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Dynamics of a reactive spherical particle falling in a linearly stratified fluid
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Motivated by numerous geophysical applications, we have carried out laboratory ex-
periments of a reactive (i.e., melting) solid sphere freely falling by gravity in a stratified
environment, in the regime of large Reynolds (Re) and Froude numbers. We compare our
results to nonreactive spheres in the same regime. First, we confirm, for larger values of
Re, the stratification drag enhancement previously observed for low and moderate Re. We
also show an even more significant drag enhancement due to melting, much larger than the
stratification-induced one. We argue that the mechanism for both enhancements is similar,
due to the specific structure of the vorticity field sets by buoyancy effects and associated
baroclinic torques, as deciphered for stratification by Zhang et al. [J. Fluid Mech. 875, 622
(2019)]. Using particle image velocimetry, we then characterize the long-term evolution (at
time t � 1/N , with N the Brünt-Väisälä frequency) of the internal wave field generated by
the wake of the spheres. The measured wave field is similar for both the reactive and inert
spheres: indeed, each sphere fall might be considered as a quasi-impulsive source of energy
in time and the horizontal direction, as the falling time (the sphere radius) is much smaller
than N (than the tank width). Internal gravity waves are generated by wake turbulence over
a broad spectrum, with the least damped component being at the Brünt-Väisälä frequency
and the largest admissible horizontal wavelength. About 1% of the initial potential energy
of each sphere is converted into kinetic energy in the internal waves, with no significant
dependence on the Froude number over the explored range.

DOI: 10.1103/PhysRevFluids.5.114803

I. INTRODUCTION

Particles settling or rising in a stratified fluid have been widely studied in previous decades
because of numerous applications ranging from industrial processes to geophysics (see the broad
review by Magnaudet et al. [1]). Examples include marine snow, plankton, and Lagrangian floats [2]
in the ocean, as well as dust and aerosols in the atmosphere. Moreover, moving reactive particles,
meaning particles exchanging heat and mass with the surrounding medium, are encountered in many
geophysical contexts such as ice crystallizing in the atmosphere [3], a water droplet condensing
or evaporating in clouds, and iron or oxide crystals solidifying in planetary cores [4–6]. The
sedimentation of these reactive particles often occurs in a stably stratified layer, as for instance at
the top or bottom of liquid planetary cores due to a combination of thermal, pressure, and chemical
gradients [7]. The fall of reactive particles may strongly interact with the stratified surrounding
environment, and the associated dynamics are the focus of our present study, using a generic,
laboratory, experimental model. These dynamics include both the fall of the particle and its wake,
but also the internal wave field that it generates and that then persists for a long period of time.

Experimental studies have reported a drag increase for inert particles falling through a sharp
density gradient [8–13]. In a linearly stratified fluid, Yick et al. [14] showed that the drag coefficient
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FIG. 1. Diagram of the seven regimes of wakes observed in the experiments or numerical studies [1]. The
solid and empty large markers denote our experiments with the reactive and plastic spheres, respectively. This
figure is a modification of Fig. 4(a) of Hanazaki et al. [21].

can be enhanced by a factor of 3 compared to the one in a homogeneous fluid for small Reynolds
number (Re = 2aU

ν
, with U the falling velocity, a the sphere radius, and ν the fluid kinematic

viscosity). A lot of numerical simulations of a sphere falling in a stratified layer have been done
for small and moderate Reynolds numbers [14–18]. Direct numerical simulations and asymptotic
approaches have shown the enhancement of the drag due to the stratification. Doostmohammadi
et al. [19] also examined the drag enhancement in transient settling. Zhang et al. [15] challenged
the canonical view of the enhancing drag coefficient in a stratified layer, commonly attributed to
the additional buoyancy force resulting from the dragging of light fluid by the falling body. They
rigorously examined the physical mechanism implied in the drag increase and showed that for
high Prandtl number, the added drag is mostly due to a modification of the vorticity field induced
by the baroclinic torque on the surface of the sphere. Other experimental and numerical studies
focused on the flow regime past the sphere settling [16,20–22]. Hanazaki et al. [21] investigated
the characteristics (length and radius) of the associated jet and its behavior for a large range of
Reynolds and Froude numbers (Fr = U

Na , with N the Brünt-Väisälä frequency). They found seven
regimes corresponding to various jet structures (see Fig. 1). Hanazaki et al. [20] examined the effect
of the molecular diffusion and showed that the jet widens when diffusivity increases and that the
stratification is then less effective.

The falling or rising paths of spherical or nonspherical bodies have been largely studied (see
the review of Ern et al. [23]). The trajectory of a falling sphere depends on the Reynolds number
and the density ratio (m� = ρsphere/ρfluid) and can be oblique, periodic, or chaotic [23,24]. For
instance, at m� � 1 and high Reynolds number, falling paths are chaotic [25], but become periodic
at m� ∼ 1 [24,26]. However, experimental studies of the falling or rising path are difficult as the
noise background in the fluid can dramatically change the instabilities occurring on the path [24,25].
To the best of our knowledge, there is no exhaustive study of the path of a freely falling sphere in a
stratified layer.

In a stratified layer, the vertical motion of a buoyant fluid or particle may generate internal
waves [27,28], as for instance in the Earth’s atmosphere [29] and in astrophysical environments [30].
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FIG. 2. Schema of the experimental setup for the small tank. The 50 FPS camera (1) allows us to perform
PIV measurements over the whole tank. We use a 50 mm lens on the 500 FPS camera to track the rapid
dynamics of the sphere wake in a reduced domain. A green laser of 1 W is used here.

Mowbray and Rarity [31] have described internal waves associated with the settling of a sphere
through a stratified layer, in the regime of small Reynolds and Froude numbers. The velocity field
during the fall of the sphere is explained by the linear theory of internal waves [16,21,32], which
governs the radius and the length of the jet behind the sphere. Most of the studies regarding the
generation of internal waves by a turbulent wake are focused on a horizontally towed sphere in
a linearly stratified layer. Two regimes of waves are described: Lee waves and random internal
waves [33–35], the second regime being dominant for Fr > 4 [33,36]. This study examines the
internal waves produced by the fall of a sphere in the regime of large Reynolds and Froude numbers.

In this paper, we investigate the dynamics of a sphere falling in a linearly stably stratified fluid
while melting, focusing on the drag coefficient and the associated internal waves generation. To
decipher the effects of melting from the ones due to stratification, we also investigate the dynamics
of inert (plastic) spheres. Our experiments have a range of Froude and Reynolds numbers of 80 <

Fr < 600 and 400 < Re < 15 000, respectively, i.e., relatively unexplored in regards to the previous
experiments as shown in Fig. 1 (see Magnaudet et al. [1] for a review). In Sec. II, we describe
the experimental setup and we define the physical parameters. In Sec. III, we present a model for
understanding the melting rate of our spheres and we compare it with experimental results. We
describe the falling behavior of the spheres, and we calculate the drag coefficient for melting and
plastic spheres in Sec. IV. Section V presents our results on the internal waves generated by both
types of spheres settling into a stratified layer. In Sec. VI, we discuss our main results and their
implications.

II. METHOD

The experiment is carried out in a 30 × 30 × 50 cm tank filled with linearly stably stratified,
salty water using the double-bucket technique [37,38] (Fig. 2). A larger tank (45 × 45 × 100 cm) is
used in one set of experiments to investigate possible wall effects. We impose a linear stratification
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FIG. 3. (a) Density profile of the four different linear stratifications in the small tank. One stratification
(N = 0.142 Hz) has been used with backlighting to track the sphere position (red solid line and squares). Two
different stratifications (N = 0.094 and 0.136 Hz) have been used for PIV measurements (dashed lines and
circles). The last stratification (N = 0.196 Hz) has been used with the two measurement techniques (black
line and diamonds). (b) Density profile in the large tank, only used with the backlighting technique: the linear
stratification, of the same depth as in the small tank, is enclosed between the top and bottom homogeneous
layers, with a noticeable density jump around the bottom interface.

which is characterized by the Brünt-Väisälä frequency N in Hz,

N = 1

2π

√
− g

ρ

∂ρ

∂z
, (1)

where g is the gravitational acceleration, ρ is the mean density of the fluid, and ∂ρ

∂z is the density
gradient. In our tanks, we set a Brünt-Väisälä frequency between 0.1 and 0.2 Hz. Figure 3 shows
the five different stratifications used in our experiments. We have measured the density every 8 cm
by microsampling and then using a portable density meter (Anton-Paar DMA 35). To release the
sphere without initial shear or vertical velocity, we use an iris diaphragm with 16 leaves mounted
on a support and disposed on the water surface, before being carefully opened (Fig. 2). We perform
particle image velocimetry (PIV) with silver-coated particles (diameter of 10 μm) to track the fluid
motion in the whole tank at a frame rate of 50 FPS, as well as a zoom of the turbulent wake over a
window of 12.3 × 15 cm2 at 500 FPS. In both cases, we typically use 32 × 32 pixel boxes with 50%
overlap. Independently of the PIV measurements, we also perform experiments with a backlighting
to track the real-time two-dimensional position of the spheres. The postprocessing of these images
produces better results for the sphere velocity, and so for the drag coefficient. Indeed, the high
Reynolds number of our experiments implies a three-dimensional (3D) motion of the falling spheres,
which do not stay in the laser sheet plane.

Our reactive spheres are molded in spherical molds that are 3D printed with three different radii
(14, 7.9, 5 mm). By image analysis, we measure the ratio between the minor axis and the major axis
of the falling spheres, which denotes their sphericity. For reactive spheres, this ratio is about 0.9 ±
0.05. The difficulty of making a proper sphere is due to (i) the small hole required to pour the liquid
solution and (ii) the melting during the unmolding. The major axis is mostly perpendicular to gravity.
To mold the reactive spheres, a liquid solution with c0 = 25 wt% NaCl is trapped in the spherical

114803-4



DYNAMICS OF A REACTIVE SPHERICAL PARTICLE …

FIG. 4. Phase diagram of binary mixtures of water (H2O) and sodium chloride (NaCl). (s) and (l) denote the
solid and the liquid phases, respectively. The subscripts e, pe, and t p denote the eutectic, peritectic, and triple
points of the phase diagram, respectively. The NaCl 2H2O phase is a hydrated salt and is called hydrohalite.
The fluid with a salt concentration of 25 wt% (red star) is cooled below the eutectic temperature (vertical red
arrow) where a solid mixture is formed by pure ice and hydrohalite (horizontal dotted red arrows). The blue
lines indicate the liquid density.

mold and cooled from ambient temperature to about −23 ◦C, below the eutectic temperature (see
the red star arrow in Fig. 4). The mass composition of each sphere is then (see the horizontal red
arrows in Fig. 4)

xi = cpe − c0

cpe
= 59.42% of ice (2)

and

xhh = 1 − cpe − c0

cpe
= 40.58% of hydrohalite, (3)

where cpe is the concentration of the peritectic point. The density of the ice-hydrohalite mixture
sphere ρm is theoretically defined by

ρm,th = ρice(1 − �hh) + ρhh�hh = 1114 kg m−3, (4)

where ρice and ρhh are the density of ice and hydrohalite, respectively (Table I). �hh = xhh/[xhh +
(1 − xhh) ρhh

ρice
] is the volume fraction of hydrohalite. This value is slightly below our experimental

measurements giving ρm,exp = 1142 ± 15 kg m−3, based on two different methods: first, we mea-
sured the mass of several spheres and the volume change induced by immersing them in water;
second, we measured the equilibrium position of some spheres in a stratified fluid with a density
linearly changing from 1096 to 1160 kg m−3. The disagreement might essentially come from
nonideal conditions while making the sphere (e.g., noninstantaneous cooling of the fluid below
the eutectic). In the following sections, we thus use the ρm,exp value.
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TABLE I. Physical property values used in the theoretical calculations.

Quantity Symbol Value Unit Reference

Melting temperature of ice Tice 0 ◦C [39]
Eutectic temperature Te −21.1 ◦C [39]
Triple-point temperature Tt p 0.1 ◦C [39]
Eutectic composition ce 23.3 wt% [39]
Peritectic composition cpe 61.6 wt% [39]
Triple-point composition ct p 26.33 wt% [39]
Density of ice at −23 ◦C ρice 920 kg m−3 [40]
Density of hydrohalite at −10 ◦C ρhh 1610 kg m−3 [41,42]
Density of pure water at 25 ◦C ρw 997 kg m−3 [43–45]
Density of salty water at 0 ◦C and c = 25 wt% ρ0 1198.5 kg m−3 see Appendix
Latent heat of crystallization of ice Lice 334 kJ kg−1 [46]
Enthalpy of dissolution of NaCl LNaCl 66.39 kJ kg−1 [47]
Enthalpy of dissociation of hydrohalite Lhh 7.73 kJ kg−1 [48]
Heat capacity of water Cl

p 4184 J K−1 kg−1

Thermal conductivity of the hydrohalite-ice sphere km 2.7 W m−1 K−1 [46,49]
Thermal conductivity of water kl 0.6 W m−1 K−1 [50]
Kinematic viscosity of water at 0 ◦C ν 1.8 × 10−6 m2 s−1 [51]

In addition to those homemade reactive spheres, we also use spheres of Torlon (polyamide-imide)
or PVC (polyvinyl chloride) with radius 1.6, 3.2, 4.8, 7.9, 9.5, and 14.3 mm and density between
1300 and 1430 kg m−3 to isolate the effect of melting on the falling sphere dynamics.

III. MELTING OF OUR REACTIVE SPHERES

A. Theoretical model

Here we consider the melting of a sphere of mass Mg = ρm4/3πa3 at an initial temperature Ts in a
mass Ml of well-mixed, warmer, and pure water (or, at least, far from salt saturation) at temperature
T , enclosed in a tank. The differential velocity between the sphere and the fluid is U . The total mass
of the system is Mtot = Ml + Mg. Then, the energy conservation in the fluid—including the liquid
that has come from the melt and is still at the melting temperature T0—can be written as

Cl
p(Mtot − Mg)

∂T

∂t
= −4πa2FT + ρ0C

l
p(T − T0)4πa2 ∂a

∂t
+ P (Text − T )Cl

p(Mtot − Mg), (5)

where Cl
p is the specific heat capacity of water (we neglect its dependence on temperature and salt

concentration) and ρ0 is the density of the 25% NaCl water used to mold the sphere (we neglect
its dependence on temperature). The first term of the right-hand side corresponds to the convective
heat flux FT from the liquid towards the sphere. The second term corresponds to the heating of
the liquid melt from its release temperature T0 to the liquid temperature T (we neglect the density
change between the solid and the melt, and we assume rapid and complete mixing). The last term
of the right-hand side corresponds to the heat losses by the liquid in the surrounding environment
through the tank boundaries. P is an effective heat-exchange or heat-loss parameter, which can be
experimentally determined by simply measuring the cooling of pure water in the same setup but
with no melting sphere. Note that it is negligible in both tanks for our main experiment on falling,
melting spheres, but it has to be accounted for in our melting model validation experiment presented
in the next section.

The salt mass conservation is given by

Mtotc = Mlcl + Mgc0, (6)
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where cl is the liquid concentration of sodium chloride [cl (t = 0) = 0] and c is the mean con-
centration. The salt concentration in the sphere c0, the mean concentration c, and the total mass
Mtot = Ml + Mg are all constant. Hence, differentiating this equation gives

∂cl

∂t
= (cl − co)

(Mtot − Mg)

∂Mg

∂t
= (cl − co)

(Mtot − Mg)
ρm4πa2 ∂a

∂t
. (7)

The mass of sodium chloride in our reactive sphere is small compared to the total volume of
water. Then, the mean liquid concentration is small and far from the saturation point, and hence the
salt concentration in the liquid does not prevent the melting of the sphere.

Following the Stefan condition at the melting interface, the growth rate is defined by a balance
between the latent heat release due to the melting, the heat flux from the sphere towards the liquid,
and the heat flux from the liquid towards the sphere,

[Liceρice(1 − �hh) + Lhhρhh�hh + LNaClρhh�hhcpe]
∂a

∂t
= km

∂T

∂r

∣∣∣∣
r=a−

− kl
∂T

∂r

∣∣∣∣
r=a+

, (8)

where km and kl are the heat conductivity of the sphere and of the liquid, respectively. Here we
take into account the binary mixture of the sphere, and hence the release of latent heat due to ice
melting Lice as well as the enthalpy due to hydrohalite dissociation Lhh followed by sodium chloride
dissolution LNaCl. All processes are endothermic, which means that the melting of the sphere will
absorb energy from the surrounding liquid. By assuming as a first-order approximation a linear
temperature profile through the sphere, we can write

[Liceρice(1 − �hh) + Lhhρhh�hh + LNaClρhh�hhcpe]
∂a

∂t
= km

(T0 − Ts

a

)
− FT , (9)

where T0 is the temperature at the surface of the sphere equal to the melting temperature of ice, Ts is
the temperature at the sphere center assumed to remain at its initial value, and FT is the convective
heat flux defined in Eq. (10).

The convective heat flux FT has been measured for a large range of Reynolds, Prandlt, and
Schmidt numbers, as shown by Clift et al. [52]. Here we use the parametrization given by Zhang
and Xu [53], valid over a large range of Reynolds number,

FT = kl (T − T0)

2a

[
1 + (1 + PeT )1/3

(
1 + 0.096Re1/3

1 + 7Re−2

)]
, (10)

where PeT = 2aU
κl

is the Péclet number and κl = kl
ρwCl

p
is the liquid thermal diffusivity.

We can finally model the melting of a sphere by solving the two coupled differential equations (5)
and (9) in terms of the liquid temperature T and the sphere radius a, using the physical properties
from Table I and the heat flux parametrization (10). Equation (7) then gives the liquid concentration
evolution cl , and a polynomial fit of the equation of state of an aqueous sodium chloride solution
(see the Appendix) finally allows one to evaluate the fluid density.

B. Melting of a reactive sphere in a beaker

In this section, our goal is to validate the theoretical model of melting presented above. It would
be very difficult to track the temperature and the salt concentration in the wake of a sphere during
its fall in our complete experiment. Besides, it will turn out to also be very difficult to measure
the radius changes, as will be discussed in the next paragraph. Thus, we have carried out a simpler
experiment in a small beaker, where a sphere hanging from a rod is completely immersed in a
known volume of pure water (Fig. 5). The liquid is stirred with a magnetic stirrer to homogenize
the temperature and the concentration during the melting. We performed density and temperature
measurements in the fluid with a portable density meter (Anton-Paar DMA 35). Using a high-speed
camera, we also tracked the radius evolution with time. We have previously measured the effective
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FIG. 5. Experiment in a small beaker of a sphere melting in a turbulent fluid using a magnetic stirrer.

heat-exchange and heat-loss parameter of this setup, P = 4.8 ± 0.2 × 10−4 s−1. Figure 6 shows
the evolution of the radius, temperature, and density for two runs with a 14 mm reactive sphere.
The sphere falls from the rod after 20 seconds, which prevents tracking the radius afterward. The
typical fluid velocity has been estimated experimentally to be O(0.35) m s−1. We solve the set of
Eqs. (5), (7), and (9) with a(t = 0) = 14 mm and cl (t = 0) = 0 wt%. Note that we do not take into
account the effect of the rod since it is small and heat transfer in metal is very rapid. The initial fluid

FIG. 6. Evolution of the (a) radius, (b) fluid temperature, and (c) fluid density for two similar experiments
(red and black) of a reactive sphere melting in well-mixed pure water. Thick solid lines [in (a)] and dotted
lines with circles [in (b) and (c)] denote measurements. Thin solid lines correspond to the model presented in
Sec. III A with a kinematic viscosity 9 × 10−7 m2 s−1 and a velocity 35 cm s−1.
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FIG. 7. Evolution of the radius normalized by its initial value [5 (red), 7.9 (blue), 14 mm (black), respec-
tively] during the fall with a kinematic viscosity of 9 × 10−7 m2 s−1 (dotted lines). The falling velocity and
time are based on an experiment in the large tank with a stratification N = 0.164 Hz (see Fig. 9).

temperature is the only free parameter as it has not been measured precisely. To solve Eq. (10), we
have to estimate the value of the kinematic viscosity of the fluid. Since the Prandtl and Schmidt num-
bers are large, the thermal and chemical boundary layers are small compared to the viscous boundary
layer. In addition, changes in the bulk fluid composition and temperature are small. Therefore, we
consider the viscosity of the bulk of the fluid that is ν(∼ 25 ◦C, ∼ 0 wt%) = 9 × 10−7 m2 s−1 (see
the Appendix; temporal changes in temperature and concentration over the course of the experiment
have no significant effect on viscosity). By adjusting, using a least-squares method, the initial
temperature to T (t = 0 s) = 25.8 ◦C and 26.2 ◦C, respectively, for the two considered experiments
(in red and black in Fig. 6), the theoretical evolution of the radius, liquid temperature, and density
is in good agreement with measurements.

Using the same set of equations, we then estimate the melting rate of a sphere falling in a
stratified layer in our complete experiment. Because the reactive spheres fall in a few seconds only,
we consider that the temperature and the concentration of the far field remain constant. Thus, our
estimation of the melting rate is an upper bound: the increase of salt concentration and the decrease
of the temperature in the fluid surrounding the melting sphere would indeed reduce the melting
rate if taken into account. Here, we use the falling velocity (as detailed below in Fig. 9) for each
different sphere radius as the value of U in Eq. (10). Over the falling time in the stratified layer,
the sphere radius decreases by less than 2%, 6%, and 15% for the 14, 7.9, and 5 mm spheres,
respectively (see Fig. 7). With the high-speed camera equipped with a zoom [(2) in Fig. 2], we
observe qualitatively the melting of the reactive sphere. However, we observe the same variation
of radius for both the plastic and reactive spheres. Indeed, the small radius variation induced by
melting is of the same order of magnitude as the apparent decrease of radius due to refraction index
changes with salt content. In the following, we thus use a constant radius for the reactive spheres
to calculate all dimensionless parameters, including the drag coefficient, the Froude number, and
the Reynolds number: this hypothesis only implies a small error, which will be further discussed in
Fig. 10.

IV. DYNAMICS OF THE PLASTIC AND REACTIVE SPHERES

A. Falling behavior of the plastic and reactive spheres

Here, using a backlighting technique, we present the results on the settling of plastic and reactive
spheres. In all cases over the explored parameter range, the vertical settling is combined with
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oscillatory horizontal motions, with various but always small amplitudes (the ratio of horizontal vs
vertical velocities is always less than 10% and is becoming even smaller for the smallest spheres).
We first performed two experiments in a homogeneous fluid, in the small tank and in the large tank,
respectively, to investigate the wall effects. Second, we conducted three experiments with a stably
stratified layer (two in the small tank and one in the large tank) for three different Brünt-Väisälä
frequencies N = 0.136, 0.164, and 0.196 Hz (see linear stratifications in Fig. 3). Up to seven releases
at the top of the tank were performed for each sphere size and type. A low-pass filter was applied on
the positions x and z to remove all high-frequency noise due to the postprocessing, before calculating
the velocity by finite difference. The Reynolds number Re and the Froude number Fr are calculated
with the median of the velocity distribution for each sphere size, the initial sphere radius, and with
the viscosity of the bulk fluid for the mean concentration along the density profile and at ambient
temperature. Figures 8 and 9 show the settling evolution of the plastic and reactive spheres in the
larger tank with a stratification band [see Fig. 3(b)] and in pure water.

Figures 8(b) and 8(d) show the velocity of the plastic spheres for two different radii (14.3 and
3.2 mm), with time t = 0 corresponding to the time when the sphere reaches the top of the stratified
layer. Figures 8(a) and 8(c) show the same cases in a homogeneous fluid, for reference. Before
entering the stratified layer, the velocity of the largest spheres rapidly decreases, and then increases
once in the layer. This rapid variation is not observed for the smallest plastic spheres (3.2 and
1.6 mm). For all radii, however, a jump of velocity occurs when the spheres reach the bottom
of the stratified layer. These observations agree with the recent study of Verso et al. [13], which
relates velocity changes to the crossing of a relatively sharp density interface. In our experiment,
the transition is always sharp at the bottom of the stratified layer [see Fig. 3(b)], whereas it is seen
as sharp at the top interface by large spheres only. Then, within the stratified layer [colored lines
in the middle column of Figs. 8(b) and 8(d)], the velocity decreases with depth for the smaller
spheres, whereas for the larger spheres it remains almost constant. In addition, the falling path is
quite periodic for the largest spheres, while the smallest spheres (3.2 and 1.6 mm radius) fall only
with small oscillations. Actually, the velocity decrease is correlated to the relative decrease of the
sphere buoyancy due to the ambient stratification: the density difference between the sphere and
the fluid driving the fall decreases with depth because fluid density increases with depth. For the
largest plastic spheres, this evolution is of the order of 6% using the Newtonian velocity scaling
introduced below [see (11)], and hence it is of the same order of magnitude as the variation due to
the nonrectilinear motion: this is why the velocity decrease is not observed in these specific cases.
The median velocities of the two largest spheres are almost similar (41.1 and 40.7 cm s−1 for the
14.3 and 7.9 mm spheres, respectively), which is also likely due to the strong oscillations of the
sphere. For comparison, we also show the trajectory of our plastic spheres in a homogeneous fluid
for the same radii. For the largest spheres [top line in Fig. 8(a)], the falling trajectories are more
chaotic and the velocity spreads on a larger range. For the 3.2 mm radius spheres with a smaller
Reynolds number [Fig. 8(c)], the falling paths are quite similar to the stratified case, yet with a
constant sinking velocity. As shown in [24], the falling path is strongly perturbed by the noise
background in the fluid, which we did not carefully remove between each launch. Nevertheless, for
a stratified layer, we may expect that the motion noise is smaller, mostly two dimensional, and more
rapidly attenuated: therefore, the presence of a stratified layer extends the regime of the regular
oscillatory path.

Figures 9(b) and 9(d) shows the velocity of two reactive spheres in a stratified layer, and Figs. 9(a)
and 9(c) in a homogeneous fluid for comparison. All reactive spheres oscillate rather strongly when
settling into both stratified and homogeneous layers. The associated wavelength decreases with
the size of the spheres (λ ∼ 30, 18, 10 cm for radius a = 1.43, 0.79, 0.5 cm, respectively). The
ratio λ/(2a) is about 10, which is close to the typical wavelength λ/(2a) = 12 found for spheres
falling in a homogeneous fluid with high Reynolds number [24,26]. The presence of stratification
does not seem to strongly modify this wavelength in the explored range of (rather large) Froude
number. However, the trajectories are more periodic (i.e., less chaotic) when the spheres fall in a
stratified layer, as already observed for plastic spheres. Moreover, the falling path of the reactive
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FIG. 8. Evolution of the velocity during the fall of the plastic spheres for two different radii, (a), (b) 14.3
and (c), (d) 3.2 mm, in (a), (c) a homogeneous fluid and in (b), (d) a linear stratified layer with N = 0.164 Hz.
The left column shows the horizontal and vertical position of each sphere, together with the norm of the
velocity, U (z) = √

u2
z + 2u2

x (uz and ux are the vertical velocity and the horizontal velocity, respectively), as
a color scale. Note that in (b) and (d), the stratification starts just above the top of the figure and ends at the
bottom of the figure, i.e., at z = 25 cm. The middle column represents the evolution of the norm of the velocity
U (z) for each sphere. The lines are colorized when the spheres are in the stratified layer, starting from t = 0
at the top interface. The right column shows the distribution of the norm of the velocity, U (z), of all spheres
through the fall. The Reynolds number Re and the Froude number Fr are calculated with the median of the
velocity distribution.

spheres seems to be even more regular than one of the plastic spheres, which may be due to smaller
Reynolds number and density ratio, m� ∼ 1.1. These trajectory changes are also associated with
amplitude oscillations of the velocity, which becomes smaller with a smaller sphere radius. With
melting spheres in a stratified layer, we observe the expected velocity decrease with depth for
all radii due to the buoyancy decrease: an estimate based on the Newtonian velocity given below
[see (11)] indeed leads to a relative decrease of 14% in velocity from the top to the bottom of the
stratification. Note, however, that here, we do not see any rapid change around either the top or
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FIG. 9. Same as Fig. 8 for the reactive spheres [(a), (b) 14, (c) 7.9, and (d) 5 mm, respectively] in the large
tank with (a), (c) a homogeneous fluid and with (b), (d) a linear stratification of N = 0.164 Hz. Note that (c) is
for a different radius than (d).

the bottom interface. All those unexpected dynamics would deserve a more detailed study with a
dedicated setup; here, we will simply focus on the effect of melting on the mean falling velocity.

B. Drag coefficient of the plastic and reactive spheres

At large Reynolds number, the sedimenting velocity of a buoyant, solid sphere in a homogeneous
fluid writes [53]

U =
√

8ga
ρ

3ρCH
d

, (11)

where the drag coefficient CH
d scales as [52]

CH
d = 24

Re
+ (1.8Re−0.313) + 0.42

1 + 42 500Re−1.16 . (12)
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FIG. 10. Drag coefficient Cm
d as a function of the Reynolds number Re for three 5-mm-radius reactive

spheres falling in a stratified layer (N = 0.164 Hz), considering various hypotheses for the sphere radius and
the fluid viscosity. The solid line corresponds to Eq. (12) and the gray area denotes the +6% and −4% estimated
uncertainty on this equation [52]. Small dot markers denote instantaneous values during the fall of each sphere,
while the large squares show the corresponding median values and standard deviations.

This parametrization is valid for Reynolds number Re up to 3 × 105 with an error of about 5%.
Here, we define the experimental instantaneous drag coefficient by

Cm
d (z) = 8ga[ρm − ρ(z)]

3ρ(z)U (z)2
, (13)

where U (z) = √
u2

z + 2u2
x is the measured velocity of the sphere as a function of its vertical position.

a is the initial radius of the sphere, which is considered constant even for the reactive sphere
knowing that the melting rate is small (see Sec. III B and further discussion in Fig. 10). ρ(z) is
the density profile in the stratified layer (Fig. 3). As for our melting model (see Sec. III B), we also
calculate the Reynolds number Re using the kinematic viscosity of the bulk fluid with T = 25 ◦C
and the salt concentration of the ambient fluid; but we acknowledge that the reactive spheres release
cold and salty fluid, which has a viscosity about three times larger. Our Reynolds number should
thus be considered as an upper bound (see further discussion in Fig. 10). We have calculated the
value of the drag coefficient Cm

d , Reynolds number Re, and Froude number Fr for all z positions
in all experiments with the corresponding values of U (z) and ρ(z). We have then defined for each
configuration the median values and the standard deviations. The range of explored median Froude
and Reynolds numbers is shown in Fig. 1.

To test the significance of our choices regarding the sphere radius and the fluid viscosity, we
have also calculated the drag coefficient with different hypotheses. First, we compare three different
models of radius evolution: constant, model based, and measure based (with the limitations already
described in Sec. III B), shown, respectively, as green, blue, and red in Fig. 10. A constant radius
slightly overestimates the value of the drag coefficient and Reynolds number compared to the model-
based and measure-based values. Then, considering the upper bound of fluid viscosity, i.e., the
viscosity of the released fluid at the interface with T = 0 ◦C and c = 25 wt% (maroon dots in
Fig. 10), the Reynolds number is about three times smaller for the same drag coefficient. In all
cases, however, a strong signature of melting on the drag coefficient is clearly observed compared
to the nonreactive case in a homogeneous layer [Fig. 11(a)] or in a stratified layer [Fig. 11(b)].
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FIG. 11. Drag coefficient Cm
d as a function of the Reynolds number Re. The solid line corresponds to

Eq. (12) and the gray area denotes the +6% and −4% estimated uncertainty on this equation (Clift et al.
(1978) [52]). The diamonds and squares denote the experiments in the small and large tanks, respectively, and
the empty and filled symbols stand for the plastic and reactive spheres, respectively. (a) is for a homogeneous
fluid and (b) is for a stably stratified one.

Figure 11(a) shows the median drag coefficient Cm
d as a function of the Reynolds number Re for

all experiments without stratification. For Re < 4000, the drag coefficient of plastic spheres is in
very good agreement with the scaling law of Clift et al. [52] for both tanks, hence confirming the
absence of a significant wall effect. For larger Re, wall effects seem more important for the smaller
tank, where measurements deviate from the theoretical model. However, even the largest spheres
have a radius of at least 20 times smaller than the tank width, and those effects remain limited.
In all cases, the observed change in the drag coefficient due to the melting of reactive spheres is
significantly larger, with a Cm

d at least two times larger than the one of nonreactive spheres for the
same Re [full blue squares in Fig. 11(a)].

Figure 11(b) additionally shows the drag coefficient for the experiments with the reactive
and nonreactive spheres in a stratified layer. For all spheres, the drag coefficient is enhanced by
stratification for all Reynolds numbers (see Fig. 12). However, the effect of the stratification remains
small because, in our experiments, the stratification is weak compared to the sphere velocity (i.e.,
high Froude number). Again, the effect of melting on the drag coefficient is predominant.

The drag coefficient can also be altered by the shape and roughness of a falling sphere, and we
acknowledge that our reactive spheres do not have a perfectly spherical shape due to their molding
process. In Newton’s regime (large Reynolds number), oblate spheroids (b/a < 1, with a and b
the major and minor axes, respectively) have a larger drag coefficient than the one for the sphere.
However, our spheres have a small flatness (b/a ∼ 0.9), which implies a very small drag coefficient
increase [52,54]. Moreover, the roughness of a sphere only modifies the drag coefficient for Re over
104. One can notice that the density of the melt released at the surface of the reactive spheres is only
slightly larger (10%) than the density of the reactive sphere. Then, the added drag cannot be due
to the added or lost mass during the melting because the total mass is almost conserved. In other
words, the sphere and the fluid released at its surface fall together and the melting does not change
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FIG. 12. Measured drag coefficient as a function of the Froude number Fr at all z positions for (a) plastic
spheres and (b) reactive spheres. The color scale denotes the Reynolds number Re. (For interpretation of the
references to color in this figure legend, the reader is referred to the online version of this paper.)

the total buoyancy. Therefore, following Zhang et al., [15], we relate the strong drag enhancement
of the reactive sphere to an increase of the vorticity induced by the released melt in the wake,
where we indeed observe strong mixing. The release of the melt at the sphere’s surface induces
a major density disturbance, which strongly interacts with the pressure field generated by the fall.
Therefore, we expect the melt to drastically change the flow in the wake by inducing baroclinic
torques that modify the vorticity field. This suggested mechanism now requires specific theoretical
and numerical investigation, following the approach of [15].

In the literature, the added drag coefficient due to the stratification Cm
d /CH

d − 1 is often described
as a function of the Richardson number [14,16,21,22], where the Richardson number is defined
following Yick et al. [14] as

Ri = Re

Fr2
= 2a3N2

νU
, (14)

comparing the buoyancy forces to the viscous shear forces. Our results are shown in Fig. 13, together
with the scaling laws found by Zhang et al. [15] and some previous numerical results [14,16,21,22].
Note that the numerical results of Yick et al. [14] (stars and crosses in Fig. 13) explore the same
range of Richardson number but have a much smaller Froude number. For both reactive and plastic
spheres, the added drag increases with the Richardson number, with the added drag being about two
times larger for the reactive spheres than for the plastic ones at a given Richardson number. Using a
balance between the Archimedes, inertial, and vorticity forces, Zhang et al. [15] predicted a scaling
law for the added drag Cm

d /CH
d − 1 as Ri0.5(2.7Re−0.5 + 0.08) for high Schmidt and Reynolds

numbers, but moderate Froude number. Whereas this scaling is in a quite good agreement with
the numerical results for Re = 50, 100, 200 of [16,21,22] and the Argo float value [2], it is not able
to quantitatively explain our results for either plastic or reactive spheres. Our experimental results on
the nonreactive plastic spheres might still scale with Ri0.5, but a new study following the formalism
of Zhang et al. [15] for high Froude numbers is necessary to infer the relevant prefactor. In addition,
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FIG. 13. Added drag coefficient Cm
d /CH

d − 1 as a function of the Richardson number Ri. Our experimental
results are the squares and diamonds (filled or empty for reactive or plastic spheres, respectively). The filled and
empty triangles denote the previous numerical results of [16,21,22]. The pentagon denotes an Argo float [2].
The crosses and stars correspond to the numerical results of Yick et al. [14]. The dashed lines represent the
high-Reynolds-number regime suggested by Zhang et al. [15] for different values of Re. Here, all data are for
a Schmidt number of 700. The value of the Froude number for each data point is scaled with the color bar. (For
interpretation of the references to color in this figure legend, the reader is referred to the online version of this
paper.)

the added drag for the reactive sphere seems to show a shallower Richardson number dependence,
even if this will require additional experiments for confirmation.

In conclusion, despite exploring a limited range in sphere radius and stratification, and despite
intrinsic experimental limitations, our experiments exhibit a significative drag enhancement due to
the melting and a specific dependence on stratification that will deserve additional studies, especially
3D numerical simulations following the recent results of Zhang et al. [15].
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V. INTERNAL WAVES AFTER THE FALL OF A SPHERE

A. Linear theory for plane waves with viscosity

The dispersion relation of a linear internal wave in a viscous fluid writes(ω

N

)2
− iν

k2

N

(ω

N

)
− k2

x + k2
y

k2
= 0, (15)

where k is the wave number with k2 = k2
x + k2

y + k2
z , and ω is the wave frequency. Waves with fre-

quency ω > N are evanescent. For lower frequency waves, the roots of this second-order polynomial
can be split in a real part and an imaginary part as

ωr = ±N

√
k2

x + k2
y

k2
− ν2k4

4N2
and ωi = νk2

2
. (16)

The real part gives the oscillation frequency including the viscous shift; however, the viscous
contribution is small when considering Brünt-Väisälä frequencies and wavelengths relevant for our
experiments. The imaginary part corresponds to the wave damping for the given wave number.

The fall of each sphere creates turbulence in the wake and emits a series of propagating waves of
various frequencies and wave numbers. Hence the velocity field writes

�u =
∑

�u0ei(�k.�x−ωr t )−ωit , (17)

where �u0 = u0�ez + v0�ex + w0�ey. In our experiments, the PIV measurements allow us to measure u�ez

and v�ex, and assuming isotropy in the horizontal plane, we estimate that v�ex � w�ey. Then, we can
write the kinetic energy in the whole tank as

Ek = 1

2

∫
V

ρ(z)(|u|2 + 2|v|2)dV. (18)

Focusing on the least damped component with the smallest wave number k (see discussion below),
the long-time evolution of our PIV measurements then gives a relevant estimate of its attenuation
rate,

ω
Ek
I = νk2. (19)

Looking at the initial value Ek (t = 0) indicates the amount of energy deposited in the wave field.
After multiple reflections on the domain boundaries, waves might form standing modes, whose

velocity is discretized to account for the boundary conditions, with kx = m π
L , ky = l π

L , kz = j π
H ,

with L and H the width and the height of the tank and m, l, j integers. Assuming isotropy in the
horizontal direction means m = l .

B. Results

Here we analyze the experiments carried in the small tank with nonreactive and reactive spheres
and three different Brünt-Väisälä frequencies N = 0.094, 0.136, and 0.196 Hz [see Fig. 3(a)]. We
perform long-term PIV measurements, i.e., over durations between 120 and 180 seconds after the
launch of a sphere, using the same set of PIV parameters in all experiments (that are box size,
overlap, and time step). Between two and four launches are done for each of the three sizes of
reactive and plastic spheres.

In Fig. 14, we show the typical time evolution of the kinetic energy in the stably stratified layer
for a plastic and a reactive sphere fall. The shown behavior is generic to all performed experiments.
The energy drastically increases once the sphere is released in the tank and during its fast fall. Due
to the large velocity of the fluid during these early times compared to the frame rate of our camera
(50 FPS), the first ∼10 seconds of measurements should not be used quantitatively. However, the
difference between the (blue) total energy and the (black) filtered energy over the wave-propagating

114803-17



HUGUET, BARGE-ZWICK, AND LE BARS

FIG. 14. Evolution of the kinetic energy in the stably stratified layer with N = 0.196 Hz when (a) a
plastic sphere and (b) a reactive sphere of 14 mm radius fall. The blue line is smoothed with a moving
average to remove all high-frequency noise (> 2 Hz). The black line is filtered with a low-pass filter with
a cutoff frequency fc = 0.25 Hz to keep only the signature of propagating internal waves. An exponential fit
is computed for the signal between 20 and 130 s. (For interpretation of the references to color in this figure
legend, the reader is referred to the online version of this paper.)

frequency domain shows that (i) at first, the falling of the sphere generates motion in all frequencies,
presumably due to the turbulent wake, and (ii) after 20 s typically, all the energy is in the internal
waves only. The kinetic energy then decreases close to exponentially due to the viscous dissipation
of internal waves, while visibly oscillating at a frequency close to 2N .

FIG. 15. Spatial mean of the frequency spectrum of the vertical velocity field for three different stratifi-
cations with Brünt-Väisälä frequency (vertical bold black line) N = 0.094, 0.136, and 0.196 Hz. Dashed and
solid lines correspond to the reactive and plastic spheres respectively. Blue, black, and red denote three different
radius 14, 7.9, and 5 mm for the reactive spheres and 14.2, 7.9, 4.8 mm for the plastic spheres.

114803-18



DYNAMICS OF A REACTIVE SPHERICAL PARTICLE …

FIG. 16. Spatially averaged spectrogram of the vertical velocity in the stably stratified layer with N =
0.196 Hz (black line) during and after the fall of a 14-mm-radius reactive sphere. Spectrum energy is an
arbitrary logarithmic scale. The vertical red line denotes the launch time of the sphere.

To further analyze this time dependency, Fig. 15 shows the frequency spectrum of the vertical
velocity field for all the experiments. A marked peak is present at the Brünt-Väisälä frequency for
all cases, with a strong cutoff for larger frequencies, corresponding to evanescent waves. This is
further illustrated in Fig. 16, showing an example of the spectrogram for the vertical velocity field,
spatially averaged over the whole domain. The fall of the sphere initially excites all frequencies.
But, rapidly, a cutoff appears above the Brünt-Väisälä frequency N , while frequencies smaller than
N are more progressively attenuated, the least damped component being at N .

For all our experiments, we calculate the initial amplitude and the attenuation rate of the least
damped wave component of the energy signal by linearly fitting the logarithm of the kinetic energy
filtered with a low-pass filter just above N (see, e.g., the black line in Fig. 14). Figure 17 shows, as a
function of the radius, the attenuation ω

Ek
I (top), the initial amplitude A0 = 2Ek (t = 0)/ρ (middle),

and the ratio between the initial wave kinetic energy Ek (t = 0) and the initial potential energy of the
sphere at the top of the tank Ep = 4π

3 a3
ρgH . The error bars denote the spread between different
launches of similar spheres in each stratification. Figure 17 does not exhibit any clear dependency
on the Brünt-Väisälä frequency or the sphere composition. The attenuation rate ω

Ek
I might slightly

decrease with a radius for the plastic and reactive spheres, but this demands confirmation over a
larger range. The initial amplitude A0 increases with the radius, which seems reasonable since the
energy injected into the system, i.e., the initial potential energy of the sphere, also increases with
the radius. A scaling law A0 ∝ a3 seems to fit with our observations over the explored limited
range [black line in Fig. 17(b)]: this implies a constant ratio Ek (t = 0)/Ep, as indeed is shown in
the bottom figure. The part of the potential energy dissipated in propagating waves is thus about
1%: this ratio is quite similar to the amount of energy radiated from a turbulent mixed layer into a
stratified layer [55] and from an impulsive plume [56]. But it is smaller than the energy dissipated
from a buoyant parcel of fluid rising in a stratified layer [28].

Those various experimental observations can be simply explained by noticing that the sphere
falling time and the sphere radius are small compared to the buoyancy period and the tank
dimensions, respectively: hence, from the internal wave point of view, at first order, the sphere
fall might be considered as an impulsive excitation in time and the horizontal direction, and as
an essentially uniform excitation in the vertical direction (with additional turbulent fluctuations).
As such, it provides energy in all ω and kx, and mostly in kz = 0. Following the dispersion relation,
kz = 0 means ω = N , and according to wave damping, the least damped component is at the smaller
acceptable kx. Since the sphere falls in the middle of the tank, the axial symmetry of the excitation
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FIG. 17. (a) The attenuation ω
Ek
I , (b) the initial wave amplitude A0, and (c) the ratio between the initial

wave kinetic energy Ek (t = 0) and the potential energy Ep as a function of the radius of the spheres for three
different stratifications with a Brünt-Väisälä frequency N = 0.094 Hz (red), 0.136 Hz (green), and 0.196 Hz
(black). The empty and full diamonds denote the plastic and reactive spheres, respectively. The error bars
denote the standard deviation based on several experiments performed with the same spheres (between two
and four launches for each size and each stratification). In (b), the solid black line shows an a3 slope. (For
interpretation of the references to color in this figure legend, the reader is referred to the online version of this
paper.)

imposes a minimum wave number, kx = 3π/L = 31 m−1. This is indeed confirmed in Fig. 18,
showing the spatiotemporal diagrams of the vertical velocity during the first 30 seconds after a
sphere fall. By measuring the wave number kx in two windows that are symmetric compared to the
falling path, kx is about 39 m−1 [Figs. 18(a) and 18(c)], while motions indeed seem independent
of z [Fig. 18(b)]. Regarding dissipation, using those wavelengths with ν ∼ 9 × 10−7 m2 s−1 gives
an attenuation rate ω

Ek
I = 2.7 × 10−3 s−1, which is one order of magnitude smaller than the results
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FIG. 18. (a), (b) Spatiotemporal diagram of the vertical velocity induced by a plastic sphere (14.3 mm
radius) falling in a stably stratified layer with N = 0.196 Hz, (a) as a function of x at middle tank depth and
(b) as a function of z in the middle of the tank. The vertical velocity is filtered with a pass-band filter around
N . (c) Power density spectrum for kx for the two radially symmetric windows highlighted in (a).

of Fig. 17(a). Actually, ω
Ek
I measurements include the contribution of all waves as well as of the

boundary dissipation, while our model only considers the bulk dissipation of the most longstanding
wave. Finally, the actual geometry where the small sphere produces an initially axisymmetric per-
turbation that bounces out in a rectangular tank complexifies the oversimplified description provided
above. The main observations are nevertheless in good agreement with our theory, including a single
axially symmetric pattern in the horizontal direction, and the independence of the attenuation rate
with the sphere radius.

VI. CONCLUSION

We have experimentally studied the fall of a sphere in a stably stratified layer, expanding
previous works by exploring a regime of larger Reynolds and Froude numbers. We have focused
our experiments on the specific behavior of a reactive (i.e., melting) sphere vs an inert one. In
addition, we have examined the fluid motions in our tank over several minutes after the rapid fall
of a sphere (a few seconds) to investigate the generated internal wave field. As for previous studies
at moderate Reynolds number, we show that the drag coefficient of a falling nonreactive sphere is
enhanced due to the stratification and that the added drag might be proportional to Ri0.5. However,
the scaling law for moderate Reynolds and Froude numbers suggested by Zhang et al. [15] was
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unable to quantitatively predict our results: this is likely due to the more turbulent wake that induces
both 3D motions and supplementary buoyancy contribution to the drag that are unaccounted for
in previous numerical and theoretical studies. The drag coefficient of melting spheres is strongly
enhanced compared to nonreactive spheres. This enhancement is larger than any estimated shape
and roughness effect. In addition, since the density of the released melt is close to the one of the
melted sphere, the added drag cannot be due to an added mass associated with the melting. We
think that it is actually due to the strong mixing in the wake of the sphere induced by melting,
expanding upon the recent results of [15]. Finally, for both melting and inert spheres, an internal
wave field encompassing about 1% of the initial potential energy of the sphere is excited in the tank
by the sphere fall. Since this fall is seen as an almost impulsive excitation in space and horizontal
direction and an almost uniform excitation in the vertical direction, most of the released energy
rapidly focuses at the Brünt-Väisälä frequency and at the largest admissible horizontal wavelength,
where it is dissipated very slowly.

We acknowledge that our study is limited by several factors, including the small explored range in
terms of buoyancy frequency and sphere radius, as well as the slow melting rate of our sphere during
their fall. Additional studies are necessary to exhaustively investigate the effect of melting on the
sphere dynamics, expanding upon the first conclusions drawn here. They should, in particular, focus
on the motion in the wake behind the melting sphere. This is definitely an experimental challenge.
Direct numerical simulations of a reactive sphere falling in a stratified layer, even for lower Reynolds
number, would also be extremely useful to unravel the contribution of the release fluid at the melting
surface and the modification of the wake.

To finish, let us simply mention the possible application of our results to planetary core dynamics.
For small planets such as Mercury and Ganymede, the top-down crystallization of their liquid iron
core [4,57] implies the formation of crystals at the top of the core and their sinking in a hotter region,
and hence partial or complete melting. The crystal size range is poorly constrained, but could vary
from micrometer scale [57] to kilometer scale [58,59]. A larger drag coefficient would imply a
longer residence time of these falling crystals and locally modify the equilibrium state [60]. Even
more interesting, the top of those planetary cores is often associated with a thermal or chemical
stratification which prevents large-scale convective motions [57,61], and hence questioning the
origin of their magnetic field. The sinking of large crystals could redistribute a small amount of
their potential energy into kinetic energy via longstanding internal waves, which would help to
provide the necessary kinetic energy to drive a long-lived dynamo.
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APPENDIX: VISCOSITY AND DENSITY OF AN AQUEOUS SODIUM CHLORIDE SOLUTION

Following the density table of [62] for a salty water and the fifth-order polynomial standard
equation for the pure water density [43–45], the density of the aqueous sodium chloride solution
as a function of temperature and composition at ambient pressure (1 bar) is given with a fifth-order
polynomial fit,

ρ(c, T ) = b1 + b2T + b3c + b4T 2 + b5T c + b6c2 + b7T 3 + b8T 2c + b9T c2 + b10c3

+b11T 4 + b12T 3c + b13T 2c2 + b14T c3 + b15c4 + b16T 5 + b17T 4c

+b18T 3c2 + b19T 2c3 + b20T c4 + b21c5, (A1)

with T in Celsius and c in wt%. All coefficients are given in Table II.
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TABLE II. Coefficient for Eq. (A1).

b1 999.83952
b2 4.58004182743 × 10−2

b3 7.7259007462164
b4 −81656026808 × 10−3

b5 −2.89974283744 × 10−2

b6 −2.80856566638 × 10−2

b7 6.39597015 × 10−5

b8 3.870476539 × 10−4

b9 1.267276467 × 10−4

b10 3.5362104886 × 10−3

b11 −4.013195 × 10−7

b12 −2.1143606 × 10−6

b13 −5.2677931 × 10−6

b14 1.58535023 × 10−5

b15 −1.305467659 × 10−4

b16 1.1142 × 10−9

b17 5.0965 × 10−9

b18 1.96269 × 10−8

b19 −1.0807 × 10−8

b20 −2.899707 × 10−7

b21 1.9280990 × 10−6

The dynamic viscosity of the aqueous sodium chloride solution as a function of temperature and
composition at ambient pressure (1 bar) can be approximated by [51]

μ(c, T ) = c1 + c2e(a1T ) + c3e(a2m) + c4e[a3(0.01T +m)] + c5e[a4(0.01T −m)], (A2)

with m = c/100
(1−c/100)∗MNaCl

the molality of the solution. MNaCl = 58.44 g mol−1 is the molar mass
of sodium chloride and c (wt%) is the concentration in salt in the solution. The constants are
defined as c1 = 0.1256735, c2 = 1.265347, c3 = −1.105369, c4 = 0.2044679, c5 = 1.308779,
a1 = −0.0429718, a2 = 0.3710073, a3 = 0.420889, and a4 = −0.3259828 [51].
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