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Many aquatic microorganisms are attached to solid surfaces while creating feeding flows
that bring prey particles to them. To explore the effects of surface proximity and orientation
of the flow-generating force, we analyze the low-Reynolds-number flow due to a point
force above a plane no-slip surface. The presence of the surface reduces the feeding flow
relative to the unbounded situation. We show that the reduction of the flow rate through
a circular clearance disk perpendicular to the force and centered at its position is twice as
large when the force is perpendicular to the surface as when it is parallel. When the force is
perpendicular to the surface, the flow forms a toroidal eddy with closed streamlines, and the
resulting flow recirculation may lead to refiltration of water that has already been cleared
for prey. We prove that due to the nature of the far-field flow, the shortest recirculation time
along a streamline through a circular clearance disk is inversely proportional to the flow
rate to the power four. Finally, we discuss the biological advantages and disadvantages of
perpendicular and parallel force orientation and the effects of prey diffusion and ambient
flow, and we argue that recirculation is irrelevant in the typical perpendicular feeding flow
since the recirculation time is long compared to the biologically relevant timescales.
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I. INTRODUCTION

Many aquatic microorganisms are suspension feeders that use flagella or cilia to generate feeding
flows through clearance zones where they retain suspended prey particles. Flagellates and ciliates
commonly attach to surfaces of aquatic plants, larger organisms, and millimeter-sized aggregations
of smaller particles known as marine snow (Fig. 1). Sessile flagellates such as the choanoflagellate
Salpingoeca rosetta and ciliates like Vorticella convallaria attach to solid surfaces with a stalk and
generate a feeding flow either away from or toward the surface [1–12]. Other species of ciliates such
as Cyclidium glaucoma and Euplotes vannus sit on solid surfaces while generating a feeding flow
parallel to the surface [4,5]. How is the foraging of such organisms and in particular the clearance
rate, i.e., the flow rate through the clearance zone, affected by the proximity to the surface and the
orientation of the flow-generating force?

In the vast open water masses of the oceans, marine snow is the most important source of habitats
for attached suspension feeders, and we therefore consider marine snow as our primary biological
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FIG. 1. Examples of suspension feeding microorganisms on solid surfaces. (a) The choanoflagellate
S. rosetta (scanning electron micrograph courtesy of Mark J. Dayel) [13], (b) the ciliate V. convallaria (image
courtesy of Rachel E. Pepper), and (c) the ciliate E. vannus sitting on a lump of organic material. The equivalent
spherical radius of the cell of S. rosetta is typically 2 μm. The blue arrows indicate the flow directions. The
choanoflagellate S. rosetta and the ciliate V. convallaria generate feeding flows away from and toward the
surface, respectively, and the ciliate E. vannus generates a feeding flow roughly parallel to the surface.

example. Marine snow forms microbial hot spots, and feeding in this environment is favorable for
suspension feeders that feed on bacteria and small flagellates [14–17]. Prey come from two sources:
(1) chemotactic microorganisms that are attracted toward the surface by leaking, dissolved organic
material [15,18] and (2) microorganisms that leave the productive biofilm on the surface [19–21].
The incoming flux density to a spherical collector is proportional to the product of the ambient
concentration and the diffusion coefficient of the motile prey and inversely proportional to the radius
of the marine snow particle [22], whereas the flux density of detaching motile prey is proportional
to the density and the detachment rate of attached prey on the surface. Densities of bacterial and
flagellate prey attached to marine snow are many orders of magnitude higher than in the ambient
water [19,20], and the residence time, i.e., the time that prey spend at the surface, can be short, on
the order of a few hours [21]. Attached suspension feeders positioned above competitors that are
directly on the surface may enjoy a competitive advantage by removing incoming prey before it
reaches the surface. Conversely, suspension feeders positioned near the surface may benefit from
the high concentration of microorganisms in the immediate vicinity of the surface.

To explore the fluid dynamical effects of surface proximity and force orientation, we consider
the solution derived by Blake and coworkers for the steady flow at low Reynolds number due to
a point force above a plane no-slip surface [23–27]. Fenchel used the solution to model feeding
flows of attached suspension feeders, and he showed that the proximity to the surface reduces
the clearance rate more strongly in the perpendicular than in the parallel case [5]. Here we derive
analytic clearance rate expressions in both situations, and we quantify the comparison. When the
force is perpendicular to the surface, the flow forms a toroidal eddy as observed in feeding flows
of choanoflagellates and ciliates [1,2,8], and the resulting flow recirculation may lead to refiltration
of water that has already been cleared for prey [3,5,6,9]. Sessile microorganisms like V. convallaria
can vary their orientation and height above the surface with time [2,9], and periodic variation of the
vertical position of the force disrupts the steady toroidal eddy as shown using the so-called blinking
Stokeslet model [6]. However, even in a steady, perpendicular feeding flow, refiltration is only an
issue if the recirculation time is short compared to the timescales for prey transport by Brownian
motion, self-motility, and ambient flow. Here, we shall determine the recirculation times analytically
and address the significance of refiltration.

In the following, we first summarize the flow solution derived by Blake and coworkers [23–25].
Building on the solution we derive analytic expressions for the flow rate through a circular clearance
disk that is centered at the position of the force and oriented perpendicular to it, both when the force
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is perpendicular and when it is parallel to the surface. When the force is perpendicular to the surface,
we also obtain the clearance rate when the center of the circular clearance disk is displaced up or
down relative to the position of the force. When the force is parallel to the surface, we explore how
well the optimal clearance zones can be approximated by circular clearance disks. Furthermore,
we determine the recirculation times of the flow along the closed streamlines when the force
is perpendicular to the surface. Finally, we discuss the biological implications of our theoretical
findings.

II. POINT FORCE MODEL

We model the feeding flow as the low-Reynolds-number flow due to a point force, F, that acts at
the point X = (0, 0, h) in the infinite half-space above a solid surface represented by the xy plane at
which we apply the no-slip boundary condition. The governing equations are the time-independent
Stokes equations for Newtonian and incompressible flow:

−∇p + μ∇2v = 0, ∇ · v = 0, (1)

where p denotes the pressure field, v the velocity field, and μ the viscosity. The solution can be
written in the compact form [23,24]:

vi = Fj

8πμ

{
δi j

|x − X | + (xi − Xi )(x j − Xj )

|x − X |3 − δi j

|x − X *| − (xi − X *
i )(x j − X *

j )

|x − X *|3

+ 2h(δ jαδαk − δ j3δ3k )
∂

∂xk

[
h(xi − X *

i )

|x − X *|3 − δi3

|x − X *| − (xi − X *
i )(x3 − X *

3 )

|x − X *|3
]}

, (2)

p = Fj

4π

[
x j − Xj

|x − X |3 − x j − X *
j

|x − X *|3 − 2h(δ jαδαk − δ j3δ3k )
∂

∂xk

x3 − X *
3

|x − X *|3

]
, (3)

where x = (x, y, z) is the field point, X * = (0, 0,−h) the image point, and α = 1, 2. The term
δ jαδαk − δ j3δ3k is equal to 1 if j = k = 1, 2 and −1 if j = k = 3. The force may point in any
direction, but we focus our attention on the two generic cases in which it is either perpendicular or
parallel to the surface.

The flow in the perpendicular case has rotational symmetry around the z axis, and the velocity
components can be expressed as partial derivatives of a Stokes stream function. In cylindrical polar
coordinates the velocity components become:

vs = 1

s

∂�

∂z
, vz = −1

s

∂�

∂s
, (4)

where s =
√

x2 + y2 is the radial coordinate. The stream function, �, can be written:

�(s, z) = Fs2

8πμ

{
1√

s2 + (z − h)2
− 1√

s2 + (z + h)2
− 2hz

[s2 + (z + h)2]3/2

}
, (5)

where we have assumed that the force is pointing toward the surface [6,25]. This choice models
sessile ciliates such as V. convallaria, whereas the flow-generating force of sessile choanoflagellates
like S. rosetta points away from the surface and leads to an identical streamline pattern with reversed
flow direction [5].

The height of the point force above the wall, h, provides the characteristic length scale, and we
can define characteristic scales for time, flow speed, and stream function:

T0 = 8πμh2

F
, v0 = F

8πμh
, �0 = Fh

8πμ
. (6)

In the following we shall use the characteristic scales throughout our analysis and plots.
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FIG. 2. Streamlines and clearance zones in the point force model. The point force (red arrow) is placed at
the height h above the plane no-slip surface, and it is oriented respectively (a) perpendicular and (b) parallel to
the surface. Both plots show a circular clearance disk (green) that is centered at the position of the point force
and oriented perpendicular to it.

III. EFFECTS OF SURFACE PROXIMITY AND FORCE ORIENTATION

The streamlines are closed and the flow forms a toroidal eddy when the force is perpendicular to
the surface [27], whereas there are no closed streamlines and the velocity component in the direction
of the force is positive when the force is parallel to the surface (Fig. 2). In the perpendicular case
we obtained the streamlines as contour lines of the stream function, and in the parallel case we
determined them by numerical integration since a streamfunction does not exist. In the perpendicular
case the stream function is zero on the axis of symmetry, �(0, z) = 0, and its maximum value,
�max = 0.3974�0, is found at the center of the toroidal eddy which has the coordinates smax =
1.0565h and zmax = 1.2482h [25].

In the perpendicular case, the flow rate, Q, through a circular clearance disk centered on the axis
of symmetry and oriented perpendicular to it is proportional to the stream function evaluated at the
rim of the disk:

Q = −2π

∫ a

0
vz(s, d )sds = 2π�(a, d ), (7)

where a is the radius of the disk and d its height above the wall [28]. Using the stream function in
Eq. (5) we therefore readily obtain the general clearance rate expression:

Q = Fa2

4μ

{
1√

a2 + (d − h)2
− 1√

a2 + (d + h)2
− 2hd

[a2 + (d + h)2]3/2

}
. (8)

The maximum value of the clearance rate is obtained when the rim of the clearance disk coincides
with the center of the toroidal eddy:

Qmax = 2π�max = 0.3121
Fh

πμ
= 2.4968�0. (9)

Fenchel derived by integration the flow rate through a circular clearance disk at the same height as
the force [5]. By setting d = h in Eq. (8) we obtain Fenchel’s formula:

Q = Fa

4μ

[
1 − a√

a2 + 4h2
− 2ah2

(a2 + 4h2)3/2

]
, (10)
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FIG. 3. Clearance rates for different force orientations. (a) The complete expression (10) for the perpen-
dicular case (black solid line), the approximation (11) for the perpendicular case (red dots), the complete
expression for the parallel case evaluated numerically (orange solid line), and the approximation (13) for the
parallel case (blue dots). The clearance rate is equal to 90% of the clearance rate for the Stokeslet in the
unbounded domain when h/a = 3.8 in the parallel case (gray dashed line) and h/a = 7.5 in the perpendicular
case (gray dotted line). (b) The clearance rate as function of the angle between the force and the inward surface
normal when h/a = 3.8 (black dashed line) and (magenta dots) and h/a = 7.5 (black dotted line) and (green
dots). The complete expressions are shown as lines and the approximations (14) as dots.

where the prefactor Fa/(4μ) is the flow rate for the corresponding Stokeslet in the unbounded
domain [5]. The flow rate for a Stokeslet in an unbounded domain is the maximum that an attached
microorganism can possibly attain, and the presence of the no-slip surface reduces the flow rate
relative to the unbounded situation. When d = h and a � h we may approximate the flow rate by
the Taylor series:

Q ≈ Fa

4μ

(
1 − 3a

4h

)
, (11)

which we shall compare below with the corresponding approximation in the parallel case.
In the parallel case, we again focus on the flow rate through a circular clearance disk that is

centered at the position of the force and oriented perpendicular to it [Fig. 2(b)]. We note that the
flow rate is defined only when a � h due to the geometry of the problem [5]. To determine the flow
rate we write the velocity component vx in the yz plane using polar coordinates y = q cos φ and
z = h + q sin φ. Building on Eq. (2) we find:

vx = F

8πμ

[
1

q
− 1√

q2 + 4hq sin φ + 4h2
− 2h(h + q sin φ)

(q2 + 4hq sin φ + 4h2)3/2

]

≈ F

8πμ

(
1

q
− 3

4h
+ 3q sin φ

8h2

)
, (12)

where we have assumed that q � h to obtain the Taylor series. By integrating the approximate
expression for vx over the clearance disk, we obtain the flow rate approximation:

Q ≈ F

8μπ

∫ a

0

∫ 2π

0

(
1

q
− 3

4h
+ 3q sin φ

8h2

)
qdqdφ = Fa

4μ

(
1 − 3a

8h

)
. (13)

The second-order term in the approximation of vx does not contribute to the flow rate, since it
vanishes in the integration due to its angular dependence.

The flow rate in the perpendicular case is reduced more strongly due to the proximity of the
surface than in the parallel case [Fig. 3(a)]. The approximation in the perpendicular case (11)
captures the complete expression well with less than 3% deviation when h > 2a. The approximation
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in the parallel case (13) agrees well with the complete expression in the entire range h > a with less
than 2% deviation, since the second-order term does not contribute to the flow rate. We see that when
h > 2a the reduction of the flow rate due to the surface is twice as large in the perpendicular case
compared to the parallel case. The ratios h/a = 3.8 and h/a = 7.5 with parallel and perpendicular
force orientation, respectively, correspond to 90% of the clearance rate for the Stokeslet in the
unbounded domain [Fig. 3(a)], and such ratios are typical for suspension feeders in nature ([5],
Table 2). The approximations (11) and (13) are special cases of the general approximation for the
flow rate through a circular clearance disk perpendicular to the force and centered at its position:

Q ≈ Fa

4μ

[
1 − 3(1 + cos2 α)a

8h

]
, (14)

where α denotes the angle between the force and the inward surface normal. To derive the
approximation we estimated the reduction of the flow rate due to the image system by evaluating its
contribution to the velocity component in the direction of the force at the position of the force and
multiplying it by the area of the clearance disk. The approximation increases monotonically from
the minimum value in the perpendicular case (α = 0) to the maximum value in the parallel case
(α = π/2), and it agrees well with the numerically evaluated complete expression when h/a = 3.8
and h/a = 7.5 [Fig. 3(b)].

IV. OPTIMAL CLEARANCE ZONES IN THE PARALLEL CASE

In the perpendicular case the flow has rotational symmetry and circular clearance disks are
optimal, i.e., for a given disk area the flow rate is maximum through a clearance disk with circular
shape that is centered at the position of the force [5]. The optimal clearance disks in the parallel case
need not be circular as implicitly assumed above, and we shall therefore explore how well they can
be approximated by circular clearance disks.

The contour lines of vx form the boundaries of the optimal clearance disks in the yz plane. This
result follows if we imagine perturbing a clearance disk bounded by a contour line while keeping its
area constant. Any such perturbation will lower the clearance rate, since it will lead to a clearance
disk that includes a “new” region with low values of vx while excluding an “old” region with high
values of vx. In the vicinity of the force, the contour lines labeled by the numbers k = vx/v0 are
approximately circles centered at the position of the force, and further away they appear flattened
and centered above the position of the force [Fig. 4(a)]. The flow rate, Q, increases at decreasing
rate with the effective radius, b, of the optimal clearance disk, i.e., the radius of the circular disk
with the same area as the optimal clearance disk [Fig. 4(b)]. The flow rates are shown normalized
by the total flow rate in the direction of the force as determined by Liron [26]:

Qtot =
∫ ∞

−∞

∫ ∞

0
vx(0, y, z)dydz = Fh

πμ
= 8�0. (15)

Ciliates with parallel feeding flows typically have h/b in the range 3–4 [5], corresponding to k in the
range 2.3–3.3 and Q/Qtot = 0.18–0.23 [Fig. 4(b)]. We therefore see that the model in biologically
relevant situations predicts that the optimal clearance disks are close to circular and carry significant
fractions of the total flow rate through the entire half-plane.

V. RECIRCULATION TIME IN THE PERPENDICULAR CASE

When the force is perpendicular to the surface, the recirculation time along a given closed
streamline in the toroidal eddy can be determined numerically by solving the coupled first-order
differential equations for the streamline. From an initial point we integrate forward in time while
monitoring the distance to the initial point. When returning to the vicinity of the initial point, we
integrate with refined time steps until we pass the initial point and the distance increases again.
The recirculation time is long for the streamlines that pass close to the force and short for the
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FIG. 4. Optimal clearance zones and clearance rates when the force is parallel to the surface. (a) The
boundaries of the optimal clearance disks are contour lines of vx (blue solid lines), and the position of the force
is indicated by the red dot. (b) The flow rate, Q, for the optimal clearance disks as function of the effective radius
of the clearance disk, b. The flow rate is normalized by the total flow rate defined in Eq. (15). The contour lines
in (a) correspond to the points (blue dots) in (b), and the numbers indicate the values of k = vx/v0, where v0 is
defined in Eq. (6).

streamlines near the center of the toroidal eddy [Fig. 5(a)]. The recirculation time varies by three
orders of magnitude for the selected streamlines, and we find that it is inversely proportional to
the stream function to the power four [Fig. 5(b)]. Pepper and coworkers numerically determined a
similar power law for the recirculation time as function of the radial coordinate, s, for the streamlines
that cross z = h [9]. The two power laws are related since �/�0 ≈ s/h when z = h and s � h.

The streamlines that come close to the z axis return far away from the force where the flow speed
is low and therefore determining for the long recirculation times. To understand the dependence of
the recirculation time on the stream function, we shall therefore consider the far field flow. The flow

FIG. 5. Recirculation times along the closed streamlines when the force is perpendicular to the wall. (a) The
numerically determined recirculation times are shown for selected streamlines in units of the timescale T0.
(b) The recirculation time, T , as function of the stream function, �, normalized by T0 and �0, respectively.
Numerical results for the complete flow solution (blue solid line) and the analytically determined power law in
Eq. (23) (orange dots). The inset shows the numerical results for the complete flow solution (blue solid line)
and the analytic approximation in Eq. (24) (red dots).

123104-7



MADS RODE et al.

speed decreases as one over distance cubed in the far field when the force is perpendicular to wall
[24], and we have the velocity components:

vs = F

8πμ

6h2sz(2s2 − 3z2)

(s2 + z2)7/2
, (16)

vz = F

8πμ

6h2z2(3s2 − 2z2)

(s2 + z2)7/2
. (17)

The corresponding approximation of the stream function decreases as one over distance:

� = 6�0hs2z2

(s2 + z2)5/2 , (18)

and in polar coordinates r and θ it reads:

� = 6�0h sin2 θ cos2 θ

r
= 3�0h(1 − cos 4θ )

4r
, (19)

where s = r cos θ and z = r sin θ . Since the streamlines are contour lines of the stream function, we
can readily obtain the polar representation of the streamlines:

r = 3�0h

4�
(1 − cos 4θ ). (20)

The shape of the approximate streamlines is related to the shape of the cardioid curve [29], i.e.,
the curve shapes are similar except that the arguments of the parametric representations differ by a
factor of four. A complete loop corresponds to going from θ = 0 to θ = π/2, and the recirculation
time can therefore be obtained from the angular velocity. Using Eqs. (16) and (17) we find the radial
velocity:

dr

dt
= 12�0h cos 2θ sin θ

r3
, (21)

and by applying Eq. (20) we obtain the angular velocity:

dθ

dt
= �

3�0h sin 4θ

dr

dt
= �4

216�4
0 T0 sin6 θ cos7 θ

. (22)

We rearrange the expression, and by integration we find that the recirculation time is inversely
proportional to the stream function to the power four:

T

T0
≈ 216�4

0

�4

∫ π/2

0
sin6 θ cos7 θdθ = 1152�4

0

1001�4
. (23)

The analytically determined power law for the recirculation time as function of the stream function
agrees well with the numerical result [Fig. 5(b)]. However, to fully capture the numerical result,
we need to include the next to leading-order term in the far field approximation. Following the
procedure outlined above, we obtain the recirculation time:

T

T0
≈ 1152�4

0

1001�4
− 2

�3
0

�3
. (24)

The expression agrees quantitatively with the numerical result, and it captures the deviation from
the power law near the center of the toroidal eddy [Fig. 5(b), inset].

The recirculation time approaches a limiting value, Tmin, as the center of the toroidal eddy is
approached. To determine Tmin we apply concepts from dynamical systems theory and consider the
eigenvalues of the Jacobian matrix evaluated at the center of the eddy:

J =
(

∂svs ∂zvs

∂svz ∂zvz

)∣∣∣∣
s=smax, z=zmax

. (25)
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The pair of purely imaginary eigenvalues are related to the limiting value of the recirculation time
via λ± = ±i2π/Tmin [30]. To determine the eigenvalues, we use Eq. (4) to express the velocity
components in terms of the stream function in Eq. (5), and we find the limiting value of the
recirculation time:

Tmin = 2πs√
(∂2

s �)(∂2
z �) − (∂s∂z� )2

∣∣∣∣∣∣
s=smax, z=zmax

= 14.0370 T0. (26)

The theoretically determined value agrees well with the value obtained by direct numerical integra-
tion of the coupled first-order differential equations [Fig. 5(b)].

VI. DISCUSSION

In the perpendicular case, we derived the general clearance rate expression in Eq. (8) for the
situation in which the point force and the clearance disk are positioned at different heights above the
surface. The expression has practical applicability, since flow generation and prey interception takes
place at different heights for some microorganisms (Fig. 1). Sessile ciliates such as V. convallaria
use their cilia bands to both create the feeding flow and intercept prey particles [2,4], but sessile
choanoflagellates such as S. rosetta generate the feeding flow with their flagellum and intercept prey
particles on their collar filter closer to the surface [1,5]. Furthermore, for attached microorganisms
that create a flow toward the surface it may be advantageous to determine the clearance rate through
an imaginary clearance disk positioned some distance above the organism where the simplifying
assumptions of the point force model are more fully justified.

Parallel feeders do not need to be positioned very high above the surface to achieve the same
flow rate as organisms with perpendicular feeding flow. The ratios h/a = 3.8 for parallel feeders
and h/a = 7.5 for perpendicular feeders are typical for flagellates and ciliates in nature [5], and the
model predicts that the ratios correspond to 90% of the maximum clearance rate that an attached
microorganism can possibly attain [Fig. 3(a)]. For organisms attached to marine snow particles, we
conjecture that parallel feeders may in particular feed on the prey that leave the surface, whereas
stalked, perpendicular feeders that harvest prey relatively far from the surface may preferentially
remove incoming prey before it reaches the surface and the parallel feeders. Depending on the
concrete situation, the flux density of prey that leave the surface may be smaller, similar to, or higher
than the incoming flux density, thus favoring one or the other foraging strategy. When attached to a
plane surface, suspension feeders are typically not creating their feeding flow exactly perpendicular
or parallel to the surface, and surfaces of marine snow particles and other habitats for attached
suspension feeders are often rough at the length scale of the organism (Fig. 1). However, the general
clearance rate approximation in Eq. (14) suggests that our main conclusions are robust [Fig. 3(b)].

When the force is perpendicular to the surface, we showed that the long recirculation time and
its dependence on the stream function is a result of the one over distance cubed decrease of the
flow speed in the far field (Fig. 5). We can link the recirculation times determined from the far field
behavior to the clearance rates and the radii of the circular clearance disks in the vicinity of the
force using Eq. (7). The clearance rate increases with the radius of the disk, but at a decreasing
rate when a > 0.21h, i.e., the increase comes with diminishing returns [Fig. 6(a)]. This feature is
further emphasized by the increase of the risk of refiltration due to the decrease of the shortest
recirculation time through the disk [Fig. 6(b)], an effect that has already been pointed out by Pepper
and coworkers [9]. However, perpendicular feeders in nature are observed to have a � 0.2h [5], and
if we as an example consider a sessile microorganism with a = 0.2h and T0 = 0.5–5 s (Table I), we
find Q = 0.25Qmax and T = 9.9 × 103T0 = 1–14 h, i.e., the clearance rate is 25% of the maximum
possible value and the shortest recirculation time is between 1 h and half a day. The recirculation
time is therefore long compared with the biologically relevant timescales, such as the timescales for
active variation of orientation and height above the surface.
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FIG. 6. The flow rate, Q, through a circular clearance disk and the shortest recirculation time, T , along a
streamline through the disk as functions of the radius of the disk, a, when the force is perpendicular to the
surface. The clearance disk is positioned at the height d = zmax above the surface corresponding to the height
of the center of the toroidal eddy. (a) The flow rate in Eq. (8) is normalized by the maximum flow rate, Qmax,
determined in Eq. (9), and (b) the numerically determined recirculation time is normalized by the timescale T0.

Nonmotile bacteria display Brownian motion, and motile bacteria and small flagellates move
with run-tumble motion. Prey are therefore not passive tracers that perfectly follow the streamlines
of the feeding flow. The motion of motile prey can be treated as diffusive when the run length is
short compared with the size of the clearance zone whereas it should be treated as ballistic when
the run length is long [31]. To describe the relative importance of advection and diffusion in the
feeding flow toward the clearance zone, we consider the Péclet number: Pe = hv0/D, where v0 is
the characteristic flow speed defined in Eq. (6) and D the diffusion coefficient [9]. Typical values of
diffusion coefficients are D = 0.2 μm2 s−1 for nonmotile, bacteria-sized prey and D = 30 μm2s−1

for motile, bacterial prey [31–33]. With F = 50–500 pN and μ = 1 × 10−3 Pa s (Table I), we
find Pe = 104–105 for nonmotile prey and Pe = 102–103 for motile prey, indicating that the prey
transport toward the clearance zone is advectively dominated. The time, TD, that it takes for a prey
organism to diffuse the distance, h, can be estimated as TD = h2/D. For a ciliate like V. convallaria
with h = 100 μm this corresponds to TD = 14 h for nonmotile prey and TD = 6 min for motile
prey. The timescale for nonmotile prey is fairly long, whereas the timescale for motile prey is
short compared to the shortest recirculation time in the representative example, suggesting that
diffusion makes recirculation irrelevant in perpendicular feeding flow with motile prey. The effect
of motility on recirculation is presumably even more significant for motile prey with long run length
that move ballistically on the length scale of the clearance zone, and for such prey types motility
may furthermore significantly enhance the transport toward the clearance zone [34].

Marine snow particles and other habitats for attached suspension feeders typically have some
regions that are shielded from ambient flow while others are exposed. To estimate the possible
effects of ambient flow close to a typical marine snow particle, we consider a spherical particle with
radius R = 2 mm and sinking speed U = 0.9 mm s−1 [14]. The Reynolds number for such a particle

TABLE I. Parameters for the choanoflagellate S. rosetta and the ciliate V. convallaria (Fig. 1). The
equivalent spherical radius of the cell, ESR, the height above the surface, h, the height, d , and the radius,
a, of the clearance disk, the magnitude of the flow-generating force, F , and the timescale T0 obtained using
Eq. (6) with μ = 1 × 10−3 Pas.

Species ESR (μm) h (μm) d (μm) a (μm) F (pN) T0 (s) Source

S. rosetta 2 17 7–13 3 2 4 [10,12]
V. convallaria 16 100 100 15 50–500 0.5–5 [9]
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is on the order of unity, but for simplicity we assume low-Reynolds-number flow. Close above the
surface, the magnitude of the parallel velocity component, u, increases linearly with the height
above the surface, δ, whereas the magnitude of the perpendicular velocity component increases
quadratically. The parallel flow vanishes at the poles of the spherical particle, and it is largest at the
equator:

u ≈ 3δU

2R
. (27)

The clearance rate of a parallel feeder may be either enhanced or reduced depending on its orienta-
tion relative to the ambient flow. As an example of a parallel feeder we consider the ciliate Euplotes
moebiusi with h = 30–34 μm and typical feeding flow speeds of approximately 300–400 μm s−1

([5], Table 2 and Fig. 29). With δ = 34 μm we estimate the ambient flow speed u = 23 μm s−1,
suggesting that ambient flow is an order of magnitude weaker than the self-generated feeding
flow. To lowest order, the flow through the clearance disk of a perpendicular feeder will not be
affected directly by the predominantly parallel ambient flow. However, since perpendicular feeders
are positioned relatively high above the surface, they will experience stronger ambient flow than
their parallel counterparts. Such ambient flow might disrupt the recirculating streamline pattern and
influence both orientation and height of organisms with thin stalks such as V. convallaria.

VII. CONCLUSIONS

Quantitative experimental data for near field flows and prey capture in sessile suspension feeders
are sparse, and additional quantitative observations of feeding flows, clearance zone geometries,
and recirculation times for representative flagellates and ciliates would complement the extensive
data on morphological characteristics that exists in the literature. Such observations will allow
predictions based on the point force model and open for quantitative explorations of its applicability,
while the testable hypotheses discussed in the present paper will provide valuable inspiration for the
analysis of the observations.
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