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Vibrational relaxation of carbon dioxide in state-to-state
and multi-temperature approaches
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Vibrational relaxation of single-component carbon dioxide is studied using the full
and reduced state-to-state models and two multi-temperature approaches. The full kinetic
scheme including all vibrational states and different kinds of vibrational energy transitions
within and between CO2 modes is proposed and implemented to the 0-D code for spatially
homogeneous relaxation. Contributions of various energy transitions are evaluated, and
dominating relaxation mechanisms are identified for two generic test cases corresponding
to compression (excitation) and expansion (deactivation) regimes. It is shown that the
main relaxation channels are vibrational-translation (VT) transitions in the symmetric and
bending modes and two intermode vibrational-vibrational (VV) exchanges. Reduced-order
models are assessed by comparisons with the results of full state-to-state simulations. The
commonly used two-temperature model with the single vibrational temperature fails to
describe the relaxation for all considered initial conditions. The three-temperature model
provides a good agreement with the state-to-state simulations for the excitation regime,
but yields a considerable discrepancy for the deactivation mode. The sources of the
discrepancies are detected and several ways for the improvement of numerically efficient
multi-temperature models are proposed.

DOI: 10.1103/PhysRevFluids.5.123401

I. INTRODUCTION

Carbon dioxide is a key species for many fundamental and applied problems, including Mars
entry, laser technologies, Earth environmental issues, and greenhouse gas conversion into fuels.
Studies of nonequilibrium CO2 kinetics are carried out by many scientific groups on the basis
of state-to-state [1–12], multi-temperature [13–18], coarse-graining [19], and drift-diffusion [10]
approaches. State-resolved models give a deep insight into the physics of vibrationally excited
states, but are hardly applicable in engineering problems due to their high computational costs,
especially in polyatomic gases. Thus, two serious problems arise when CO2 vibrational relax-
ation is studied in the frame of the state-to-state approximation. First, in this approach, the
gas dynamic equations should be coupled to several thousands of equations for populations of
each level of three CO2 vibrational modes (symmetric, bending, and asymmetric). Second, the
energy production terms in these equations contain hundreds of thousands of rate coefficients
for different processes: vibrational-translational (VT) energy transitions within three CO2 modes,
and vibrational-vibrational (VV) energy exchanges between different states of vibrational modes.
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Recently, as a first step towards numerical application of the state-to-state approach, a numerical
scheme for the calculation of state-dependent CO2 rate coefficients was proposed in [20] on the
basis of parallel computations. However, its implementation to computational fluid dynamics (CFD)
still remains a challenge, and reduced-order models are of crucial importance.

Coarse-graining methods [19,21], although providing an efficient technique for inviscid flow
simulations taking into account strongly nonequilibrium effects, are still unable to describe the
transport coefficients for energy bins; therefore, their application for viscous flow simulations
is questionable. Two-temperature models commonly used in CFD [13] are rather efficient but,
in the case of CO2, cannot take into account various vibrational modes and different rates of
vibrational energy exchange between modes [18]. More realistic multi-temperature models that take
into account energy exchange between asymmetric and coupled symmetric-bending CO2 modes
were developed in [14,16] within the framework of the generalized Chapman-Enskog method. The
models provide algorithms for evaluation of the transport terms and can be used in both inviscid
and viscous flow simulations; they were applied in [22] for simulations of shock heated CO2 flows
and in [15,23] for two-dimensional (2D) modeling of flows around the Mars sample return orbiter,
cone, and sphere. One of the limitations of these implementations is that the energy production
terms are written in the simplified Landau-Teller form, which is not applicable for intermode
vibrational energy exchange. Moreover, contrary to air mixtures, no comparison of state-to-state and
multi-temperature simulations was carried out in nonequilibrium CO2 flows, except one particular
case studied in [17]. Thus, the range of applicability of multi-temperature models was not assessed
until the present time. The same problem holds for the reduced state-resolved kinetic schemes used
in the CFD [2,6,8].

State-to-state simulations provide a powerful tool for the assessment of reduced models when
reliable experimental data are not available. Some steps in such assessments are done in [3,4,11,12],
where thorough studies of a one-dimensional CO2 flow along the stagnation line were carried out
within the full and reduced state-to-state approaches; the surface heat flux was compared with
experiments [24,25] and a good agreement was shown. Nevertheless, the above studies have several
limitations: due to high computational efforts, it was not possible to take into account all CO2

vibrational states, and the vibrational ladder was cut at the energy 3 eV, which is considerably
less than the dissociation energy. For the same reason, intramode VV transitions were not taken
into account. Moreover, only a few specific test cases were studied, all of them corresponding
to the stagnation line flows; other conditions were not considered. In order to assess the various
models under different conditions, the most efficient way is to use 0-D thermal bath simulations
or a spatially homogeneous problem. By varying the initial gas temperature, pressure, vibrational
temperatures, and mixture composition, one can reproduce arbitrary deviations from equilibrium
corresponding to different real gas flows without huge computational efforts.

The objectives of the present study are (1) further development and implementation of the full ki-
netic scheme for modeling CO2 vibrational kinetics in the state-to-state approach, (2) identifying key
mechanisms of vibrational relaxation in the single-component CO2 under various initial conditions,
(3) assessment of the two-temperature and three-temperature models of vibrational relaxation and
reduced state-to-state kinetic schemes, and (4) evaluation of the contributions of different vibrational
energy transitions to the relaxation processes. Since the main focus is on the vibrational kinetics, we
do not discuss in this study vibrational-chemical coupling and consider a single-component carbon
dioxide.

The paper is organized as follows. First, in Sec. II, we develop the extended state-to-state kinetic
scheme including all known mechanisms of vibrational energy transitions, revise the expressions
for the rate coefficients of multi-quantum transitions, and describe an improved algorithm for the
numerical implementation of the state-to-state model. Then, in Sec. III, we review the two- and
three-temperature models and discuss the issues with the calculation of the production terms. In
Sec. IV, we show the comparison of the results for the 0-D spatially homogeneous relaxation
using various kinetic schemes and models, discuss key relaxation mechanisms under different initial

123401-2



VIBRATIONAL RELAXATION OF CARBON DIOXIDE IN …

conditions, and assess the reduced state-to-state kinetic schemes. The main results are summarized
in the Conclusions in Sec. V.

II. STATE-TO-STATE DESCRIPTION

Implementation of the state-to-state model is necessary under conditions of strong deviations
from thermal equilibrium, when the characteristic times of all vibrational energy transitions are
comparable to the characteristic fluid-dynamic time,

τtr < τrot � τvibr ∼ θ, (1)

where τtr , τrot, and τvibr are, respectively, the relaxation times for the translational, rotational, and
vibrational degrees of freedom, and θ is the macroscopic timescale. Different kinds of vibrational
energy transitions are discussed below. In this study, we consider the single-component gas and,
therefore, do not take into account chemical reactions.

A. Governing equations

The vibrational relaxation of a spatially homogeneous CO2 gas is described by the set of
equations

dni1,i2,i3

dt
=

∑
γ

Rγ

i1,i2,i3
, im = 0, . . . , lm, m = 1, 2, 3, (2)

U = Etr + Erot + Evibr = const. (3)

Here, ni1,i2,i3 is the population of the (i1, i2, i3) vibrational state, quantum numbers i1, i2, i3 corre-
spond to the symmetric, doubly degenerated bending, and asymmetric vibrations of a CO2 molecule.
The production terms Rγ

i1,i2,i3
describe the variation of the level populations as a result of vibrational

energy transitions through the process γ , lm is the maximum vibrational level number in mth mode,
and U is the total energy per unit mass expressed as a sum of translational, rotational, and vibrational
energies.

Under the assumption of the Maxwell velocity distribution of particles, the translational energy
has the form

ρEtr = 3
2 nkBT . (4)

The CO2 molecule is linear, and therefore the rotational energy of the gas for the rigid rotator model
can be written in the form

ρErot = nkBT . (5)

The vibrational energy of the gas is described as follows:

ρEvibr =
∑

i1,i2,i3

ni1,i2,i3εi1,i2,i3 . (6)

In Eqs. (4)–(6), ρ is the gas density, n is the total number density, kB is the Boltzmann constant, T is
the gas temperature, and εi1,i2,i3 is the vibrational energy of a molecule at the (i1, i2, i3)-th vibrational
state. The vibrational energy of CO2 molecules was described on the basis of the harmonic and
anharmonic oscillator models [26] with l1/2/3 = 30/61/17 and l1/2/3 = 30/62/19, respectively.
When calculating the partition functions and specific vibrational energy, we take into account the
coupled states below the dissociation threshold D; therefore, we put the restriction εi1,i2,i3 < D in
summations over vibrational states. It is worth noting that in the present study, we assume separate
normal modes up to the dissociation threshold instead of introducing the quasicontinuum of the
states; strong mode interaction is simulated by accounting for all kinds of intermode vibrational
transitions.
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B. Set of kinetic processes

The complex structure of the CO2 molecule leads to a large number of different exchanges of
vibrational energy. Below, the main groups of exchange processes and the corresponding relaxation
terms are presented. The first group includes VTm energy exchanges between the translational
energy and vibrational energy of the mth CO2 mode (m = 1, 2, 3) as a result of the collision of
two CO2 molecules, of which the vibrational energy of one does not change. The production terms
in Eqs. (2) for these processes have the following form:

(i) VT1 : CO2(i1, i2, i3) + CO2 ↔ CO2(i1 ± 1, i2, i3) + CO2

RVT1
i1,i2,i3

= n
(
ni1+1,i2,i3 ki1+1,i1 + ni1−1,i2,i3 ki1−1,i1 − ni1,i2,i3

[
ki1,i1+1 + ki1,i1−1

])
, (7)

(ii) VT2 : CO2(i1, i2, i3) + CO2 ↔ CO2(i1, i2 ± 1, i3) + CO2

RVT2
i1,i2,i3

= n
(
ni1,i2+1,i3 ki2+1,i2 + ni1,i2−1,i3 ki2−1,i2 − ni1,i2,i3

[
ki2,i2+1 + ki2,i2−1

])
, (8)

(iii) VT3 : CO2(i1, i2, i3) + CO2 ↔ CO2(i1, i2, i3 ± 1) + CO2

RVT3
i1,i2,i3

= n
(
ni1,i2,i3+1ki3+1,i3 + ni1,i2,i3−1ki3−1,i3 − ni1,i2,i3

[
ki3,i3+1 + ki3,i3−1

])
. (9)

Usually, only VT2 transitions are taken into account in nonequilibrium flow simulations [3,5,14]
since their rates are considerably higher than those of VT1 and VT3 exchange. We check this
assumption in the following sections.

The second group incorporates multi-quantum intermode VVk−m exchanges inside one molecule:
(iv) VV1−2 : CO2(i1, i2, i3) + CO2 ↔ CO2(i1 ± 1, i2 ∓ 2, i3) + CO2

RVV1−2
i1,i2,i3

= n
(
ni1+1,i2−2,i3 ki1+1,i2−2→i1,i2 + ni1−1,i2+2,i3 ki1−1,i2+2→i1,i2

− ni1,i2,i3

[
ki1,i2→i1+1,i2−2 + ki1,i2→i1−1,i2+2

])
, (10)

(v) VV2−3 : CO2(i1, i2, i3) + CO2 ↔ CO2(i1, i2 ± 3, i3 ∓ 1) + CO2

RVV2−3
i1,i2,i3

= n
(
ni1,i2+3,i3−1ki2+3,i3−1→i2,i3 + ni1,i2−3,i3+1ki2−3,i3+1→i2,i3

− ni1,i2,i3

[
ki2,i3→i2+3,i3−1 + ki2,i3→i2−3,i3+1

])
, (11)

(vi) VV1−2−3 : CO2(i1, i2, i3) + CO2 ↔ CO2(i1 ± 1, i2 ± 1, i3 ∓ 1) + CO2

RVV1−2−3
i1,i2,i3

= n
(
ni1+1,i2+1,i3−1ki1+1,i2+1,i3−1→i1,i2,i3 + ni1−1,i2−1,i3+1ki1−1,i2−1,i3+1→i1,i2,i3

− ni1,i2,i3

[
ki1,i2,i3→i1+1,i2+1,i3−1 + ki1,i2,i3→i1−1,i2−1,i3+1

])
. (12)

These processes are selected based on the lowest-energy variations during the transition:
�εVV1−2 = 10.54 cm−1, �εVV2−3 = 359.96 cm−1, and �εVV1−2−3 = 349.42 cm−1. Whereas VV1−2

exchange is almost resonant, in other intermode transitions, some part of the energy is transferred to
the translational mode, but the energy variation is considerably less than in VT transitions (for
instance, �εVT2 = 667.25 cm−1). Low-energy variation causes high probability of these energy
exchanges.

The third group of processes includes intramode VVm exchanges of vibrational quanta in each
mth mode of the CO2 molecule:

(vii) VV1 : CO2(i1, i2, i3) + CO2(k1, k2, k3) ↔ CO2(i1 ± 1, i2, i3) + CO2(k1 ∓ 1, k2, k3)

RVV1
i1,i2,i3

=
∑

k1,k2,k3

(
ni1+1,i2,i3 nk1−1,k2,k3 kk1−1,k1

i1+1,i1
+ ni1−1,i2,i3 nk1+1,k2,k3 kk1+1,k1

i1−1,i1

− ni1,i2,i3 nk1,k2,k3

[
kk1,k1−1

i1,i1+1 + kk1,k1+1
i1,i1−1

])
, (13)
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(viii) VV2 : CO2(i1, i2, i3) + CO2(k1, k2, k3) ↔ CO2(i1, i2 ± 1, i3) + CO2(k1, k2 ∓ 1, k3)

RVV2
i1,i2,i3

=
∑

k1,k2,k3

(
ni1,i2+1,i3 nk1,k2−1,k3 kk2−1,k2

i2+1,i2
+ ni1,i2−1,i3 nk1,k2+1,k3 kk2+1,k2

i2−1,i2

− ni1,i2,i3 nk1,k2,k3

[
kk2,k2−1

i2,i2+1 + kk2,k2+1
i2,i2−1

])
, (14)

(ix) VV3 : CO2(i1, i2, i3) + CO2(k1, k2, k3) ↔ CO2(i1, i2, i3 ± 1) + CO2(k1, k2, k3 ∓ 1)

RVV3
i1,i2,i3

=
∑

k1,k2,k3

(
ni1,i2,i3+1nk1,k2,k3−1kk3−1,k3

i3+1,i3
+ ni1,i2,i3−1nk1,k2,k3+1kk3+1,k3

i3−1,i3

− ni1,i2,i3 nk1,k2,k3

[
kk3,k3−1

i3,i3+1 + kk3,k3+1
i3,i3−1

])
. (15)

Taking into account VVm transitions in CO2 is extremely computationally demanding. In some
studies based on the reduced kinetic schemes [5], VV3 transitions are supposed to be responsible
for fast pumping of highly located states in the asymmetric mode, thus enhancing dissociation. In
the present study, the role of VVm transitions is discussed in the framework of the reduced kinetic
scheme.

In Eqs. (7)–(15) above, ki,i′ , ki→i′ , and kk,k′
i,i′ are the rate coefficients of the corresponding

processes.

C. Rate coefficients of vibrational energy transitions

Reliable data on the rate coefficients of vibrational energy transitions in carbon dioxide are
scarce. There are experimental data on the selected transitions between the lowest states [27–30];
these data are often interpolated for the higher states using the formulas of the Schwartz-Slawsky-
Herzfeld (SSH) theory [31]. However, the range of validity of experimental measurements is limited
by low temperatures. One can mention a few works on the quasiclassical trajectory calculations
of the rate coefficients in CO2 [32–34]. Unfortunately, the results are obtained only for several
transitions and thus cannot be used in our simulations; moreover, these works sometimes report the
transitions which are not detected in experiments.

Theoretical approaches include the first-order perturbation SSH theory [31] and the forced
harmonic oscillator (FHO) model [35]. Recently, the FHO model was extended for three-atomic
gases [36]. However, due to the different vibrational ladders used in our study and in [36], we were
not able to assess this data. Therefore, we used the most common approach based on the SSH model
[31]: only single-quantum energy exchanges (as the most probable) are taken into account for VTm

and VVm transitions.
It is interesting to note that in our previous studies [3,11,37], we used the original formulas given

in [31]. And on the basis of these formulas, the contribution of VV2−3 transitions was found to be
considerably greater than that of VV1−2−3, which is not confirmed by the experimental data showing
close values of the rate coefficients for these processes. Therefore, we decided to check the formulas
given in [31].

First, we noticed a mismatch of the dimension in the original formula [31] for the interaction
potential of two-quantum transitions. The expression should be as follows:

V (im → im ± 2) = (α∗Am)2

2!

√
(im + 1 ± 1)(im ± 1)

2α
, m = 1, 2, 3, (16)

where α = 4π2Mmνm/h, α∗ is the factor of potential function, Am are the internal motion coeffi-
cients, im is the state of mth mode, and Mm and νm are the oscillator mass and frequency of the mth
mode. An analogous relationship was given in the work [38]. Thus, the ratio between the original
formula and the corrected one is

V or

V cor
=

√
4α,

which gives a significant discrepancy in the rate coefficients.
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Furthermore, we derived the expression for the three-quantum transitions potential which was
missing in the original article:

V (im → im ± 3) = − (α∗Am)3

3!

√
(im + 1.5 ± 1.5)(im ± 2)(im ± 1)

(2α)3/2
. (17)

Taking into account the above corrections, we obtain the rate coefficients of VV2−3 and VV1−2−3

transitions of the same order of magnitude, which agree well with the experimental data [28].

D. Numerical implementation

As mentioned in Sec. II A, the vibrational energy of the CO2 molecule εi1,i2,i3 depends on the state
of three coupled modes and is usually represented as a 3D array, the number of elements of which
is (l1 + 1) × (l2 + 1) × (l3 + 1) = 31 × 63 × 20 = 39 060 for anharmonic oscillators. However,
most of the elements in this array are zero due to the constraint εi1,i2,i3 < D. Storage of such an array
and access to its elements require high computer performance in terms of memory. Moreover, nested
loops over i1, i2, i3 are used to calculate thermodynamic functions, which significantly increases the
computational costs. Therefore, when numerically solving the system (2) and (3), we decided not
to work with the 3D array for εi1,i2,i3 and rearranged it to a linear vector containing only nonzero
7964 elements of the 3D array. Accordingly, all variables depending on the vibrational state were
also presented in the form of vectors.

Simulations using the state-to-state approach described above require solving a set of 7965
ordinary differential equations (ODEs) for the populations of all allowed vibrational states. The
code was written in the MATLAB environment, which has a huge functionality for working with
vectors and matrices, as well as a library of programs for solving systems of differential equations.
But the main challenge is not even in the ODE solution, but in the need to calculate a large number
of rate coefficients for the energy transitions that occupy a significant amount of computer memory.
A possible solution to the problem of multiple operations with large variables can be parallel
computing and acceleration using the graphics processing units (GPUs).

III. MULTI-TEMPERATURE DESCRIPTION

Although the efficient numerical implementation of the state-to-state model allows one to
carry out relatively fast 0-D simulations, its usage in the real-geometry flows is still challenging.
Therefore, less computationally demanding models, such as multi-temperature approaches, are of
great interest.

A. Three-temperature approach

In the present section, we consider a multi-temperature description of the problem for which the
following relation of characteristic relaxation times holds:

τtr < τrot < τVVm ∼ τVV1−2 � τVT2 ∼ τVV2−3 ∼ τVV1−2−3 ∼ θ, m = 1, 2, 3, (18)

where τγ is the characteristic time for the γ process. Note that VT3 transitions are not included in
the kinetic scheme since they are assumed to be frozen.

Taking into account the rapid VV1−2 and VVm vibrational energy exchanges, the vibrational
temperatures T12, T3 are introduced for the coupled (symmetric-bending) and asymmetric CO2

modes, and vibrational level populations are written in the form of the three-temperature distribution
[14]:

ni1,i2,i3 = nsi1,i2,i3

Zvibr (T, T12, T3)
exp

[
−εi1,i2,i3 − (i1ε1,0,0 + i2ε0,1,0 + i3ε0,0,1)

kBT

− i1ε1,0,0 + i2ε0,1,0

kBT12
− i3ε0,0,1

kBT3

]
, (19)
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where si1,i2,i3 = i2 + 1 is the vibrational statistical weight, T12 is the vibrational temperature of the
coupled (symmetric and bending) mode, T3 is the vibrational temperature of the asymmetric mode,
and Zvibr is the corresponding vibrational partition function:

Zvibr (T, T12, T3) =
∑

i1,i2,i3

si1,i2,i3 exp

[
− εi1,i2,i3 − (i1ε1,0,0 + i2ε0,1,0 + i3ε0,0,1)

kBT

− i1ε1,0,0 + i2ε0,1,0

kBT12
− i3ε0,0,1

kBT3

]
. (20)

Vibrational distribution (19) represents one of the extensions of the Treanor distribution [39],
originally derived for diatomic molecules, to the case of CO2 (see, also, [40–42] for various types of
Treanor-like distributions in polyatomic gases). Under condition (18), fast VV1−2 exchange between
symmetric and bending vibrations leads to the strong coupling of the corresponding modes and, as
a consequence, to the adjustment of their temperatures. The asymmetric mode remains isolated
in the fast processes and, therefore, has its own vibrational temperature. It is worth noting that
similarly to diatomic species, the Treanor distribution is valid only for the states located below
its minimum, and then yields unphysically increasing branches. However, the definition of the
minimum for distribution (19) is a very complicated task due to the mode coupling and cannot
be done analytically. Therefore, for the test cases showing the population inversion, we decided to
use the harmonic oscillator model. In this case, the first terms in the exponential function in Eqs. (19)
and (20) vanish, and the distribution is reduced to the Boltzmann one [14].

In the three-temperature approach for anharmonic oscillators, the fluid-dynamic variables asso-
ciated with the vibrational relaxation are the numbers of vibrational quanta per unit mass associated
with the quantum numbers 2i1 + i2 and i3 conserved in the fast processes [43],

ρW12 =
∑

i1,i2,i3

(2i1 + i2)ni1i2i3 (T, T12, T3), (21)

ρW3 =
∑

i1,i2,i3

i3ni1i2i3 (T, T12, T3). (22)

The total energy in this case also depends on three temperatures through the specific vibrational
energy defined by Eq. (6) and vibrational distribution (19).

The set of governing equations in the three-temperature approach includes the conservation
equation of total energy (3) coupled to the relaxation equations for W12, W3,

ρ
dW12

dt
= R12 = RVT2

12 + RVV2−3
12 + RVV1−2−3

12 , (23)

ρ
dW3

dt
= R3 = RVT2

3 + RVV2−3
3 + RVV1−2−3

3 , (24)

where the production terms are introduced for all slow processes indicated in Eq. (18).

The most self-consistent way to define R12, R3 is to average the state-resolved production terms
substituting there vibrational distribution (19), multiplying by the corresponding invariant, and
summing over vibrational states [16]. For instance,

RVT2
12 =

∑
i1,i2,i3

(2i1 + i2)RVT2
i1,i2,i3

, (25)

RVT2
3 =

∑
i1,i2,i3

i3RVT2
i1,i2,i3

, (26)

where RVT2
i1,i2,i3

is specified by Eq. (8). The remaining production terms are introduced similarly on
the basis of the state-specific terms (11) and (12).
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This method is rigorous and rather natural and shows good results for diatomic species [44,45].
It is, however, extremely time consuming for polyatomic gases; applying it in real CO2 flows may
significantly increase computational efforts and thus cancel out the main advantage of the multi-
temperature approach with respect to the state-to-state model, namely, its numerical efficiency.
Averaged state-resolved production terms used in multi-temperature CO2 flow simulations is an
approach that we assess in the present study, among others.

Instead of using (25), (26), and similar expressions, simple approximate models based on the
Landau-Teller formula are commonly applied [15,23]. The production terms rely on the experimen-
tally measured relaxation times and have the form

Rγ

12 = ρ
W eq

12 (T ) − W12(T, T12)

τγ

, (27)

Rγ

3 = ρ
W eq

3 (T ) − W3(T, T3)

τγ

, (28)

where γ stands for VT2, VV2−3, VV1−2−3 processes, and W eq
12 , W eq

3 are equilibrium values of the
corresponding numbers of quanta. In the present study, the characteristic relaxation times of the
energy exchanges are calculated using the data of [30].

For harmonic oscillators, relaxation equations for the vibrational quanta (23) and (24) are
reduced to the equations for the specific vibrational energy in CO2 modes [14]. In this case, to
describe VT2 and VV2−3 vibrational transitions, the expressions given in [46] can also be used
under several simplifying assumptions, in particular, an infinite harmonic oscillator, independent
vibrational modes, imposed by the SSH theory relation between the transition probabilities, and
weak deviations from equilibrium.

B. Two-temperature approach

In the case when fast processes include also intermode VV2−3 and VV1−2−3 transitions, relax-
ation proceeds through VT2 transitions (τVT2 ∼ θ , whereas all other processes are fast) and we can
introduce a new collision invariant associated to all three modes, (2i1 + i2 + 3i3). Then the total
specific number of vibrational quanta W could be written in the form

ρW =
∑

i1,i2,i3

(2i1 + i2 + 3i3)ni1i2i3 (T, TV ), (29)

as a function of the gas temperature T and the single vibrational temperature of the molecules TV .
The set of governing equations in the two-temperature approach, instead of Eqs. (21) and (22),

includes one equation for W ,

ρ
dW

dt
= RVT2 . (30)

The right-hand side in Eq. (30) is commonly expressed using the Landau-Teller formula,

RVT2 = ρ
W eq(T ) − W (T, TV )

τVT2

. (31)

For harmonic oscillators, the above equations are written for the total specific vibrational energy
Evibr.

IV. RESULTS AND DISCUSSION

A. Test case description

The simulations in pure CO2 are carried out for a spatially homogeneous problem using three
approaches. It is worth mentioning that for state-to-state modeling, the inclusion of intramode VVm
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transitions presents a great challenge. For example, the array with only values of rate coefficients
kk1,k1+1

i1,i1−1 for all states contains about 63.4 million elements and occupies approximately 500 MB of
memory. This greatly complicates the calculations. Therefore, state-to-state simulations were first
carried out neglecting the VVm processes, and the estimation of their possible contribution was
made a posteriori by calculating their contribution to the total vibrational energy variation on the
basis of the obtained solution.

In the state-to-state simulations, several kinetic schemes are assessed using both harmonic and
anharmonic oscillator models:

(1) [all processes] means that all single-quantum VTm and multi-quantum VV1−2, VV2−3,
VV1−2−3 transitions are included to the scheme.

(2) [only VTm] transitions are included whereas the intermode VV exchange is neglected.
(3) [VT2 + VV2−3 + VT1−2−3]. This case was selected on the basis of processes that are taken

into account in the three-temperature model.
(4) Moreover, in order to identify key relaxation mechanisms, we considered multiple test cases

including successively different vibrational energy transitions. The total number of studied test cases
is 16.

In the two-temperature approach, as noted earlier, only VT2 transitions are taken into account.
Moreover, to study the effect of the number of the excited vibrational states on the temperatures

and level populations, two reduced schemes are implemented along with the full scheme. Thus,
three cases are studied:

(1) The full set of vibrational states up to the dissociation energy D = 5.44 eV.
(2) All vibrational states located below the energy threshold set to D∗ = 3 eV; such a reduced

model was proposed in [3] for simulations of the flow along the stagnation line.
(3) The set of vibrational levels proposed in [5], which includes the full vibrational ladder of the

asymmetric mode (20 levels) and two lowest states in the symmetric and bending modes. Such a set
of levels is now widely used in plasma chemistry applications for modeling CO2 conversion.

For the reduced models, it is possible to implement intramode VVm transitions and thus self-
consistently assess their contributions.

As initial conditions, we take a pressure p(0) = 100 Pa, and consider two cases corresponding to
high-temperature shock heated flows and low-temperature expanding flows:

(i) T (0) = 5000 K, T (0)
V = 1000 K

(ii) T (0) = 300 K, T (0)
V = 1500 K.

The initial population of the vibrational levels is specified by the Boltzmann distribution with the
vibrational temperature TV .

The state-to-state calculations are performed using the anharmonic oscillator, unless otherwise
indicated. It should be noted that the use of the multi-temperature approaches based on the an-
harmonic oscillator model in the case of an initially excited gas is limited due to the appearance
of unphysically increasing branches in the vibrational distributions of molecules. In order to
remove this restriction, we use the harmonic oscillator model, which simplifies the form of the
multi-temperature distributions.

B. Full state-to-state model

First we discuss the full state-to-state model. It should be noted that when we say “full model”
we mean that it includes all known mechanisms of vibrational relaxation and the whole set of
vibrational states below the dissociation threshold, contrary to other reduced models neglecting VT1

and VT3 transitions and using selected vibrational states. On the other hand, there are a number of
assumptions which are used for the numerical implementation of the full model. Below they are
listed explicitly:

(a) Based on kinetic scaling (1), rovibrational coupling is not taken into account since the
characteristic time of rotational relaxation is assumed to be fast compared to that of vibrational
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relaxation. This assumption is justified for temperatures below 10 000 K [47]; our test cases consider
much lower temperatures.

(b) The rigid rotor model is used for the CO2 rotational mode. Since CO2 is a linear molecule, its
rotational energy is described similarly to that of diatomic molecules. Under moderate temperature
conditions, nonrigidity does not considerably affect the thermodynamic properties [48].

(c) State-dependent rate coefficients for vibrational energy transitions are obtained by averaging
the corresponding transition probabilities over equilibrium rotational distributions with the gas
temperature. Such an assumption is valid for kinetic scaling (1).

(d) Both harmonic and anharmonic oscillator models are used in the state-to-state simulations.
(e) Rate coefficients of vibrational energy transitions are calculated using the SSH theory [31].

One of the limitations of the SSH theory is that only single-quantum intramode VTm transitions
are allowed. Although this model has many limitations, it provides the complete set of transition
probabilities for the full state-to-state model. We expect that the main mechanisms of vibrational
relaxation are not sensitive to the specific transition probability model, and the SSH model gives
qualitatively correct estimates.

(f) Quasibound rotational states as well as electronically excited states are neglected, although
they can affect the dissociation processes at high temperatures [2]. This assumption is justified for
the present test cases since the maximum temperature is 5000 K, and dissociation is not taken into
account.

Let us evaluate the contribution of various processes to the formation of vibrational distribution
functions (VDFs) and temperature profiles. Vibrational distributions are presented in Figs. 1 and 2.
In Fig. 1, the VDF in each CO2 mode is plotted as a function of the vibrational energy calculated for
the corresponding quantum number for different time points. The case [all processes] is considered;
the quantum number of other modes is set to zero. For higher states of other modes, the results are
qualitatively similar.

In general, the evolution of vibrational level populations in CO2 molecules is rather complicated
due to the competition of various processes. Nevertheless, the excitation and deactivation processes
in the initially hot and cold gases, respectively, can be clearly observed. In the case T (0) > T (0)

V ,
initially the lower vibrational states are the most populated and their population decreases as
a result of relaxation processes. Higher vibrational states at t = 0 are less populated and their
number density increases with time. In the case T (0) < T (0)

V , the situation is opposite; one can see
the depletion of high states with time. One can also notice that the behavior of different states
populations can change both monotonically and nonmonotonically over time. It is interesting to
note that whereas the VDFs in the symmetric mode look like the Boltzmann ones, in the other
two modes, there are noticeable deviations, especially for the asymmetric mode distributions. The
bending mode attains equilibrium faster than the stretching modes.

In Fig. 2, the VDFs are presented as functions of the vibrational energy, similarly to [3]. Three
kinetic schemes are compared: the complete scheme, the scheme including only VT transitions,
and the scheme used in the three-temperature model. It is worth mentioning that under thermal
equilibrium conditions, the populations (the Boltzmann VDF) are localized around a straight line;
thus, the VDFs corresponding to t = 10−7 s in Fig. 2(a) and t = 10−8 s in Fig. 2(b) are close
to the Boltzmann ones. The nonequilibrium level populations are “spread” over a much wider
range of values (for instance, at t = 10−5 s). Thus one can notice that although the VDFs in the
different modes look like the Boltzmann ones (see Fig. 1), the overall distributions are strongly
non-Boltzmann. Comparing the VDFs, we see that under the considered conditions, the complete
scheme [all processes] yields faster relaxation.

Let us now discuss the effect of the kinetic scheme on the temperature. In Table I, the maximum
discrepancy in the temperature obtained for various schemes from that obtained in the [all processes]
test case is presented. Neglecting intermode exchanges yields a considerable error for both the
T (0) > T (0)

V and T (0) < T (0)
V cases. Including VT3 transitions does not affect the accuracy; this

process can be neglected in all cases. Including one of the VV2−3 or VV1−2−3 processes gives
similar contributions; however, accounting simultaneously for both processes does not noticeably
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FIG. 1. Vibrational distributions of molecules in different modes vs vibrational energy for fixed moments
of time. Case: [all processes]. Left: T (0) > T (0)

V ; right: T (0) < T (0)
V .

improve the accuracy. Since calculation of their production terms Ri1,i2,i3 requires approximately
the same number of operations and calls for the rate coefficients, we recommend to include VV2−3

transitions to the kinetic scheme for the case T (0) > T (0)
V as it provides slightly better accuracy. It is
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FIG. 2. Vibrational distributions of molecules vs vibrational energy for different moments of time. First
row: [all processes]; second row: [only VTm]; third row: [VT2 + VV2−3 + VT1−2−3]. Left column: T (0) > T (0)

V ;
right column: T (0) < T (0)

V .

interesting that for the hot gas (T (0) > T (0)
V ), VT1 transitions are more important than VV1−2, and

the numerically efficient scheme [VT1 + VT2 + VV2−3] yields very good accuracy.
For the initially cold gas, neglecting VV1−2 transitions results in a considerable loss of accuracy,

whereas VT1 exchange does not affect it. A similar conclusion is drawn in [11] for a flow along the
stagnation line, where the gas is cooling towards the surface. However, in [11], it is suggested to
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TABLE I. Maximum temperature discrepancy (%) between [all processes] and other cases.

Cases T (0) > T (0)
V T (0) < T (0)

V

[VT1 + VT2 + VT3] 7.89 9.99
[VT2 + VV2−3 + VV1−2−3] 13.13 14.04
[VT2 + VV1−2 + VV2−3 + VV1−2−3] 5.48 2.33 × 10−1

[VT2 + VV1−2 + VV1−2−3] 5.61 4.91 × 10−1

[VT1 + VT2 + VV2−3] 2.73 9.93
[VT1 + VT2 + VV1−2−3] 3.36 9.88
[VT1 + VT2 + VT3 + VV1−2] 7.91 5.96
[VT1 + VT2 + VT3 + VV2−3] 2.64 9.93
[VT1 + VT2 + VT3 + VV1−2−3] 3.25 9.88
[VT1 + VT2 + VV1−2 + VV2−3] 2.29 3.67
[VT1 + VT2 + VV1−2 + VV1−2−3] 1.94 4.89 × 10−1

[VT1 + VT2 + VV2−3 + VV1−2−3] 3.36 9.88
[VT1 + VT2 + VT3 + VV1−2 + VV2−3] 2.15 3.64
[VT1 + VT2 + VT3 + VV1−2 + VV1−2−3] 1.81 4.81 × 10−1

[VT1 + VT2 + VT3 + VV2−3 + VV1−2−3] 2.25 9.83
[VT1 + VT2 + VV1−2 + VV2−3 + VV1−2−3] 8.24 × 10−2 6.56 × 10−3

account for both VV1−2−3 and VV2−3 transitions. We think that the importance of the latter process
was overestimated in [11] since the rate coefficients of this transition were calculated without the
corrections mentioned above in Sec. II C. Thus, for the initially cold gas, we propose using the
scheme [VT2 + VV1−2 + VV1−2−3].

For the general case, when the flow regime is not known, we recommend the scheme [VT1 +
VT2 + VV1−2 + VV1−2−3], which represents a good compromise in terms of accuracy and numer-
ical efficiency. This scheme is highlighted in red in Table I.

In order to illustrate the effect of various energy exchanges on the relaxation process, we evaluate
the contributions of each process to the total vibrational energy variation of the gas according to the
following relation:

�γ =
∑

i1,i2,i3

Rγ
i1,i2,i3

εi1,i2,i3 . (32)

It is worth noting that �γ can change its sign during the relaxation. Thus, when plotting �γ , we
accept the following convention: if �γ > 0 in the whole range of time, we give its value directly;
if �γ < 0 for all t , we plot |�γ |; if the sign is changing, we plot the logarithm function calculated
as lg(�) = sgn(�) · [lg(1+ | � |)]. For the latter case, the order of magnitude of �γ is shown on
the ordinate axis, and the plus or minus mark indicates its sign [see, for instance, Figs. 4(b) and
10(b)–10(d)].

The results of this evaluation are presented in Fig. 3 (�γ for the initially hot gas and |�γ | for
the cold gas). One can see the dominating role of VT2 transitions at the first relaxation stages; for
the case T (0) > T (0)

V , VT1 transitions are also important. With rising time, different contributions
become closer and intermode exchanges start playing an important role.

Finally, we assess the possible contribution of intramode VVm transitions. The estimates are
based on the vibrational distributions and temperature obtained for the case [all processes]. The
results are presented in Fig. 4 [�γ for the initially hot gas and lg(�γ ) for the cold gas]. It can
be seen that these processes may play a role if the gas is excited. Nevertheless, the contributions
from the VVm transitions are at least two orders of magnitude less than those from dominating
processes. Therefore, the VVm processes can be neglected in the state-to-state simulations, which
greatly reduces the computational efforts.

123401-13



KUNOVA, KOSAREVA, KUSTOVA, AND NAGNIBEDA

)b()a(

10-8 10-7 10-6 10-5 10-4 10-3 10-2
100

101

102

103

104

105

106

107

108

Ω
γ
[J

/(m
3 se

c)
]

time [sec]

VT1
VT2
VT3
VV-1-2
VV-2-3
VV-1-2-3

10-7 10-6 10-5 10-4 10-3 10-2 10-1
100

101

102

103

104

105

106

107

108

ab
s(

Ω
γ )[

J/
(m

3 se
c)

]

time [sec]

VT1
VT2
VT3
VV-1-2
VV-2-3
VV-1-2-3

FIG. 3. Contributions of various processes to the total vibrational energy of a mixture vs time. Case: [all
processes]. (a) �γ ; T (0) > T (0)

V . (b) |�γ |; T (0) < T (0)
V .

C. Comparison of STS and MT approaches

In this section, we compare the solutions obtained in the framework of the state-to-state (STS)
and multi-temperature (MT) approaches. Time distributions of the gas temperature are presented in
Fig. 5 for various approaches and kinetic schemes. From this point on, the symbols “a.o.” and “h.o.”
refer to anharmonic and harmonic oscillators, respectively.

First, one can see that the two-temperature model fails to correctly describe the temperature
evolution; it yields a very long incubation time compared to other models for both the T (0) > T (0)

V

and T (0) < T (0)
V cases. Contrarily, the three-temperature (3T) approach shows much better results

for the case of an initially hot gas [Fig. 5(a)]. At the early relaxation stage, the temperature profiles
obtained within the STS and 3T models are rather close, but at t ≈ 10 μs they start to diverge,
and the temperature calculated using the 3T model attains equilibrium considerably faster. An
attempt was made to keep in the STS simulation the same processes which are included to the
3T simulations, namely, [VT2 + VV2−3 + VV1−2−3]. However, it gave a very different temperature
profile and did not improve the agreement. Moreover, as is seen from Table I, this kinetic scheme is
one of the worst among those considered and cannot be recommended for state-to-state simulations
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FIG. 5. Evolution of gas temperature. (a) T (0) > T (0)
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of CO2 flows. Based on Table I, one can suggest to improve the multi-temperature model including
the VT1 transitions; this means that the temperatures of the symmetric and bending modes have to
be different. Such a four-temperature model was proposed in [43,49], but was never implemented
in the CFD. Implementation of the four-temperature model is, however, beyond the scope of the
present study.

Another source of discrepancy can be in using, in the 3T model, simplified production terms
(27) and (28) instead of the rigorous ones (25) and (26). Thus, in [50,51], it was discussed that
applying the Landau-Teller form for the intermode VV exchange may cause noticeable differences
in the vibrational temperature profiles. Here we provide a systematic assessment of this assumption.
For this purpose, we use in the 3T simulations the state-resolved production terms of the VT2,
VV2−3, and VV1−2−3 processes averaged with quasistationary vibrational distributions (Treanor for
anharmonic oscillators or Boltzmann for harmonic); the corresponding curve in Fig. 5 is denoted as
“aver.” One can see a considerable improvement of the solution at t > 2 × 10−4 s; the equilibrium
is now attained at the same time. Yet, there is a discrepancy in the range 10−5–10−4 s, which can be
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attributed to the VT1 and VV1−2 transitions which cannot be taken into account in the framework
of the 3T model.

For the initially excited gas [Fig. 5(b)], both multi-temperature models fail to correctly describe
the vibrational relaxation showing a very long incubation time and a sharp subsequent temperature
increase. The kinetic scheme [VT2 + VV2−3 + VV1−2−3] also yields significant discrepancies. On
the other hand, the effect of anharmonicity is rather weak and thus cannot explain the difference
between the STS and 3T simulations. The failure of the original 3T model can be connected not only
with the use of simplified production terms (27) and (28), but also with the fact that the relaxation
times [30] measured in shock heated gases cannot properly describe the vibrational relaxation in the
cooling regime. Using the averaged state-resolved production terms again significantly improves the
solution; in this case, the temperature discrepancy between the STS and 3T models does not exceed
10–12%. This is especially noticeable when the 3T model is compared with the case STS h.o. where,
with the exception of a small zone 10−5–10−4 s, the temperature distributions completely coincide.
The differences can be connected with VV1−2 exchanges not accounted for in the 3T model. It is
interesting to note that for both STS and 3T simulations with the state-resolved production terms,
one can see a kind of quasi-steady state (QSS) attained around t ≈ 10 μs. The possible reasons are
discussed later.

The change in the population of one selected vibrational state (we have chosen the state i1 = 1,
i2 = 8, i3 = 1, but similar conclusions are drawn for other states) is shown in Figs. 6(a) and 7(a)
for the initially hot and cold gas, respectively. The corresponding production term R1,8,1 calculated
for the full STS model is presented in Figs. 6(b), 7(b), and 7(c). For the case of an initially hot
gas (Fig. 6), the excitation proceeds monotonically; using the reduced scheme [VT2 + VV2−3 +
VT1−2−3] yields a much slower excitation process. For the 2T model, one can notice a considerably
longer incubation time, but faster equilibration. The final equilibrium state is a bit different due to
the difference in the thermodynamic functions for harmonic and anharmonic oscillators. For the
original 3T model, the relaxation starts earlier and the equilibrium is attained faster. However, if
the averaged state-resolved production terms are used, then the evolution of the level populations
is almost the same as for the full STS model. Analysis of the production term shows that in the
beginning, the main relaxation mechanism is the VT2 exchange in the bending mode and, to a lesser
extent, in the symmetric mode. At times about 10 μs, the role of the VT processes decreases and
the contribution of intermode VV exchange becomes important.

For the initially excited gas (Fig. 7), at t < 10 μs, the population decreases as a result of
VT2 and VV1−2 transitions; for t > 10 μs, its behavior is essentially nonmonotonic due to the
competition of various processes. Both multi-temperature models yield monotonic evolution of this
level population, long incubation time, and fast attaining of the final equilibrium state. When the
state-resolved production terms are used in the 3T simulations, the evolution of n(1, 8, 1) is close to
that for the full STS h.o. model; the discrepancy around 10−5–10−4 s is due to VV1−2 transitions.
The effect of anharmonicity is noticeable for t > 10 μs; it also appears in the difference of the final
equilibrium state.

As is mentioned above, for the initially cold gas, a kind of QSS is seen around 10−4–10−3 s. It
can be explained by the competition of VT2 and VV1−2 processes which give similar contributions
but act in the opposite directions [see Fig. 7(b)]. At this point, the role of the VV2−3 and VV1−2−3

transitions is still weak. With rising time, the contribution of the VV2−3 and VV1−2−3 exchange
increases [see Fig. 7(c)] and destroys this quasiequilibrium. The final equilibrium is attained through
the combination of all processes.

To conclude this section, we can say that multi-temperature models could provide an efficient
alternative to the state-to-state models if the production terms in the relaxation equations are
calculated correctly. Using the averaged state-resolved production terms is not numerically efficient
since it needs computation and storage of all state-resolved rate coefficients. Therefore, derivation
of the generalized Landau-Teller equations similar to those obtained for diatomic species [52,53]
is rather promising for the improvement of the MT models. Another possible way to increase the

123401-16



VIBRATIONAL RELAXATION OF CARBON DIOXIDE IN …

(a)

10-7 10-5 10-3 10-1
0.0

0.5

1.0

1.5

2.0

2.5 x10-3

n(
1,

8,
1)

/n

time [sec]

STS:
a.o. [all processes]
h.o. [all processes]
a.o. [VT2+VV-2-3+

VV-1-2-3]
-

3T, a.o.
3T, a.o., aver.
2T, h.o.

(b)

10-7 10-6 10-5 10-4 10-3
-1

0

1

2

3

4

5

6 x1022

R
γ 1,

8,
1

[m
-3

se
c-1

]

time [sec]

VT1
VT2
VT3
VV-1-2
VV-2-3
VV-1-2-3

FIG. 6. (a) Evolution of the relative population of the state (1,8,1). (b) Relaxation terms Rγ

(1,8,1) of different

processes. Case: [all processes]; T (0) > T (0)
V .

accuracy while keeping the efficiency is to develop and implement the four-temperature model with
different vibrational temperatures of all CO2 modes.

D. Comparison with other reduced-order models

Another way to increase the efficiency of the state-to-state CO2 flow simulations is to implement
reduced STS models. One possibility is to keep the same structure of the vibrational levels but
lower the threshold energy. In the present study, similarly to [3], we use the reduced model with
the threshold energy of 3 eV instead of the dissociation energy D = 5.44 eV and take into account
all the vibrational states located below. This reduces the number of states and corresponding master
equations to 1177 and also significantly saves the computational efforts for calculation of the rate
coefficients. The second possibility is to use some specific sets of levels as those proposed by Kozak
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and Bogaerts [5]. In that study, based on the Fridman model [2], the CO2 molecule is assumed to
have only a few vibrational states: all levels i3 of the vibrational asymmetric mode at fixed i1 = i2 =
0, the levels i2 = 0 − 4 of the bending mode at fixed i1 = i3 = 0, and states (1, 0, 0) + (1, 1, 0) +
(1, 2, 0) + (2, 0, 0). Thus this spectrum contains 28 vibrational states but excludes VV2−3 energy
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transitions. For both reduced-order models, we implement the full kinetic scheme. Moreover, due
to the reduction of the computational complexity, it is also possible to include the intramode VVm

transitions to the kinetic scheme.
Figure 8 presents the temperature evolution for the full and reduced STS models; both T (0) >

T (0)
V and T (0) < T (0)

V test cases are considered. One can see that the solutions obtained for the energy
ladders limited at 5.44 and 3 eV coincide. Therefore, in the absence of dissociation, this model
can be recommended for simulations. Moreover, including VVm transitions to the kinetic scheme
does not affect the temperature. This justifies that intramode VV exchange can be neglected in
the kinetics, which drastically saves on the computational efforts. On the other hand, using the
set of levels proposed in [5] yields different values of the equilibrium temperature. This is clear
since the thermodynamic functions (in particular, the vibrational energy per unit mass) specified by
such a reduced vibrational spectrum differ significantly from the real ones. This limits the range of
applicability of the model [5] by the ambient temperatures and small departures from equilibrium,
when the thermodynamic functions can be calculated using a few lowest states.

In Fig. 9, the vibrational distributions obtained using the reduced-order models are compared. It
is interesting that the general trends are similar for both models; the rates of the excitation process
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[Fig. 9(a)] are comparable. In the case of the deactivation relaxation mechanism [Fig. 9(b)], the VDF
obtained at t = 0.01 s using the model [5] shows a non-Boltzmann shape, with overpopulated high
vibrational states. This is, perhaps, a justification for the assumption about vibrationally enhanced
dissociation, which is the basic idea of studies [5,54]. However, one has to be careful since the
full STS model does not yield such high populations in the asymmetric mode at the same time
point; see Fig. 1(f). This can be explained by the fact that changing the set of accounted vibrational
states affects the contribution of various processes to the total vibrational energy; see Fig. 10.
For the excitation mode (T (0) > T (0)

V ), STS simulations accounting for all vibrational states below
3 eV yield positive values of �γ . For the model proposed in Ref. [5], the contributions of the VT
transitions change their signs with time. For the deactivation mode (T (0) < T (0)

V ), the trends are
more or less similar but shifted in time. Therefore, we conclude that using selected sets of levels
with the same kinetic scheme may considerably affect the temperature evolution and vibrational
distributions.

V. CONCLUSIONS

Space homogeneous vibrational relaxation in the single-component CO2 gas was studied using
full and reduced state-to-state models and several multi-temperature approaches. The full model
includes about 8000 vibrational states and all possible VT and intermode VV transitions. Two
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generic test cases were considered, with initially hot and cold gases, corresponding to compression
flows (excitation regime) and expanding flows (deactivation regime). For both cases, dominating
processes were identified and kinetic schemes combining acceptable accuracy and numerical
efficiency were proposed. For the excitation regime, the main role belongs to VT1, VT2, and
VV2−3 transitions; for the deactivation mode, the best description is given by the scheme including
VT2, VT1−2, and VV1−2−3 exchanges. For an arbitrary flow regime, we recommend a bit more
expensive but general model, [VT1 + VT2 + VV1−2 + VV1−2−3]. The contribution of intramode
VVm transitions and VT3 exchange in the asymmetric mode to the time distributions of temperature
and specific vibrational energy is found to be negligible.

Solutions obtained in the framework of the state-to-state approach were compared to the results
of various multi-temperature simulations, and the main sources of discrepancy were detected.
The two-temperature model assuming rapid intermode vibrational energy exchanges and a single
vibrational temperature of all CO2 modes cannot be applied at any relaxation stage; its accuracy is
rather low. The original three-temperature model based on the experimentally measured relaxation
times provides an acceptable agreement for the temperature distribution in the hot gas for an early
relaxation stage; with rising time, the discrepancy occurs. For the cold gas, this model does not work,
which can be explained by the fact that the relaxation times measured in shock heated gases fail to
describe the cooling regime. However, if the averaged state-resolved production terms are used in
the three-temperature model instead of the Landau-Teller relaxation terms, the agreement with the
state-to-state model is fairly good for both test cases. This is the main result of the comparisons
showing a coherence of state-to-state and multi-temperature approaches, if the energy production
terms are calculated in a self-consistent way. Nevertheless, such a technique, although providing
good accuracy, requires significant computational efforts and thus destroys the main advantage of
the MT model, i.e., its numerical efficiency.

Based on the analysis performed in this study, we see several ways to improve the
multi-temperature models: development of the generalized Landau-Teller formulas suitable
for polyatomic gases with intermode vibrational energy exchange, modification of the multi-
temperature model introducing different temperatures of symmetric and bending modes which
allows inclusion of VT1 and VV1−2 transitions to the kinetics, and development of rigorous
theoretical models for the relaxation times, independent of the considered temperature range. Such
models may be derived using the kinetic theory methods if information on the cross sections of
various vibrational energy transitions is available.

Finally, two reduced state-to-state models were assessed. It is shown that in the absence of
dissociation, lowering the threshold energy to 3 eV does not affect the solution if all vibrational
states below this energy are taken into account. This allows for considerable reduction of the
computational efforts. Contrarily, the model based on the set of selected states cannot be applied
for high-temperature regimes, and can be used only at ambient temperatures when the excitation of
symmetric and bending vibrations has no effect on the thermodynamic functions.

In our future studies, we plan to include state-resolved chemical reactions consistently coupled
to vibrational energy exchanges in order to study relaxation mechanisms under high-temperature
conditions.
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