Taylor’s prediction ηsp = 1.75� (λ = 1) by decreasing the capillary number. Both the viscosity and
normal stress differences have good agreement with our simulation based on the boundary element
method (BEM) [48] and a previous numerical study [44].
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FIG. 9. (a) Droplet deformation under the external magnetic field. The solid line shows a prediction from
a previous study (A3), while the dashed line shows the other prediction (A6). (b) Droplet deformation under
both simple shear flow and external magnetic field. The solid lines show a prediction from a previous study
(A6).

2. Droplet deformation under the external magnetic field

Second, we validate the droplet deformation under an external magnetic field but with no shear
flow Ca = 0. Assuming an axisymmetric shape, Afkhami et al. [16] analytically estimated the
droplet deformation, and the prediction has been used to validate the simulation result in previous
studies [13,24]. Thanks to their equation, the Taylor parameter D and the Bond number Bo satisfy
the following relation:

Bo =
(

1

χ
+ k

)2(1 + D

1 − D

)1/3{
2

(
1 + D

1 − D

)
−

(
1 + D

1 − D

)−2

+ 1

}
, (A3)

where

k = 1 − E2

2E3

(
ln

1 + E

1 − E
− 2E

)
, (A4)

E =
√

1 −
(

1 + D

1 − D

)2

. (A5)

Our deformation shown in Fig. 9(a) has good agreement with the estimation. Note that we also
compared the deformation with the other theory [24], which is explained in detail in the next
subsection.

3. Droplet deformation under both simple shear and external magnetic field

Finally, we validate the droplet deformation under presence of both the external magnetic field
and shear flow: Bo �= 0 and Ca �= 0. Jesus et al. [24] derived the droplet deformation with an
asymptotic theory with assumptions, Ca � 1 and Bo � 1. When the magnetic field in the velocity
gradient direction (y direction), the Taylor parameter is given as a function of the capillary number
and Bond number as

D ≈
√

α2Ca2 + β2Bo2

2 + βBo/3
, (A6)
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FIG. 10. Deformation and breakup of the droplet under Ca = 0.2 and Bo = 8.0. Magnetic field is applied
to the y direction.

where

α = 19λ + 16

8(λ + 1)
, (A7)

β = 3χ (2χ + 1)

4(χ + 3)2
. (A8)

Although our simulation result has good agreement with the theory at small capillary number Ca =
0.05 as shown in Fig. 9(b), there are deviations for high capillary number, Ca = 0.15, because the
condition is outside the range of the small deformation limit Ca � 1.

APPENDIX B: BREAKUP OF DROPLET UNDER A
HIGH-MAGNETIC-BOND-NUMBER CONDITION

In this Appendix, we show in Fig. 10 that the droplet breaks up into small droplets when the
magnetic field is applied to the y direction (velocity gradient direction) under a high-Bond-number
condition (Bo = 8.0). The domain size Lx × Ly × Lz = 20.5a × 3.2a × 10.0a and 21M computa-
tional grid is used. As also reported in the previous works [21,23] the droplet first elongates in the
flow direction (x direction) and exhibits an S shape. Because the droplet neck becomes thinner, it
eventually breaks up into three small droplets.
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