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Internal gravity waves propagating within homogeneous stratified turbulence are the
subject of the present study. A spatiotemporal analysis is carried out on the results of
direct numerical simulations including a forcing term, with the aim of showing the energy
content of the simulations as a function of frequency, ω, and wave-vector inclination to
the horizontal, θ . Clear signatures of the dispersion relation of internal gravity waves, ω =
±N cos θ , where N is the Brunt-Väisälä frequency, are observed in all our simulations,
which have low Froude number, Frh � 1, and increasing buoyancy Reynolds number up
to Reb ≈ 10. Interestingly, we observe the presence of high-frequency waves with ω ∼ N
and a corresponding low-frequency vortex mode, both containing a non-negligible amount
of energy. These waves are large-scale waves, their energy signature being found at scales
larger than the forcing scales. We also observe the growth of energy in the shear modes,
constituting a horizontal mean flow, and we show that their continuous growth is due to
an upscale energy transfer, from the forcing scales to larger horizontal as well as vertical
scales. These shear modes are found to be responsible for Doppler shifting the frequency of
the large-scale waves. When considering the wave energy across the simulations at varying
Reb, such energy is seen to reduce as Reb is increased and the flow enters the strongly
stratified turbulence regime. The classical wave-vortex decomposition, based on a purely
spatial decomposition of instantaneous snapshots of the flow, is analyzed within the current
framework and is seen to correspond relatively well to the “true” wave signal identified by
the spatiotemporal analysis, at least for the large-scale waves with ω ∼ N . Distinct energy
peaks in θ -ω space highlight that the waves have preferential directions of propagation,
specifically θ = 45◦ and θ ≈ 55◦, similar to observations in studies of wave radiation from
localized regions of turbulence. This suggests that the same wave-generation mechanisms
may be relevant for homogeneous and inhomogeneous stratified turbulent flows.

DOI: 10.1103/PhysRevFluids.5.114802

I. INTRODUCTION

Stratified flows are ubiquitous in geophysical fluid dynamics and the stable stratification in
such flows often has a leading-order influence on the dynamics. As is well known, the stable
vertical density variation in stratified flows leads to the existence of internal gravity waves. These
waves are dispersive and anisotropic since their frequency, phase velocity, and group velocity
strongly depend on their direction of propagation. The frequency of internal gravity waves is
given by the dispersion relation, ω = ±Nkh/k, where k = |k| is the magnitude of the wave vector
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k = [kx, ky, kz] and kh =
√

k2
x + k2

y is the horizontal wave number. The Brunt-Väisälä frequency
is N = √−(g/ρ0)d ρ̄/dz, where d ρ̄/dz is the background density gradient, g is gravity, and ρ0 is a
reference density. Advective motions, such as turbulent eddies, of course are also present in stratified
flows. In stratified turbulence, these two types of motion coexist in the same region of space, and
they evolve and interact chaotically. Because of this highly complex picture, it is a task of chief
difficulty to separate the dynamics of one motion from the other.

A number of studies [1–4] have used a classical decomposition called wave-vortex decomposi-
tion to disentangle waves from vortices. The wave-vortex decomposition was proposed early on in
the study of stratified turbulence [5,6]; it consists of a spatial decomposition of an instantaneous field
of stratified turbulence, given by the velocity field u(x), into a wave component uw(x) and a vortex
component uv (x). The analysis relies on the two types of motion evolving on different timescales:
The waves evolve on the “fast” timescale N−1 and the vortices evolve on the “slow” timescale τ , the
eddy turnover time [7]. Here the eddy turnover time can be taken as τ = �h/uh, where �h and uh are
typical horizontal length and velocity scales of the turbulent flow. An analogous decomposition has
been put forward for flows which are both stratified and rotating [8], and this decomposition has been
used to distinguish waves from turbulence in such flows [8–10]. The main limitation of applying
the wave-vortex decomposition to stratified turbulence is that, if the Reynolds number is high, the
consequent high nonlinearity of the flow may prevent a clear timescale separation between waves
and vortices. In particular, this could be the case for the strongly stratified turbulence (SST) regime
[11,12], a dynamical regime which is encountered in the concurrent limits of low horizontal Froude
number, Frh = uh/N�h � 1, and high buoyancy Reynolds number, Reb = ε/νN2 � 1 [13] (here ε

is an average kinetic energy dissipation rate). This regime is particularly relevant as its predictions
are consistent with turbulence observed in the ocean and in the atmosphere, far away from solid
boundaries [14–16]. As identified in a scaling analysis by Ref. [11], the turbulent structures here
consist of layers with a low aspect ratio, �v/�h ∼ uh/N�h = Frh, where �v is the vertical length
scale, which is set by the stratification to be the buoyancy length scale uh/N . Within this framework,
it is straightforward to show that waves of the above aspect ratio, �v/�h, will have wave number
k ∼ kv and frequency ω ∼ Nkh/kv ∼ N�v/�h ∼ τ−1 [11]. Therefore, waves and vortices both have
a timescale τ and so they probably strongly interact. The two-timescale assumption underlying the
wave-vortex decomposition would thus break down in the SST regime, making the application of the
decomposition and its physical meaning questionable. This limitation led Lindborg and Brethouwer
[14] to take an alternative route toward assessing the wave content of a stratified turbulent flow.
In their work, they computed frequency spectra of individual Fourier modes û(k) at selected wave
vectors k in numerical simulations of stratified turbulence in the SST regime. This allowed them to
focus on the dispersion relation frequency |ω| = Nkh/k and check whether it corresponded to strong
energy peaks in the frequency spectra, demonstrating the presence of internal gravity waves. The
study highlighted clear signatures of internal gravity waves if k corresponded to large scales of the
turbulent flow and to aspect ratios �v/�h being not much smaller than unity; at smaller scales and/or
at very small �v/�h this wave signature was less clear or absent. Another finding of this study was
that at large scales the wave-vortex decomposition worked well [14]. It is worth noting that waves
with �v/�h ∼ kh/kv ∼ 1 have a frequency ω ∼ N , i.e., a relatively high frequency, unlike what was
suggested for SST [11].

In recent years, a more detailed analysis has been applied to study waves in fluid mechanics,
made feasible by the advances in computational power. It consists of a spatiotemporal analysis of
a wave-bearing flow field, in which time series of snapshots of the flow are transformed into wave-
number-frequency space via a Fourier transform. For example, if the flow field is three-dimensional
(3D) with coordinates x, y, z, a quantity f = f (x, y, z, t ) is transformed via a four-dimensional (4D)
Fourier transform into the quantity f̃ = f̃ (kx, ky, kz, ω). This allows one to focus on the portion of
the 4D space described by the wave dispersion relation, ω = ω(kx, ky, kz ), to look for signatures of
the wave field in the problem and, potentially, to quantify the energy | f̃ |2 contained in the waves.
This procedure is conceptually the same as that of Lindborg and Brethouwer [14], who applied
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it to individual spatial Fourier modes; such an approach is now extended to the entirety of the
Fourier modes in an experiment or simulation. Because of the computational cost of calculating
3D or 4D Fourier transforms of high-resolution data, the full analysis has been carried out only
in a number of studies of turbulent flows, for example, in two recent experimental investigations:
One on gravity-capillary waves on the surface of a fluid [17] and another on inertial waves in 3D
rotating turbulence [18]. Both these studies found clear signatures of the wave dispersion relation
in their experimental data, with an accumulation of energy on and around the dispersion relation.
The full spatiotemporal analysis has also been carried out using data from numerical simulations,
in direct numerical simulation (DNS) studies of internal gravity waves in stratified turbulence [19]
and inertial waves in rotating turbulence [20,21], and in a recent study of inertial waves in 3D
geodynamo simulations [22]. In a number of other studies, reduced analyses have been performed,
focusing on frequency spectra of extended regions of Fourier space, e.g., studies of internal gravity
waves in stratified turbulence [23], inertial waves in rotating turbulence [24], and Alfvén waves
in magnetohydrodynamic turbulence [25]. Focusing on the case of interest, in a recent study [23],
results from DNS of stratified turbulence forced using a periodic tidal deformation were presented,
in which the Fourier modes were reduced according to their polar angle φ = tan−1(kh/kz ) in order
to obtain (after a time Fourier transform) the kinetic energy as a function of frequency and φ,
EK (φ,ω). A clear signature of the dispersion relation, ω = ±N sin φ, was observed in EK (φ,ω) over
all internal gravity wave frequencies, 0 � |ω| � N . This study was, however, limited to low values
of the buoyancy Reynolds number, Reb < 1, so the DNS were probably in a viscously dominated
state and not in the SST regime [13]. Another recent numerical study of internal gravity waves in
stratified flows [19] used a full 4D spatiotemporal analysis of a DNS run at Reb = 1; they obtained
wave signatures from their analysis which was also employed to reconstruct wave and eddy fields
in physical space by filtering out relevant portions of the k-ω space. Overall, the work to date on
this subject leaves room for further study of stratified turbulence using a spatiotemporal analysis,
this time at Reb � 1, to consider the internal gravity wave content of the turbulence in a regime
close to the SST regime. It is worth underlining that an advantage of a spatiotemporal analysis
compared to a purely spatial analysis, such as the wave-vortex decomposition, is that significantly
more information is ultimately available, in particular with respect to the energy content as a
function of frequency. Also, it is important to note that while detailed spatiotemporal analyses are a
recent tool in fundamental fluid mechanics studies, they are a relatively well-established tool in the
analysis of large-scale atmospheric data, e.g., for the extraction of signatures of equatorial waves
using large-scale and long-term satellite observations [26].

The key significance of studying waves in SST is that it is not clear what type of waves, if
any, are excited by the layers and how important they are in terms of their energy content. The only
prediction regarding waves in SST is that we may expect waves with low aspect ratio �v/�h, where �v

and �h are typical vertical and horizontal scales (or wavelengths), similar to the turbulent layers [11].
As mentioned previously, such waves correspond to low-frequency wave motions with ω ∼ τ−1,
which opens up the possibility of strong nonlinear interactions between these low-frequency waves
and the turbulent layers (evolving on the same timescale). A number of open questions remain:

(1) Are we able to observe such low-frequency waves in DNS using spatiotemporal analysis?
(2) Are waves of other frequencies within 0 � ω � N also present, confirming the observations

of Lindborg and Brethouwer [14]?
(3) How important are the waves in the global energetics of stratified turbulence?
(4) How are they generated within a highly turbulent flow such as SST?
(5) Does the wave-vortex decomposition give us insight into the wave content of SST?
(6) Do the characteristics of the waves depend on the way the turbulence is forced or on the

subdivision of the force between wave and vortex components of the flow?
While there are relatively few studies of waves in homogeneous stratified turbulence, the problem

of internal gravity wave radiation from a localized turbulent region has been treated more exten-
sively. Previous studies include experiments and simulations of a stratified or unstratified turbulent
region exciting waves in adjacent quiescent stratified regions [27,28] and experimental [29] and
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numerical [30,31] studies of turbulent wakes behind a sphere towed in a stratified fluid. All these
studies observed the presence of turbulence-generated waves in the surrounding fluid. Moreover, the
internal gravity waves were consistently found to have preferential directions of propagation. This
is the case, for example, of the experimental study of a stratified turbulent wake [29], where waves
were observed with a single propagation direction, θ = 90◦ − φ ≈ 55◦. This particular propagation
direction was observed also in other studies but often within a range of propagation angles, such as
in the experimental study of turbulence generated above a quiescent stratified fluid [27], in which
θ = 42–55◦ is reported. Justifications have been put forward for preferential orientations of internal
gravity waves in this problem. For example, Dohan and Sutherland [27] propose that a propagation
at θ = 45◦ maximizes the vertical transport of horizontal momentum while θ = 35◦ maximizes
the vertical transport of energy, so that a resonant feedback between waves and turbulence would
ultimately lead to the selection of these angles. The interesting question is then whether some of
these results carry over to internal gravity waves in the interior of stratified turbulence and whether
we can draw parallels between the wave radiation in these two different classes of stratified turbulent
flows.

In what follows, we will present results from a spatiotemporal analysis of DNS of stratified
turbulence at Reb � 1, revealing the internal gravity waves in the simulations. The aim is to try and
give answers to some of the open questions in this important problem.

II. METHODS

A. Spatiotemporal analysis

1. Reduced analysis

In this paper, we will explore a detailed analysis tool of wave-bearing flows in which both
spatial and temporal information on the flow field are used, which distinguishes this tool from an
analytical but purely spatial tool such as the wave-vortex decomposition. As mentioned in Sec. I,
a full spatiotemporal analysis of a 3D flow field requires one to accumulate time series of the 3D
fields and then to perform a 4D Fourier transform, taking fields that depend on space and time into
wave-number-frequency space, f (x, y, z, t ) ⇒ f̃ (kx, ky, kz, ω). Typically, such fields are obtained
from DNS that are based on a pseudospectral method, in which spatial Fourier transforms are used.
In this case, the fields are already in wave-number space, as the DNS code solves for f̂ (kx, ky, kz, t ).
Even in this situation, however, taking the final Fourier transform of the 4D fields from temporal to
frequency space is a computationally intensive task that can become prohibitive as the spatial (and
temporal) resolution of the DNS increases.

In the present work, we follow Ref. [23] and perform a reduced spatiotemporal analysis, which
is less expensive computationally. As briefly mentioned before, the first step consists in summing
the velocity Fourier modes, û(kx, ky, kz ), at a given time instant, over “conical shells” at a constant
angle with respect to the vertical axis. Contrary to Ref. [23], we work with the equatorial angle θ

and not with the polar angle; the equatorial angle is defined as θ = tan−1(kz/kh). In terms of θ , the
dispersion relation (DR) of internal gravity waves is given by ω = ωDR, where ωDR = ±N cos θ .
The summation over conical shells leads to the formation of the quantities U (θ ) and A(θ ):

U (θ ) =
θ+
θ/2∑
θ−
θ/2

û(kx, ky, kz ), A(θ ) =
θ+
θ/2∑
θ−
θ/2

(
g

ρ0

)
ρ̂ ′(kx, ky, kz ), (1)

where 
θ is the increment in θ , which we will take either as 0.5◦ or 1◦. In the second equation,
ρ̂ ′ is the Fourier transform of ρ ′, the density perturbation away from the linear stratification, which
itself is given by ρ0 + ρ̄(z). Note that U (θ ) is a vector quantity while A(θ ) is a scalar quantity
and both are complex valued. For an illustration of this procedure, see Fig. 1. Subsequently,
time series of U (θ ) and A(θ ) can be accumulated and they are then transformed into frequency
space, e.g., U (θ, t ) ⇒ U (θ, ω). Finally, it is convenient to form the kinetic and potential energy in
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FIG. 1. Illustration of conical shells and their corresponding Fourier mode sums, U (θ ), shown on a cut at
kx = 0. Note that modes on the kz axis corresponding to the shear modes are put into a separate individual shell.
The same applies to modes on the horizontal kx-ky plane.

angle-frequency space from U (θ, ω) and A(θ, ω):

EK (θ, ω) = 1

2
U (θ, ω) · U (θ, ω)∗, EP(θ, ω) = 1

2N2
|A(θ, ω)|2. (2)

These quantities are well suited for our purpose since they allow us to look for energy concen-
tration around the dispersion relation, ωDR = ±N cos θ . For the main part of the present study, we
will use DNS to calculate EK (θ, ω) and EP(θ, ω) and check for wave signatures. By employing this
spatiotemporal analysis, we have reduced the number of dimensions from 4 to 2 since the outputs are
now 2D, in angle-frequency space. This significant reduction in computational cost comes at a small
price, however, since the output quantity, EK (θ, ω), is an approximated version of the true kinetic
energy in θ -ω space. This approximation is discussed in Appendix B, where we compare the results
of this reduced analysis to those obtained from the full analysis using 4D Fourier transformation.

The procedure outlined in Eqs. (1) and (2) can equally be applied to the velocity fields uv and uw

obtained after applying the wave-vortex decomposition to our DNS solutions. By doing so, we will
arrive at the wave and vortex kinetic energy in angle-frequency space, denoted respectively Ew(θ, ω)
and Ev (θ, ω). In theory, Ew(θ, ω) should show all energy being concentrated on the dispersion
relation. On the other hand, Ev (θ, ω) should not have any energy concentration along the dispersion
relation, with energy peaking around ω ∼ τ−1 ≈ 0.

2. Maintaining the scale dependence

The reduced analysis described in the previous section reduces all spatial dependence to the
orientation of the wave vector with respect to the vertical axis. By doing so, we lose the information
relative to the magnitude of the wave vector and hence to the scale of the motions. Since the
wave contents of stratified turbulence may change with scale, it is interesting to keep this scale
dependence. For example, numerical results reported in Ref. [14] have shown that the waves are
energetic mainly at large scales, with less energy being concentrated around the dispersion relation
as we move to smaller scales.

In order to maintain the scale dependence, we will consider also the quantity U (k, θ, t ) which
is the sum of û(k, t ) in circular sections of the conical shells in Fig. 1 at fixed k. Similarly to
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the reduced analysis above, this sum can then be transformed into frequency space, U (k, θ, t ) ⇒
U (k, θ, ω), and the associated kinetic energy can be formed, denoted EK (k, θ, ω). It will hence be
possible, using this quantity, to check for signatures of internal gravity waves in stratified turbulence
as a function of k, i.e., of scale.

B. Wave-vortex decomposition

The wave-vortex decomposition was introduced by Riley et al. [5] and Lilly [6] as part of a
scaling theory in which two distinct sets of reduced equations were obtained in the limit of small
Froude number. The first equation, which was found by scaling time using N−1, is linear and so
should be relevant for the motion of internal gravity waves; its solutions are therefore known as the
wave component and they are denoted by uw. The second equation, which was found by scaling time
using the eddy turnover time τ , is nonlinear and its solutions are horizontal, uv = uv,h = uv,xex +
uv,yey; they are known as the vortex component of the flow. In terms of these components, the full
velocity field can be written as u = uv + uw + usm, where usm = usm(z) corresponds to the shear
modes, the horizontally averaged horizontal velocity. In Fourier space, the shear modes correspond
to the modes at kh = 0, i.e., û(0, 0, kz ) and v̂(0, 0, kz ); their particularity within this framework
is that they cannot be expressed in terms of the wave-vortex decomposition and so they are part
of neither the wave component nor the vortex component. It is convenient to write the wave and
vortex components in Fourier space, where they become ûv = ûve1 and ûw = ûwe2, where ûv =
|ûv|, ûw = |ûw|, and e1, e2 are unit vectors of the Craya-Herring reference frame (e3 is the third unit
vector and is ‖ k). More details on the wave-vortex decomposition and the Craya-Herring reference
frame are given in Appendix A. Within the wave-vortex decomposition, one can define the energy of
the wave component as Ew = (1/2)〈|uw|2〉 and that of the vortex component as Ev = (1/2)〈|uv|2〉.
The notation 〈. . .〉 represents a volume average over the numerical domain. If one wishes to account
only for the wave and vortex component contributions to the kinetic energy, without considering
the shear modes, then a modified form of the kinetic energy becomes E ′

K = (1/2)〈|uw|2 + |uv|2〉 =
(1/2)〈|u|2 − |usm|2〉 = EK − (1/2)〈|usm|2〉, where EK is the total kinetic energy. Finally, it is worth
pointing out once again that the wave-vortex decomposition is a purely spatial decomposition using
which an instantaneous 3D velocity field is decomposed into a wave and vortex component, without
taking into account any information on the temporal evolution of the fields.

III. NUMERICAL SIMULATIONS

A. Description of DNS setup

The DNS simulations presented herein were performed using an in-house code. The code has
been used previously for studies of rotating stratified turbulence [32,33]. This code solves the
Navier-Stokes equations for an incompressible flow in the presence of buoyancy effects, which
are treated using the Boussinesq approximation. In the present setup, buoyancy effects are caused
by a linear stratification of the fluid, which is hence characterized by a value of N , which is uniform
in space and constant in time. The physical constants which are varied are N and the viscosity ν,
while the density diffusivity D is fixed by our choice of the Prandtl number, Pr = ν/D, which is
Pr = 1 for all simulations (i.e., D = ν).

The DNS code is an implementation of a pseudospectral method based on Rogallo’s algorithm
[34]. The numerical domain is a cube with periodic boundary conditions. The grid spacing is
uniform in all three directions and the number of grid points is Nx = Ny = Nz. The dimensions of the
domain are Lx = Ly = Lz = 2π . Dealiasing of the quadratic terms is obtained by the combination
of phase shifting and truncation of the modes with highest k [k > kmax = (2

√
2/3)knyq, where

knyq = Nx/2 is the Nyquist wave number]. The viscous and diffusive terms are treated exactly
using integrating factors. The numerical time integration is performed using a third-order Adams-
Bashforth method. The grid spacing is chosen to ensure accurate resolution of the small scales
during steady state. For this we use the condition kmaxη ≈ 1, where η = (ν3/ε)1/4 is the Kolmogorov
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length scale and kmax, defined above, is the maximum resolved wave number. More details on the
set of simulations reported in this paper are given in Sec. III C.

B. Forcing technique

In the present study, forcing is required in order to obtain a statistically stationary solution for
a period of time. Over this period, it is assumed that the waves within the stratified turbulence
are also in statistical stationarity so that we can extract their amplitude computing a time Fourier
transform. One of the most common forcing schemes used in previous numerical studies has been
vortical forcing, which is directed along the e1 direction and so excites only the vortex component
of the flow. Vortical forcing has often been implemented so as to force only the modes with kz = 0,
which should generate vertically elongated structures that subsequently go unstable, thus injecting
energy in the turbulent flow [3,13,35–37]. A number of studies have employed other schemes, such
as forcing the wave component [14,38] or classical isotropic forcing on spherical shells in Fourier
space [39–41]. For our present investigation of waves in stratified turbulence, we seek a different
forcing scheme in which wave and vortex components are excited equally so that the prevalence of
one or the other component should be determined solely by the dynamics. In addition, we choose
not to force isotropically and instead to use an anisotropic forcing, which is “pancake”-like and so
qualitatively similar to the structure of stratified turbulence. This choice is partially motivated by the
recent work of Kunze [42], who reported that in the ocean energy is injected into the submesoscale
motions (�h < 1 km) by an anisotropic breaking of internal gravity waves, which could thereby feed
stratified turbulence with its highly anisotropic dynamics over the submesoscales.

In order to satisfy the above conditions, we devised another forcing technique which we term
cylindrical forcing. It consists in forcing the modes in cylindrical shells, whose axis is the kz axis and
who are characterized by a radius kh, f and are of finite vertical extent, from kv, f min to kv, f max. The
two cylindrical shells (one at positive kz and one at negative kz) on which the forcing is concentrated
are schematically depicted in Fig. 2. The force f̂ within the cylindrical shells has components f̂1 and
f̂2 in the Craya-Herring frame, which are chosen to be of equal modulus, on average, so that wave
and vortex component of the flow are excited in equal proportions (note that f̂3 = 0 since k · f̂ = 0
to satisfy incompressibility). An advantage of this forcing with respect to an isotropic one is that
cylindrical forcing does not directly excite the shear modes, which lie on the kz axis. It is well known
that shear modes grow uncontrollably in simulations of forced stratified turbulence [9,37], so this
choice limits their growth. In explicit form, the implemented cylindrical forcing is given by

f̂1 = xF eiθ1 cos φ, f̂2 = xF eiθ2 sin φ

for kh, f −
k/2<kh <kh, f + 
k/2 and kv, f min � |kz| � kv, f max, and f̂ = 0 otherwise. Here 
k = 1
is the wave-number increment and θ1, θ2, and φ are uniformly distributed random numbers between
0 and 2π . As a result, the forcing is uncorrelated in time (white noise in time). The value of the
forcing amplitude xF is computed at each time step using the constant power minimal forcing
scheme [16], which ensures that the power injected is fixed at a chosen value P∗ while keeping
the forcing magnitude |f̂| = |xF | at a minimum. A constant power forcing allows us to know the
total dissipation rate ε + εp during steady state, since ε + εp = P∗ once steady state is reached.
Here εp is the potential energy dissipation rate. With a reasonable choice for the mixing coefficient,
 = εp/ε, in the SST regime (see, e.g., Ref. [37]), this allows us to obtain an estimate of the value
of Reb during steady state. This ability is helpful in selecting an appropriate value of P∗ given a
desired value of Reb at steady state.

For the present simulations, we have chosen kh, f = 3, kv, f min = 8, and kv, f max = 12, which
correspond to a pancake-like force f with typical aspect ratios between 8/3 ≈ 2.67 and 4. A
realization of f on a 2563 grid has been computed and Fig. 3 shows fx on a vertical x-z slice.
Note that, as will be shown subsequently, the number of layers in the velocity and density fields is
not given by the number of layers in Fig. 3. This confirms that the vertical length scale is chosen
by the dynamics of the flow; in particular it will be such that the vertical Froude number is of order
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FIG. 2. Illustration of cylindrical forcing. The force f̂ is applied in Fourier space and is active only on the
cylinder areas, A′ and A′′, which in a discrete formulation become cylindrical shells. The forcing is active in an
interval of θ ; the minimum value of θ that is forced is shown.

FIG. 3. Realization of cylindrical forcing with kh, f = 3, kv, f min = 8, kv, f max = 12 on a 2563 grid. Visual-
ization of fx on an x-z plane (the units of fx are arbitrary).
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TABLE I. List of numerical parameters and nondimensional quantities during steady state for the DNS
simulations of this study. The naming convention of the runs is based on their value of Reb.

Run Grid Reb Frh Re kmaxη M 1/(ωminτ ) ωmax/N ωmaxTK

R1.6 5123 1.6 0.032 1560 0.99 256 3.2 1.28 1.02
R3.8 10243 3.8 0.030 4360 0.99 256 3.0 1.28 0.65
R9.9 20483 9.9 0.029 11800 0.99 192 0.72 3.88 1.23

unity once we approach the SST regime. The vertical Froude number is defined as Frv = uh/N�v ,
where �v is the vertical length scale of the flow, and Frv ∼ 1 is one of the central results of the
scaling analysis for the SST regime [11,13].

C. Details of numerical simulations

A total of three DNS simulations were performed as part of this study. This set of DNS runs is
at constant stratification N but with a decreasing viscosity ν, in order to increase the buoyancy
Reynolds number from Reb ≈ 1 to Reb ≈ 10. As a result, the resolution of the simulations is
increased, from 5123 grid points in the first run, to 10243, to 20483 in the final run. The injected
power is kept constant at P∗ = 1. The Froude number is approximately constant across the three
runs, at Frh ≈ 0.03. We here define the Froude number, which is a horizontal Froude number based
on �h, as Frh = ε/Nu2

h, taking advantage of the relationship ε ∼ u3
h/�h [12]. In this form, the Froude

number represents a ratio between the timescale of energy dissipation τ = u2
h/ε (recall that u2

h
dominates the kinetic energy in SST) and the buoyancy timescale N−1. The Reynolds number is
similarly defined as Re = u4

h/νε. In what follows, the above definition of τ will be used to estimate
the eddy turnover time. The horizontal velocity scale is defined as uh =

√
(1/2)〈u2 + v2 − |usm|2〉,

where (1/2)〈|usm|2〉 is the kinetic energy of the shear modes and u, v are the horizontal components
of the full velocity field, u = [u, v, w]. In this definition of uh, we have removed the contribution of
the shear modes because these are large-scale motions that are fed by a slow but continuous upscale
transfer of energy, which tends to accumulate energy in these modes. Despite this transfer being
limited by our choice of cylindrical forcing, the long integration times necessary to reach steady
state with this forcing scheme lead to the shear modes dominating the kinetic energy during the
steady-state period, as will be shown in the next section. A more representative value of Frh during
steady state is obtained by subtracting their energy from the horizontal kinetic energy, as done in
Ref. [41].

A full list of nondimensional parameters and important quantities for each simulation is given
in Table I. Note that the values given in Table I, as well as the approximate values for Reb and Frh

given above, are computed from time-averaged physical quantities, such as ε and u2
h, where the time

averages, (. . .), are carried out over the statistically stationary period of each run. Runs R1.6 and
R3.8 are initialized with a weakly energetic artificial isotropic velocity field with random phases
and with zero density perturbations throughout the numerical domain. To save computational time
in the case of the highest resolution simulation, R9.9, this run was initialized with the final snapshot
of the R3.8 run.

For the spatiotemporal analysis, the time series of U (θ ) and A(θ ) are accumulated over a period
T during steady state. This period defines the minimum frequency of our analysis as ωmin = 2π/T .
The total number of samples per time series is M and the time interval between successive samples
is Tsample. From Tsample, we can calculate the maximum frequency of a signal that we are able to
successfully reconstruct (the Nyquist frequency), ωmax = (1/2)2π/Tsample = π/Tsample. For us to be
able to capture the highest frequencies of internal gravity waves in our simulations, it is necessary
that ωmax � N . On the other end of the spectrum, we expect the lowest frequencies to be those
of quasihorizontal waves with the same aspect ratio of the vortices; such waves have ω ∼ τ−1 in
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(a) (b)

FIG. 4. Visualization of x component of velocity on the central x-z plane in run R9.9 at the last time instant
of the simulation: (a) u and (b) u minus its horizontal average over the whole domain, i.e., keeping only the
contributions of modes with kh � 1 and removing the shear modes at kh = 0.

SST [11]. As a result, we have chosen the lowest frequency of our spatiotemporal analysis so that
1/ωminτ � 1. The specific values used in our spatiotemporal analyses are given in Table I. The
value of ωmaxTK is also given, where TK = (ν/ε)1/2 is the Kolmogorov timescale; this quantity is
the temporal equivalent of kmaxη and should therefore be ωmaxTK � 1. Note that, in order to obtain
the ωmin values in Table I, very long time integrations of the DNS simulations have been carried
out. Indeed, for runs R1.6 and R3.8, the period T is equivalent to more than 18τ (or ≈100 buoyancy
periods TB, TB = 2π/N) and, for run R9.9, T is about 4.5τ (or ≈25TB).

IV. RESULTS

A. Visualizations

We begin the section on the DNS results by showing visualizations of the velocity and density
fields during steady state. In Figs. 4 and 5, visualizations of u (full x component of velocity and this
same component with the shear modes removed) and ρ ′g/ρ0 are given on a vertical slice at the final
time instant of the steady state period of run R9.9. From Fig. 4, it is clear that u is dominated by
shear modes with a relatively large vertical length scale. It can be seen from the u field with shear
modes removed that, superimposed on the shear modes, layered structures with smaller horizontal
and vertical length scales are present, together with even smaller scale features. If we now turn to
the visualization of the density field in Fig. 5, we observe similar layered structures and the frequent
manifestation of billows that are highly reminiscent of those associated with shear instabilities such
as the Kelvin-Helmholtz instability (note that since the shear modes consist in horizontal flow they
do not create density perturbations and so are not visible in Fig. 5). The overall picture of this
turbulent flow is consistent with the description of SST, with layered structures that are vertically
sheared by one another, leading to shear instability and small-scale turbulence [13,43]. It is also
worth emphasizing that the vertical length scales in the u and b fields do not appear to be set by the
vertical length scale of the forcing; cf. Fig. 3. Specifically, the layered structures in Figs. 4(b) and 5
have a range of vertical length scales, perhaps including the forcing length scale, yet there appears
to be a large number of “thin” energetic structures with vertical scale smaller than the forcing scale.
Indeed, the average vertical integral length scale of the u and v fields with shear modes removed
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FIG. 5. Visualization of ρ ′g/ρ0 in run R9.9 (same plane and time instant as in Fig. 4).

[as in Fig. 4(b)], calculated using a standard definition [44], is �v ≈ 0.056 at this time instant. This
value of �v gives a vertical Froude number Frv ≈ 0.60, which is order 1, as expected for SST. On the
other hand, the integral length scale of the forcing realization shown in Fig. 3 is ≈0.099 (note that
the side of the cubic domain has length 2π ). The integral length scale may not be the best method
to estimate the scale of the forcing, which consists in the sum of a limited number of modes, but
we use it for consistency. We argue that this difference in the value of �v together with the visual
evidence from Figs. 3, 4(b), and 5 are sufficient to show that the flow largely self-organized to arrive
at this vertical structure. We can also see from Fig. 4(a) that in the case of the shear modes they have
a larger vertical scale than the forcing, again showing that the forcing does not directly impart its
vertical scale on the flow.

B. Time evolution and stationarity

The time evolution of quantities such as kinetic energy starting from the beginning of the
simulations until statistical stationarity is now considered. Figure 6(a) is a plot of the time evolution
of the volume-averaged kinetic energy, EK , of the kinetic energy excluding the shear modes, E ′

K ,
and of u2

h for run R3.8. Time is nondimensionalized by the steady-state time average of the eddy

turnover time, τ (i.e., u2
h/ε). The first thing to note from Fig. 6(a) is that EK grows continuously

over time and does not reach stationarity because of the shear modes that continue to grow in energy
content. On the other hand, E ′

K does reach statistical stationarity, showing that all the other modes
do reach a steady state. However, E ′

K is significantly lower than EK at steady state, confirming that
the shear modes dominate the kinetic energy at this stage, containing almost 80% of the overall
kinetic energy. In addition, u2

h is only slightly lower than E ′
K , which means that the vertical velocity

accounts for a small fraction of the kinetic energy and that the flow is quasihorizontal at the large,
energy-containing scales.

Next, we apply the wave-vortex decomposition to the velocity field and consider the kinetic
energy in the wave and vortex components, Ew and Ev , whose sum is equal to E ′

K . The evolution of
Ew, Ev , E ′

K , and of the potential energy, EP, over the course of run R3.8, is given in Fig. 6(b). This
plot shows that after the transient period the wave and vortex kinetic energy both reach steady state,
with a larger kinetic energy in the vortex component compared to the wave component. This happens
despite the fact that both components are equally forced, which goes to show that the dynamics acts
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(a) (b)

(c) (d)

FIG. 6. Time evolution of volume-averaged quantities in run R3.8. (a) Kinetic energy evolution: EK , E ′
K ,

and u2
h; (b) evolution of E ′

K , EP, and wave and vortex kinetic energies Ew and Ev; (c) enlargement of panel (a),
showing the initial transient period; (d) evolution of Frh and Reb over time and vertical Froude number Frv
shown at the last time step of the run. The dashed lines in panels (a), (b), and (d) show the time at which the
steady state is considered to begin.

to increase Ev over Ew. Having said this, the difference between Ev and Ew during steady state
is contained, as these quantities remain of the same order of magnitude. Another interesting point
is that the potential energy has a similar evolution to the kinetic energy of the wave component
and that, during steady state, EP ≈ Ew. This may be a manifestation of equipartition of kinetic and
potential energy in the internal gravity waves in this simulation. It may also be due to overturning
motions, such as the billows seen in Fig. 5, which are similarly characterized by equipartition (in
this case in an approximate way only) between kinetic and potential energies. Indeed, as discussed
in previous work on stratified turbulence [36], the billows have a poloidal velocity field, resulting
in their energy being spuriously added to the wave component. On the other hand, the vortex
component uv represents a purely toroidal velocity field.
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From Figs. 6(a) and 6(b), it is clear that the simulation with cylindrical forcing has an extended
transient period before reaching statistical stationarity after a little more than 50 eddy turnover times.
The details of this transient evolution are considered in Fig. 6(c), which is an enlargement of the
early times of Fig. 6(a). Oscillations of the kinetic energy are clearly visible, and they appear in
“bursts” of varying amplitude. The period of the oscillations seems to be approximately constant
and, by counting the peaks in a number of bursts, it is estimated to be T ≈ 0.26τ ≈ 1.4TB. This
results in a frequency of the oscillations of ≈0.71N . Considering that these are oscillations on
the kinetic energy which contain quadratic terms—u2, v2, and w2—if the oscillations are created
by waves with u component u ∝ exp[i(k · x − ωt )], then we have u2 ∝ exp[2i(k · x − ωt )] =
exp[i(2k · x − 2ωt )] and the frequency of these oscillations is 2ω, at least in a simplistic sense. This
results in ω ≈ 0.36N . This frequency is consistent with that of waves with angle θ corresponding to
the lowest angle excited by the forcing, θ f ,min = tan−1(kv, f min/kh, f ) = tan−1(8/3) ≈ 69.4◦, which
corresponds to a wave frequency ω = N cos θ f ,min ≈ 0.35N . Hence, the transient period is charac-
terized by significant changes of both kinetic and potential energy in the presence of waves that are
excited by the forcing and that appear in nonstationary bursts, whose amplitude initially grows and
then decays. Once the wave bursts cease, around t = 45τ , the kinetic and potential energy begin to
relax toward their statistically stationary values.

The evolution of nondimensional quantities is considered in Fig. 6(d), showing the horizontal
Froude number and the buoyancy Reynolds number over the course of the simulation. The value
of Frh remains low during the entire evolution of the simulation, including the transitory state,
before reaching its steady state value, Frh = 0.03. Similarly, Reb rapidly evolves from a low value
to a value above unity before finally settling to its stationary value. The vertical Froude number,
Frv = uh/N�v , which, in our definitions, is the only nondimensional number containing a length
scale, is also shown but only at the final time step of the run, where Frv = 0.56. The reason for
this is that the calculation of the vertical length scale �v is a numerically intensive postprocessing
computation involving the full velocity field (specifically its components u and v). Nonetheless,
Fig. 6(d) highlights that Frv has a value of order unity during steady state that is over an order of
magnitude larger than the value of Frh, confirming the high anisotropy of the flow.

C. Spatiotemporal analysis

1. Evidence of the dispersion relation

One of the first questions that one can answer using the spatiotemporal analysis is whether energy
in the θ -ω space concentrates around the dispersion relation. This would be a clear signature of
internal gravity waves. To check this possibility, color maps of EK (θ, ω) and of EP(θ, ω) for all
three runs are given in Fig. 7. These quantities are computed over the steady-state period of each
run. In the case of run R9.9, EP(θ, ω) calculated using Eqs. (1) and (2) is not available. Instead,
the quantity that is given in Fig. 7(f) is E ′

P(θ, ω) = ∑
k EP(k, θ, ω). As discussed in Appendix B,

EP(θ, ω) and E ′
P(θ, ω) are similar but not identical quantities. As can be seen in Fig. 7, the energy

does concentrate around the dispersion relation, showing that internal gravity waves are an important
feature of the DNS. By further inspecting Figs. 7(a) and 7(b), where the dispersion relation is plotted,
we can observe that the frequencies contained in the DNS are systematically slightly higher than
ωDR but globally they follow the dispersion relation convincingly (these observations are true also
for the results of the other DNS runs presented in Fig. 7). There is a signature of waves from
low frequency, ω ≈ 0, to high frequency, ω ≈ N . Therefore, waves covering practically the entire
allowable frequency spectrum, 0 � |ω| � N , are present during the steady-state period of the DNS.
This means that not only low-frequency waves with ω ∼ τ−1 � N are observed, as suggested
in Ref. [11], but also higher frequency waves with ω ∼ N are present in our DNS. This finding
confirms and extends the observation of waves with ω ∼ N in homogeneous stratified turbulence in
Ref. [14] for a number of individual wave vectors in their simulations.

In the color maps of EK (θ, ω), there are energetic regions within the range θ f ,min < |θ | < π/2
and at low frequency, where the dispersion relation is not visible and the energy is distributed close
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FIG. 7. Color maps of EK (θ, ω) and EP(θ, ω). Left column [(a), (c), (e)] EK (θ, ω). Right column: [(b), (d)]
EP(θ, ω) and (f) E ′

P(θ, ω). [(a), (b)] Run R1.6; [(c), (d)] run R3.8; [(e), (f)] run R9.9. In panels (a) and (b),
the black dashed curves show the dispersion relation of internal gravity waves, ω/N = ± cos θ , while the red
dashed lines show the minimum and maximum forcing angles, θ = ±θ f ,min and θ = ±θ f ,max. The shear modes
at θ = π/2 are not plotted because their high intensity concentrated in a single point (ω = 0) makes all other
points undistinguishable. Note that the color maps have a central symmetry with respect to (θ, ω) = (0, 0)
because they are constructed from real data.

to uniformly over a frequency and angular range. These regions correspond to wave vectors that
are almost vertical and therefore to quasihorizontal structures in physical space. In other words,
they correspond to the layers of stratified turbulence, whose dynamics probably consists of a
combination of waves and vortices that interact nonlinearly. In the plots of EP(θ, ω), the dispersion
relation remains distinguishable as we move toward high absolute values of θ . Also here the energy
becomes more distributed over neighboring frequencies, including ω = 0. Returning to EK (θ, ω),
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FIG. 8. Spatiotemporal analysis of wave and vortex components in run R9.9: (a) Ew (θ, ω); (b) Ev (θ, ω).

its concentration is over two regions beginning at the lowest forcing angle, ±θ f ,min, and extending
up to θ = ±π/2, well beyond the maximum forcing angle θ f ,max = tan−1(kv, f max/kh, f ) ≈ 1.33 rad.
This is evidence that there is a continuous transfer of kinetic energy from wave vectors at the
forcing angles toward higher close-to-vertical angles. The energy goes from the mildly anisotropic
structures of the forcing toward the highly anisotropic structures of stratified turbulence in a regime
close to SST, as shown in Figs. 4 and 5. Both kinetic and potential energy plots show that there is
also some energy that gets transferred to angles smaller than θ f ,min, mostly in the form of waves
with ω ∼ N . The boundary between these two dynamical regions appears to be θ f ,min and so the
forcing may have an influence on the precise energy distribution in θ -ω space. Notwithstanding, the
presence of high-frequency waves with ω ∼ N and low-frequency anisotropic structures should be
a general result of this stratified turbulence regime.

2. Spatiotemporal analysis of wave and vortex components

In the case of run R9.9, a more detailed analysis has been carried out, including a spatiotemporal
analysis of the wave and vortex components. The outputs are the wave and vortex kinetic energy in
θ -ω space, Ew(θ, ω) and Ev (θ, ω) respectively, computed following the procedure of Sec. II A 1.
These quantities allow one to inspect whether the dispersion relation is entirely contained in
Ew(θ, ω) or if it is also visible in Ev (θ, ω), for example, because of nonhorizontal isopycnals.
Indeed, as discussed in a theoretical and numerical study of the wave-vortex decomposition [45], the
decomposition should be modified if the isopycnals are not flat and present significant deviations.
In this case, the vortex component uv should not be a horizontal velocity as in the classical
decomposition but should actually represent a flow along the isopycnal surfaces. In their simulation
of a mixing layer, an oscillatory behavior was observed on time series of Ev , which was ascribed
to waves made visible in the vortex component by the large deviations of the isopycnals associated
with an isolated shear instability [45].

The quantities Ew(θ, ω) and Ev (θ, ω) are depicted in Fig. 8. The wave kinetic energy in Fig. 8(a)
presents a clear signature of internal gravity waves as it appears that most of the energy is on or in the
direct surroundings of the dispersion relation. On the other hand, Fig. 8(b) showing the vortex kinetic
energy, contains no evidence of the dispersion relation. It therefore can be said that the wave-vortex
decomposition does a relatively good job in decomposing the kinetic energy of this simulation,
at least from the information that can be obtained from the color maps in Fig. 8. The only “gray
area” is in the region close to θ = ±π/2, where the dispersion relation shown by Ew(θ, ω) appears
more diffused as energy is “smeared” both toward frequencies higher than ωDR and lower than ωDR,
around ω ≈ 0. This result is somewhat expected considering that the low wave frequencies in these
regions mean that there is not a significant separation between the timescales 2π/ωDR and τ so that
the wave-vortex decomposition should break down. Conversely, the decomposition into motions
that obey the dispersion relation in Ew(θ, ω) and motions at ω ≈ 0 in Ev (θ, ω) is most successful
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for θ different from θ ≈ ±π/2, where we recover a clear timescale separation between waves and
vortices.

Overall, the results show that, at least qualitatively, the wave-vortex decomposition works
well, especially for angles −θ f ,min < θ < θ f ,min. At larger angles, |θ | > θ f ,min, as we approach
θ = ±π/2, the results become less clear cut: There is a hint of the dispersion relation in Ew(θ, ω)
but both wave and vortex kinetic energies are relatively diffuse and are spread over overlapping
regions of the (θ, ω) plane. Finally, the differences between these results, which do not show sign
of the dispersion relation in the vortex component, and those of an isolated shear layer [45] are not
fully understood. Indeed, the presence of shear instabilities in this run, R9.9 (see Fig. 5), suggests
substantial isopycnal displacements, albeit at relatively small, and not very energetic, scales.

3. Wave content as a function of scale

For the high-resolution run, R9.9, we have also carried out the scale-dependent spatiotemporal
analysis, which yielded the quantities EK (k, θ, ω) and EP(k, θ, ω). In practice, this allows us to
consider maps in (θ, ω) coordinates similar to those in Fig. 7 for every wave number k. With this
detailed information, we can check if the wave content of the DNS run is mainly at large scales,
similar to what was observed in previous simulations of stratified turbulence [14]. It also means we
are able to investigate possible Doppler shifts of the wave frequencies, which depend on the specific
scale of the waves, as quantified by k.

By careful inspection of EK (k, θ, ω) and EP(k, θ, ω), we have ascertained that most of the wave
signal at angles smaller than the forcing angles, i.e., |θ | < θ f ,min, is at the largest scales of the
simulation up to approximately k = 8. The smallest wave number excited by the forcing is k =
9; i.e., it is given by

√
k2

h, f + k2
v, f min = √

32 + 82 ≈ 8.54 = 9 since the integer wave-number bins
contain wave numbers between k − 0.5 and k + 0.5. This means that, at these θ , most of the energy
in the waves is contained in scales larger than the forcing scales. We analyze only the energy content
in the waves with |θ | < θ f ,min because in this region the wave signal is clearest; for higher angles,
|θ | > θ f ,min, the dispersion relation is less distinguishable and the separation between waves and
vortices in the (θ, ω) plane is not as clear cut (even when using the wave-vortex decomposition; see
Fig. 8). We therefore prefer not to make any statements about the wave energy (or the vortex energy)
in this region of the (θ, ω) plane corresponding to the highest levels of anisotropy. The above result
about the waves at “intermediate” angles is visually confirmed by Fig. 9, which shows the kinetic
energy at large and small scales in the θ -ω space, defined as

E<
K (θ, ω) =

8∑
k=1

EK (k, θ, ω), (3)

E>
K (θ, ω) =

kmax∑
k=9

EK (k, θ, ω). (4)

The equivalent quantities for the potential energy, E<
P (θ, ω) and E>

P (θ, ω), are also given in
Fig. 9. It is evident from Fig. 9 that practically all energy that follows the dispersion relation in
the interval −θ f ,min < θ < θ f ,min is contained in wave numbers between k = 1 and k = 8, i.e., in
wave numbers smaller than the forcing wave numbers. At the same time, the kinetic energy at
large scales, E<

K (θ, ω), shows a signal centered at ω ≈ 0, which, by comparing it to Ev (θ, ω) in
Fig. 8, can be associated to the vortex component of the flow. Since the vortex component is purely
horizontal, it does not create density perturbations and so there is no signal at ω ≈ 0 in the potential
energy E<

P (θ, ω). For all larger wave numbers (k > 8), the energy tends to accumulate in the regions
θ f ,min < |θ | < π/2, which means that, beyond the forcing scales, the vast majority of the energy is
concentrated in layered structures.

In summary, consideration of E<
K (θ, ω) and E<

P (θ, ω) has shown that the wave signature is
predominantly contained in the largest scales of the simulation, in particular at scales larger than
the forcing scales. This property of the waves within stratified turbulence in the vicinity of the SST
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FIG. 9. Kinetic and potential energy at large and small scales in θ -ω space for run R9.9: (a) E<
K (θ, ω),

(b) E<
P (θ, ω), (c) E>

K (θ, ω), (d) E>
P (θ, ω). The vertical dashed lines show the minimum forcing angle,

θ = ±θ f ,min.

regime is in line with the observation of Lindborg and Brethouwer [14] that waves were mainly
present at large scales in their simulations. At the forcing scales and at smaller scales, the energy
tends to be concentrated in the regions at “high” angles beyond the forcing angles and at relatively
low frequency: This is the signature of the highly anisotropic structures of SST. Note that this result
does not imply that there are no waves for k � 9, since plots of EK (k, θ, ω) and EP(k, θ, ω) in
logarithmic scale (not shown) confirm that signatures of the dispersion relation over all θ continue
well beyond the forcing wave numbers. However, when focusing on the region |θ | < θ f ,min, the
clearest peaks and the majority of the energy along the dispersion relation is contained in the first
eight wave numbers.

4. Energy spectra evolution and energy transfers across scales

We now consider the evolution of the energy spectra over the course of a run and search for an
explanation for the large-scale wave signature in terms of energy transfers across scales. We begin
by defining the 1D energy spectra in the horizontal and vertical directions:

Ex(κx ) =
∑
ky, kz

kx = ±κx

1

2
(ûû∗ + v̂v̂∗), (5)

Ey(κy) =
∑
kx, kz

ky = ±κy

1

2
(ûû∗ + v̂v̂∗), (6)
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(a) (b)

FIG. 10. Evolution over the course of simulation R3.8 of 1D horizontal and vertical energy spectra:
(a) horizontal spectra E (κh) and (b) vertical spectra E (kv ). In both panels, the energy spectra obtained after
filtering out the shear modes are also given. The time at which the spectra are taken is indicated by the line
weight of the curves, with increasing line weight corresponding to increasing time. The first spectrum plotted
in panels (a) and (b) corresponds to the initial conditions at t = 0. In both plots, the wave number is shifted by
half a wave-number increment to show the spectra at κh = 0 and kv = 0. In panel (b), the forcing range in terms
of kv is given, while in panel (a) the forcing at kh = 3 corresponds to the forcing being active from κh = 0 to
κh = 3.

E (kv ) =
∑
kx, ky

kz = ±kv

1

2
(ûû∗ + v̂v̂∗), (7)

which are spectra of the horizontal kinetic energy (1/2)(u2 + v2). A 1D horizontal spectrum is then
defined as E (κh) = (1/2)[Ex(κh) + Ey(κh)], where κh is a 1D horizontal wave number, not to be
confused with the usual (2D) horizontal wave number kh. The time evolution of E (κh) and E (kv ) in
run R3.8 is shown in Fig. 10. In this figure, similar horizontal and vertical spectra that do not include
the energy in the shear modes (kh = 0) are also given; such spectra with shear modes removed differ
only in the first point at κh = 0 in the case of E (κh) (by definition) while they differ over a range of
vertical wave numbers kv in the case of E (kv ) since the shear modes have a vertical structure. Both
energy spectrum evolutions in Fig. 10 highlight that kinetic energy is created via the forcing which,
starting from low-level energy spectra at t = 0 concentrated at low wave numbers, leads to a final
state in which a higher energy level is present at all scales. It is also apparent that a stationary state
is reached at small scales (high κh and kv) while there appears to be an energy accumulation at large
scales. Such energy accumulation is particularly visible in the continuous growth of E (κh) at κh = 0
and of E (kv ) around kv = 5. A comparison of the evolution of the energy spectra with and without
shear modes makes it relatively clear that this accumulation of energy corresponds to the continuous
growth of the shear modes. Concerning the growth of the energy spectra over time, it appears that
the growth at κh = 0 and kv = 5 tends to slow down toward the end of the run. This is reflected by
the growth of the kinetic energy of the shear modes, visible in Fig. 6(a), tending to slow down at
late times, yet without coming to a halt and reaching stationarity. This continuous growth of energy
in the shear modes has been observed by many previous studies involving simulations of stratified
turbulence [9,36,44,46]. The evidence from previous work and presented herein points toward the
growth of energy in the shear modes being due to an upscale energy transfer from the forcing
scales. The present work shows that this is both an upscale transfer in the horizontal direction as
well as in the vertical direction. Indeed, in the vertical direction, the forcing is active over the range

114802-18



SIGNATURE AND ENERGETICS OF INTERNAL GRAVITY …

kv = [8 12], while E (kv ) is seen to accumulate energy around kv = 5, with the peak at this wave
number becoming significantly higher than the peak over the forcing wave numbers. In physical
space, an upscale transfer in the vertical direction for run R3.8 is shown by the fact that the shear
modes [see Fig. 4(a)] have a larger vertical scale compared to the forcing (see Fig. 3). The transfer
in the horizontal direction is, of course, toward the largest scales of the simulation, kh = 0, where
the domain size limits any further transfers. On the other hand, the transfer in the vertical direction
appears to stop before reaching the height of the box at kv = 0, being concentrated mainly over the
wave numbers from kv = 1 up to the forcing wave numbers.

Turning now to the energy content in the waves, it is informative to consider the energy spectra
with shear modes removed, given in Fig. 10, in more detail. We can see that there is not an energy
accumulation in such spectra with both horizontal and vertical energy spectra reaching stationarity
at some point in time, as expected given that the full kinetic energy with shear modes removed, E ′

K ,
reaches a steady state [see Fig. 6(a)]. At the same time, a relatively high level of energy is present
over all horizontal and vertical wave numbers up to the forcing wave numbers and this energy
has been created from a much lower energy level at t = 0. This seems to point toward an energy
transfer from the forcing scales to larger scales being active and leading to the ω ∼ N waves. To
further this point, we have inspected the kinetic energy in the waves at the largest scales through
consideration of EK (k, θ, ω), from k = 1 to k = 8. The results, shown in Appendix C, appear to
confirm that peaks of relatively constant intensity are present along the dispersion relation over all
wave numbers k ∈ [1 8]. This justifies a potential interpretation of them being fed by an upscale
energy transfer from the forcing scales. This energy transfer may, unlike the transfer to the shear
modes, be a transitory event, being active at the beginning of the simulations and then arresting itself
as the wave energy reaches stationarity. Conversely, it may also be possible that the upscale energy
transfer to the waves is continuous over time, a scenario that is plausible should the large-scale waves
participate in the upscale transfer to the shear modes. In this scenario, the waves are continuously
excited by an upscale energy transfer and, in turn, transfer their energy in a continuous fashion to
the shear modes, where it is ultimately accumulated. Indeed, a recent numerical study of stratified
turbulence forced by injecting energy directly in wave motions [47] has proposed, based on the
results of their simulations, that energy is transferred to the shear modes via a wave-mean flow
interaction. This energy-transfer mechanism would be consistent with a continuous upscale transfer
to waves and shear modes in the present DNS.

At this stage, it is important to put such a tentative picture of an upscale energy transfer in
stratified turbulence into some perspective: The spectral energy flux quantifies the rate of energy
transfer in a certain direction and there is evidence from previous DNS [36,44] that the energy flux
to small horizontal scales (downscale) is much larger than the energy flux to large horizontal scales
(upscale). Hence, in forced stratified turbulence most of the energy is transferred to small scales and
dissipated and only a small percentage of the energy is transferred to large scales, leading to a slow
growth of the shear modes and, potentially, a slow transfer to the associated large-scale waves. A
detailed analysis of the energy transfers in the simulations, including computation of the spectral
energy flux, is beyond the scope of this study. In addition to this energy flux, future work could also
attempt to estimate energy exchange rates among three sets of dynamics: shear modes [i.e., usm(z)],
large-scale wave and vortex modes (at scales larger than the forcing), and the remaining part of the
velocity field. Attempts at quantifying these exchange rates would, if successful, lead to a better
understanding of the mechanism by which shear modes arise in stratified turbulence.

5. Doppler effect

From Figs. 9(a) and 9(b), it is clear that for a given θ the wave signature is distributed over a
frequency interval around the dispersion relation frequency. This may be the sign of a Doppler shift
of the wave frequency by an advective motion. The Doppler shift of internal gravity waves can be
straightforwardly quantified in case of a uniform horizontal advection velocity U, i.e., a uniform
horizontal mean flow. The observed frequency is then ω = ωDR + U · k, where k is the wave vector
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FIG. 11. Color map of log10 (E<
P (θ, ω)) for run R9.9 together with plots of ωDoppler/N (black dashed lines).

The vertical bands in the plot are due to the fact that over this limited number of wave numbers several values
of θ are not sampled. For clarity, values below 10−7 are filtered out.

of the wave that is advected by the mean flow. Now, in the case of the present DNS, there is a
strong horizontal mean flow, which varies vertically and evolves slowly over time, due to the shear
modes. This mean flow is not uniform but to a first approximation we can consider that locally
the waves see a uniform horizontal flow with magnitude given by uh,sm =

√
(1/2)〈|usm|2〉 (a time

average of 〈|usm|2〉 within this expression is implied). A similar approach was successfully used
when estimating the Doppler shift on the frequency of inertial waves due to large-scale columnar
structures in a rotating turbulence experiment [48]. The Doppler-shifted frequency of the waves is
then

ω ≈ ωDR + uh,smk cos θ cos α, (8)

where α is the (unknown) azimuthal angle of the horizontal projection of k with respect to the
mean flow direction. We are interested in estimating the maximum Doppler shift on waves which
are mainly at the smallest wave numbers in the DNS up to k = 8. We can therefore set k = 8 in the
above expression, as well as cos α = ±1, since this will maximize the frequency shift. Thus, the
estimated maximum frequency excursions due to the sweeping of the waves by the shear modes are

ωDoppler = ωDR ± 8uh,sm cos θ = ±(N ± 8uh,sm ) cos θ. (9)

We can see that the Doppler shift introduces an amplitude modulation of the cos θ term in ωDR,
increasing its amplitude above N or decreasing it below N . This estimate of the maximum Doppler
shift is superimposed on the color map of E<

P (θ, ω) in Fig. 11, now using a logarithmic scale to
show also the wave signatures at smaller orders of magnitude. From this figure, we can appreciate
that our estimate for the Doppler shift provides an accurate representation of the behavior of the
waves in the DNS run. Overall, the shear modes in the simulation cause a significant Doppler shift
and consequent broadening of the dispersion relation.

6. Wave energy variation with Reb

The above estimate of the Doppler shift can be used to quantify the energy in the large-scale
waves. Limiting our scope to the angles of smaller magnitude than the forcing angles, −θ f ,min <

θ < θ f ,min, and so to waves with ω ∼ N , we can define envelopes in θ -ω space within which such
waves reside. The two branches of the dispersion relation define an upper wave envelope at positive
frequencies and a lower wave envelope at negative frequencies, which of course correspond to a
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FIG. 12. Wave and vortex envelopes. The color maps are of data from run R9.9: (a) log10 (E ′
K (θ, ω)) and

(b) log10 (E ′
P(θ, ω)). For clarity, values below 10−5 are filtered out in both color maps.

different sign of ωDoppler [see Eq. (9)]. These wave envelopes are depicted in Fig. 12 on top of
E ′

K (θ, ω) and E ′
P(θ, ω) from run R9.9, shown in logarithmic scale. Similarly to the definition of

E ′
P(θ, ω), E ′

K (θ, ω) = ∑
k EK (k, θ, ω). Over the range of angles −θ f ,min < θ < θ f ,min, where there

is a relatively large separation between ωDR and ω ≈ 0, the kinetic energy maps in Fig. 7 suggest
that there are two distinct dynamical regions: a region corresponding to waves and a region around
ω ≈ 0 corresponding to the vortex component. We can therefore also define a vortex envelope,
located around ω = 0 and extending up to the edges of the wave envelopes, as shown in Fig. 12(a).
Since the vortex component is expected to possess kinetic energy but no potential energy, we define
the vortex envelope only for the kinetic energy maps.

With the above definitions of the wave envelopes, we can now define an estimate for the kinetic
energy in the large-scale ω ∼ N waves:

EK,ω∼N =
θ f ,min∑

−θ f ,min

(N+8uh,sm ) cos θ∑
(N−8uh,sm ) cos θ

EK (θ, ω) +
θ f ,min∑

−θ f ,min

−(N−8uh,sm ) cos θ∑
−(N+8uh,sm ) cos θ

EK (θ, ω). (10)

The first term is the sum over the upper wave envelope and the second term is the sum over
the lower wave envelope, and for each term the inner sum is over ω and the outer sum is over θ .
We define the potential energy in the ω ∼ N waves, EP,ω∼N , in an analogous fashion, starting from
EP(θ, ω). Similarly, we can define the vortex kinetic energy, EK,ω≈0, as the sum of EK (θ, ω) over
the vortex envelope:

EK,ω≈0 =
θ f ,min∑

−θ f ,min

(N−8uh,sm ) cos θ∑
−(N−8uh,sm ) cos θ

EK (θ, ω). (11)

Note that the definition of the wave and vortex envelopes is consistent with the energy con-
centration of the wave and vortex components shown in Fig. 8, so that we could equally have
used the wave envelope on the wave component kinetic energy map, Ew(θ, ω), to define EK,ω∼N

or the vortex envelope on Ev (θ, ω) to define EK,ω≈0. This is the result of the fact that, for angles
−θ f ,min < θ < θ f ,min, the wave-vortex decomposition is valid and gives a reliable description of the
dynamics.

Assuming that all three DNS runs are similarly characterized by waves at scales larger than the
forcing scales that are swept by the shear modes, we apply the above decomposition of EK (θ, ω)
and EP(θ, ω) to all runs. As a test of the relevance of this decomposition also to the lower Reb runs,
we show the wave and vortex envelopes for run R1.6 in Fig. 13. This figure shows that the energy
around the dispersion relation is indeed confined to the wave envelopes and that the energy at ω ≈ 0
is contained within the vortex envelope. We hence calculate EK,ω∼N , EP,ω∼N , and EK,ω≈0 for the
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FIG. 13. Wave and vortex envelopes for run R1.6 superimposed on color maps of (a) log10 (EK (θ, ω)) and
(b) log10 (EP(θ, ω)). For clarity, values below 10−4.5 in panel (a) and below 10−5 in panel (b) are filtered out.

three DNS runs. This allows us to check what is the effect of increasing Reb on the energy of the
ω ∼ N waves in the simulation. The evolution of the wave energy and of the vortex kinetic energy
as a function of Reb is given in Fig. 14(a). All quantities are normalized by the overall kinetic
energy with shear modes removed, E ′

K . It is clear that the energy in the ω ∼ N waves decreases
with increasing Reb; this behavior is true both for kinetic and potential energy, and the greatest
decrease is seen in going from run R3.8 to R9.9, reaching Reb ≈ 10. The fraction of kinetic energy
in the waves with respect to E ′

K drops from about 23% in run R1.8 to about 14% in run R9.9. This
confirms the general wisdom that waves become less important as we enter the SST regime, as the
energy is more concentrated in the highly anisotropic layers. This statement, of course, concerns
the high-frequency waves with ω ∼ N only as we are not able to draw clear conclusions about
the low-frequency waves, which are difficult to disentangle from the vortices in an unambiguous
way. Equipartition of wave kinetic and potential energy is not observed, with the kinetic energy
being systematically higher than the potential energy. This result may in part be due to the fact that
EK,ω∼N and EP,ω∼N contain energy from all wave numbers, not only from the largest scales. This
means that also energy at small scales with k > ko, which cannot be associated to waves, is included

(a) (b)

FIG. 14. Wave and vortex energy across the three DNS runs shown as a function of Reb. (a) Kinetic and
potential energy of ω ∼ N waves and kinetic energy of ω ≈ 0 vortices. The star symbols at Reb = 9.9 indicate
the wave and vortex kinetic energy calculated from E ′

K (θ, ω) instead of EK (θ, ω), and the wave potential energy
calculated from E ′

P(θ, ω) instead of EP(θ, ω). The color code for these quantities is maintained. (b) Wave and
vortex kinetic energy Ew and Ev as obtained from the wave-vortex decomposition. In both panels, the energy
is normalized by the overall kinetic energy not counting the shear modes, E ′

K .
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in the wave kinetic and potential energy (here ko =
√

N3/ε is the Ozmidov wave number, beyond
which buoyancy effects are negligible). This may create a bias in the numeric values of EK,ω∼N and
EP,ω∼N . For what concerns the vortex kinetic energy, EK,ω≈0, this quantity remains approximately
constant as we increase Reb. The waves have more kinetic energy than the vortices at Reb ∼ 1 but,
as Reb increases and the wave energy decreases, approximate equipartition between wave and vortex
kinetic energy is reached at Reb ≈ 10. This final result may be coincidental and should be further
explored.

The tentative picture that emerges is that the small “leak” of energy, from the anisotropic forcing
scales to larger scales with smaller |θ |, is decreased as the buoyancy Reynolds number is increased
and we enter the SST regime. Nonetheless, even at Reb ≈ 10 the energy in the ω ∼ N waves fed
by this small upscale energy transfer is non-negligible. This is an interesting feature of the present
simulations that was not expected according to the SST theory, which predicts anisotropic vortices
and waves fed by a purely downscale energy transfer [11,12].

Finally, we consider the wave and vortex kinetic energies, Ew and Ev , as obtained from the
wave-vortex decomposition, across the three runs at different Reb. We compute time averages of Ew

and Ev over the steady-state period [a typical time evolution of Ew and Ev is shown in Fig. 6(b)].
These quantities are plotted in Fig. 14(b). The first point to note when comparing Ew and Ev to the
equivalent quantities in Fig. 14(a) is that the energy levels of Ew and Ev are much higher. This is,
of course, due to the fact that to obtain them we sum the energy in ûw(k) and ûv (k) over all θ and
therefore include the highly energetic regions in the range θ f ,min < |θ | < π/2. Furthermore, it can
be seen that Ew and Ev do not evolve significantly with Reb and that the prevalence of Ev over Ew

is maintained over the entire range of Reb. There appears to be a small increase of the fraction of
Ev with respect to E ′

K as we reach Reb ≈ 10, with an associated small decrease of the Ew fraction
(recall that E ′

K = Ew + Ev). However, these variations are significantly smaller than the variations
of EK,ω∼N and EP,ω∼N in Fig. 14(a), both in relative and absolute terms. This different behavior is
due to the energy in the region θ f ,min < |θ | < π/2, which dominates Ew and Ev , but is purposely
excluded from EK,ω∼N , EP,ω∼N , and EK,ω≈0. The fact that all wave vectors k and thus all angles θ are
summed over to obtain Ew, Ev can represent a limitation of global energy budgets obtained directly
from the wave-vortex decomposition. In the present case, this means that the evolution of the wave
energy EK,ω∼N and EP,ω∼N shown in Fig. 14(a) is not clearly reproduced in Fig. 14(b), while it is
believed to be a true physical feature of the current DNS. Of course, this limitation is of particular
importance in the SST regime, where most of the energy tends to accumulate in the specific region
of the (θ, ω) plane close to θ = ±π/2 (and ω ≈ 0).

7. Preferred directions of wave propagation

It is relatively clear from Figs. 7–9 that the wave energy has distinct peaks, corresponding
to specific wave-number orientations θ . This implies that the waves have a number of preferred
directions of propagation, that is to say, a number of directions of propagation at which they are
preferentially excited within homogeneous stratified turbulence. To take a closer look at this, we
have calculated the maxima of EK (θ, ω) and EP(θ, ω) for every θ , limiting our range of frequencies
to be within the wave envelopes (because of the symmetry we consider only the top envelope). We
have hence computed the quantities EP,max(θ ) and EK,max(θ ), which are plotted in Figs. 15 and 16,
respectively. For run R9.9, we have computed the quantities E ′

P,max(θ ) and E ′
K,max(θ ), as the maxima

of E ′
P(θ, ω) and E ′

K (θ, ω) within the wave envelope.
Focusing first on the potential energy, which should be less influenced by the forcing at angles

close to θ f ,min, we can see that the energy peaks at a series of angles that recur across the three
simulations. In addition to a peak at θ = 0◦, corresponding to zero-group-velocity waves with
ω = N , peaks are frequently observed at θ = ±45◦ and within the range ±[52◦ 54.5◦]. Similar
observations can be made when turning to the kinetic energy maxima, even though there are also
pronounced peaks close to the boundaries of the wave envelope, θ = ±θ f ,min, which are thought
to be associated with the forcing. It is important to realize that the second group of waves, with
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FIG. 15. Plots of EP,max(θ ) and of E ′
P,max(θ ) (in case of run R9.9), the maxima of the potential energy within

the wave envelope as a function of θ . The corresponding run is indicated on the right of each plot.

θ = ±[52◦ 54.5◦], transport energy according to their group velocity cg, which is oriented at an
angle φ = 90◦ − θ = ±[35.5◦ 38◦] with respect to the horizontal. This means that these waves
actually transport energy in “close-to-horizontal” directions, a somewhat intuitive result for a
strongly stratified flow. Another remark that can be made when considering the plots in Figs. 15
and 16 is that the wave energy peaks become more distinct when moving to higher Reb, i.e., toward

FIG. 16. Plots of EK,max(θ ) and of E ′
K,max(θ ) (in case of run R9.9).
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a more vigorously turbulent state. Note also that, in the case of run R9.9, the same peaks presented
by EK,max(θ ) are shown by E ′

K,max(θ ), which should be a more accurate measure, but the intensity
of the peaks is decreased in E ′

K,max(θ ), typically.
Very similar propagation directions have been observed in the problem of internal gravity wave

radiation from a localized region of turbulence. In experiments with grid-generated turbulence,
waves were seen to propagate in the linearly stratified region below a turbulent mixed region, with
propagation angles in the range θ = 42–55◦ [27]. In the case of a turbulent wake in a stratified
fluid, experiments showed waves propagating at an angle θ ≈ 55◦ [29]. In a numerical study of
the stratified turbulent wake [30], a larger range of propagation angles θ was observed, with θ

depending both on time and on the wake Reynolds number; the overall range of observed angles
was θ = [26◦ 50◦]. A further relevant work is a primarily numerical study of a confined region
of stratified turbulence, for which the propagation angles were in the range θ = 50–55◦ [28].
The presence of similar wave directions in our DNS of homogeneous stratified turbulence is an
interesting observation. It is suggestive of the fact that these waves are generated in a large class
of problems in turbulence in a stratified fluid. This observation suggests that in the case where
the localized region of turbulence is itself stably stratified [28–30], it is likely that the waves are
generated in the quasihomogeneous interior of the turbulence and then subsequently “exit” the
turbulent region continuing to propagate in the ambient stratified fluid. The picture is more complex
in the case of the turbulence being generated in a constant density fluid above a quiescent stratified
fluid [27], since the turbulence interior is not wave-bearing but the entrainment of stratified fluid
into the turbulent region may be important.

Possible explanations for the specific propagation directions of the waves have been reported.
Reference [29] attributes the observed propagation angle of θ ≈ 55◦ to the fact that the wave
amplitude A
z in terms of isopycnal displacement is maximized for an impulsive point source at
θ = tan−1 √

1/3 ≈ 54.7◦. On the other hand, it was shown by Dohan and Sutherland [27] that
θ = 45◦ maximizes the vertical transport of horizontal momentum for a given amplitude A
z.
In their work, they also suggest that θ ≈ 35◦ maximizes the vertical energy flux [27]. However,
regarding this second point, wave propagation angles of θ ≈ 35◦ were not observed in their
experiments or in two of the previously mentioned studies [28,29] or in the present DNS. Some
evidence for a preferred wave propagation at θ ≈ 31◦ is provided by the numerical wake study but
this angle is selected only when the wake is at low Reynolds number [30]. We here focus on the
waves at θ ≈ 55◦, observed in previous studies and our current work, and provide an alternative
explanation to the impulsive point source argument [29], building on the reasoning of Dohan and
Sutherland [27]. Consider a plane internal gravity wave, propagating in the x-z plane. Its horizontal
energy flux, Fx = Ecg,x, where E is the wave energy (kinetic plus potential energy) averaged over a
period and cg,x is the horizontal component of the group velocity, can be expressed in terms of A
z

and kx as (cf. the expression for the vertical energy flux in Dohan and Sutherland [27]):

Fx = 1

2

A2

zN

3

kx
sin2 θ cos θ. (12)

For a fixed A
z and kx, Fx is maximum at θ ≈ 54.7◦. This may explain why, in the case where
turbulence creates a vertical displacement and hence generates a wave with amplitude A
z, the
wave tends to propagate at θ ≈ 55◦. The fact that we are keeping kx constant (instead of k or kz) is
consistent with this wave generation mechanism since it appears reasonable that the horizontal scale
of the vertical disturbance will determine the horizontal wavelength of the excited wave so that kx

is fixed by the turbulence. Then, the physical rationalization for this wave angle selection is that
most of the advection in stratified turbulence occurs in layers, which include the shear modes, that
transport momentum and energy horizontally and so waves at θ ≈ 55◦ may be able to extract energy
most efficiently from these horizontal motions. This mechanism may involve a resonant feedback
between the waves and the turbulence as described by Dohan and Sutherland [27].
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V. DISCUSSION AND CONCLUSIONS

In this work, we have found wave signatures in homogeneous stratified turbulence over the entire
frequency range of the dispersion relation of internal gravity waves, from ω ≈ 0 to ω = N . We
have isolated the set of waves with the clearest signature in the (θ, ω) plane as being relatively
high-frequency waves with ω ∼ N which reside at scales larger than the forcing scales, i.e., at the
largest scales of the numerical domain. This extends previous work [14] in which evidence of the
presence of these waves had been found, as we here provide a systematic study of the properties
of the ω ∼ N waves through the use of a spatiotemporal analysis taking into account all modes
and all k within the DNS. This detailed analysis has clarified that the waves and their associated
low-frequency vortex motions contain a significant part of the overall kinetic energy with shear
modes filtered out (up to ≈35% when summing wave and vortex kinetic energy). This wave energy,
however, was found to decrease across the simulations as Reb is increased up to Reb ≈ 10 and the
SST regime is approached. Moreover, these large-scale waves are preferentially excited at specific
propagation angles, namely θ = 45◦ and θ = [52◦ 54.5◦]. Interestingly, very similar propagation
directions have been observed previously by studies of inhomogeneous stratified turbulence, in
which waves generated by a confined turbulent region are radiated in a surrounding stratified
environment [27–29]. Such equivalent observations in different types of stratified turbulent flows
are suggestive of a generic mechanism existing for internal gravity wave generation by turbulence.
However, this equivalence does not seem to carry through exactly to recent numerical studies of
stratified turbulent wakes [30,49], including a very recent work [49] in which the wave propagation
angles were found to cover a much wider range.

Over the range of θ between the forcing regions, −θ f ,min < θ < θ f ,min (a range which is
sufficiently distinct from θ = ±π/2), the wave-vortex decomposition appears to provide an ac-
curate description of the wave (ω = ωDR) and vortex (ω ≈ 0) dynamics, as highlighted by the
spatiotemporal analysis of the wave and vortex components, uw and uv . This finding is in agreement
with a similar observation by Lindborg and Brethouwer [14] based on frequency spectra of wave
and vortex components from a set of large-scale modes. The reason for this good agreement in a
highly nonlinear flow is thought to be that in this region of the (θ, ω) plane there is a significant
scale separation between wave frequency (ω ∼ N) and vortex frequency (ω ≈ 0). Indeed, at low
Froude number, if the vortex timescale is the eddy turnover time τ , this frequency or timescale
separation is of the order of τ/N−1 ∼ Fr−1

h � 1. Hence, in SST, if energy is transferred to this
region at “intermediate” angles θ , the conditions for the wave-vortex decomposition to be valid will
be met. The question is then how is the energy transferred from the relatively high |θ | of the forcing
to smaller |θ | as well as to larger spatial scales corresponding to the wave signature. In terms of
the transfer to larger scales, we have proposed that this occurs through an upscale energy transfer
from the forcing scales which excites wave and vortex modes at larger scales. The waves may in
turn be responsible for the ultimate growth and accumulation of energy in the shear modes, via a
wave-mean flow interaction, as has been proposed by a recent numerical study [47]. The fact that
the shear modes grow through an upscale energy transfer has been confirmed through consideration
of the horizontal and vertical energy spectra, E (κh) and E (kv ), and their evolution over time. This
transfer has been shown to be upscale in terms of both horizontal and vertical scales, even though
the upscale transfer in the vertical direction may be limited to scales close to the forcing scales since
it arrests itself at the largest scale of the domain. On the other hand, the horizontal upscale transfer
reaches the largest scales of the box (kh = 0), indicating that this transfer would potentially carry on
to even larger horizontal scales. The shear modes also have a distinct effect on the large-scale waves
since they are found to cause a Doppler shift of their frequency. We have been able to successfully
quantify this Doppler shift in ωDR by considering the shift to be due to a locally uniform horizontal
flow with speed given by the rms velocity of the shear modes.

The simulations we have carried out have a buoyancy Reynolds number varying from Reb ≈ 1.5
to Reb ≈ 10. Some variation of the results has been observed with increasing Reb: A reduction
of the energy in the large-scale waves as quantified through our “wave envelope” approach and
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what appears to be a slightly higher concentration of the energy in the anisotropic motions with
θ f ,min < |θ | < π/2 (see Fig. 7). As discussed previously, the energy budgets from the wave-vortex
decomposition, Ew and Ev , evolve very little with increasing Reb. The results will probably undergo
(further) variations as Reb is increased beyond Reb = 10, while maintaining a low Froude number.
In particular, some of the trends observed herein may be consolidated and/or some further or
contrasting variations may occur. For example, a quantity that we have not investigated in detail,
the vertical wave number (or scale) of the shear modes may also depend on Reb, and so variations
of this quantity may result from a further increase in Reb. This is something worth examining in
future work.

A limitation of the present study is that we have only considered one forcing f , specifically one
set of forcing angles |θ | = [θ f ,min θ f ,max]. As can be seen in Fig. 7, the forcing angles represent the
boundary between two distinct dynamical regions: one region with |θ | < θ f ,min and at scales larger
than the forcing (k < 9) at which waves and vortices are clearly observed, and a second region
within the range θ f ,min < |θ | < π/2 and at smaller scales (k � 9) at which anisotropic structures
dominate the energetics and wave and vortex signatures are not clearly discernible. Even though
these two dynamical regions are thought to be a general feature of stratified turbulence in this
parameter range, exploring different forcing angles and scales would allow one to get a more
complete picture of this flow and test some of the results obtained in this study. Moreover, the
present forcing has equal magnitudes in the wave and vortex components of the flow. A forcing
differing in this respect may also affect some of the results, particularly if the forcing is concentrated
entirely in one of these two components, a situation which is often considered in the study of SST
[3,14,16,36,38]. A further limitation is the inevitable finiteness of the period of observation of the
waves T in the simulations. In particular, this period T may have implications on our ability to
capture the very slow motions at ω ∼ τ−1 ≈ 0, represented by the vortex modes as well as the
motions of the layers of SST. Future work could employ longer time periods for the spatiotemporal
analysis in order to provide more definitive results on these slow motions in stratified turbulence.
Finally, it is worth highlighting the unsolved problem of disentangling waves from vortices in the
highly energetic regions beyond the forcing angles, at θ f ,min < |θ | < π/2. The present results are
not clear cut in terms of isolating the signature of the dispersion relation in this region, even though
the dispersion relation has been observed in EP(θ, ω) and in the wave-component map Ew(θ, ω)
over these angles. This lack of clarity has led us to refrain from attempting to create wave and vortex
energy budgets in this region of the θ -ω space. More work is needed to investigate the dynamics
of waves and vortices in this region corresponding to the layers of SST and to determine whether
it is actually possible to unambiguously isolate the wave dynamics from the vortex dynamics under
such highly anisotropic conditions. This open question also leads us to express a recommendation to
use caution when interpreting global energy budgets obtained from the wave-vortex decomposition,
especially in the SST regime. This is because such budgets sum over all motions, from intermediate
to high θ and from small to large scales, and hence may not provide an accurate representation of
the energetics of waves and vortices in a stratified turbulent flow in which more than one dynamical
region is present.
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APPENDIX A: FORMULATION OF THE WAVE-VORTEX DECOMPOSITION

Starting from the reduced equations for the wave and vortex components, it can be shown (see
Ref. [7]) that the wave component is vertically irrotational (vertical vorticity ωz = 0) and contains all
the horizontal divergence, ∂u/∂x + ∂v/∂y, of the flow, while the vortex component is horizontally
nondivergent and contains all the ωz. Because of this property, the components of the velocity field
in Fourier space, projected onto the Craya-Herring reference frame, correspond exactly to the wave
and vortex components ûw and ûv . The Craya-Herring reference frame is a reference frame based
on the wave vector k and the vertical direction; it has unit vectors (see, e.g., Ref. [50])

e1 = k × ez

|k × ez| = ky

kh
ex − kx

kh
ey, (A1)

e2 = k × e1

|k × e1| = kxkz

khk
ex + kykz

khk
ey − kh

k
ez, (A2)

e3 = k
|k| = kx

k
ex + ky

k
ey + kz

k
ez. (A3)

The incompressibility condition on the velocity field, ∇ · u = 0, translates to the condition
k · û = 0 in Fourier space. This means that û · e3 = 0 and that û can be written using only two
components, in the e1 and e2 directions. Now, it is straightforward to confirm that the component
in the e1 direction is horizontally nondivergent and has ωz �= 0 and that the component in the e2

direction has ωz = 0 and nonzero horizontal divergence. Hence, we can write the wave-vortex
decomposition as û = ûv + ûw = ûve1 + ûwe2.

As mentioned previously, it is important to note that modes with k = [0, 0, kz], which corre-
spond to a horizontal flow that is horizontally invariant but maintains a z dependence, cannot be
expressed in the Craya-Herring reference frame. These modes are known as the shear modes [9,36]
and we will treat them separately. The expression for the full velocity field in Fourier space thus
needs to be revised to û = ûv + ûw + ûsm.

APPENDIX B: APPROXIMATION IN REDUCED SPATIOTEMPORAL ANALYSIS

The kinetic energy obtained from our reduced spatiotemporal analysis, EK (θ, ω), is an approxi-
mation to the true kinetic energy obtained by reducing the 4D quantity EK (k, ω) = (1/2)ũ(k, ω) ·
ũ(k, ω)∗ to the 2D space given by the (θ, ω) coordinates. This is because by performing the sum of
velocity Fourier modes over conical shells before taking the square to form an energy, we introduce
a number of cross terms, which are the products of different Fourier modes within the same conical
shell. Since both summation and Fourier transformation are linear operations, we can consider that
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FIG. 17. Potential energy EP(θ, ω) for run R1.6 as obtained from (a) reduced analysis and (b) 4D Fourier
transform. The color map is the same for both figures.
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FIG. 18. Comparison of EP,max(θ ) obtained from the reduced and full analyses for run R1.6.

we are taking the square of the sum of modes ũ(k, ω) within a given conical shell. Assuming we
have n such modes in a shell, the quantity EK (θ, ω) is

EK (θ, ω) = 1
2 (ũ1 + ũ2 + · · · + ũn) · (ũ1 + ũ2 + · · · + ũn)∗

= 1
2 (|ũ1|2 + |ũ2|2 + · · · + |ũn|2) + (Re{ũ1 · ũ∗

2} + Re{ũ1 · ũ∗
3} + · · · ).

The first term in the final expression is the true kinetic energy in the shell and the second term
is the sum of extra contributions. An equivalent development can be made involving the density
perturbation modes ρ̃ ′(k, ω) contributing to the potential energy distribution EP(θ, ω) obtained
from the reduced analysis. Fortunately, because the flow is turbulent, the phases of individual
Fourier modes, whether they be corresponding to waves or to eddies, are “scrambled,” which means
that the overall sum of the cross terms is approximately zero. We can hence continue using this
reduced analysis, keeping in mind that there is a small error and that the sum of EK (θ, ω) is∑

θ

∑
ω EK (θ, ω) ≈ EK = (1/2)〈|u|2〉, where EK is the average kinetic energy in the numerical

domain; i.e., these quantities are not exactly equal.
Similarly, the quantity EK (k, θ, ω) is formed by first summing û(k) over circular annuli at

constant equatorial angle θ and at constant k. The time Fourier transform of this sum is then
computed and the subsequent squaring of U (k, θ, ω) introduces cross terms between the different
Fourier modes that are present within the circular annulus. Hence, also EK (k, θ, ω) contains a
small approximation. Moreover, the reduction of this quantity by summation over k, E ′

K (θ, ω) =∑
k EK (k, θ, ω), results in another approximation to the kinetic energy in θ−ω space. Note that

E ′
K (θ, ω) �= EK (θ, ω), since EK (θ, ω) contains cross terms between all Fourier modes within a

conical shell, which are significantly more than the sum of cross terms within the circular annuli
making up the conical shell, contained in E ′

K (θ, ω). For this reason, E ′
K (θ, ω) is probably a more

accurate measure than EK (θ, ω). In any case, the approximations should be small: For example, in
global terms, for run R9.9, the error from the kinetic energy without shear modes E ′

K is 1.2% when
summing over EK (θ, ω) and 0.4% when summing over E ′

K (θ, ω).
To assess the error in the reduced spatiotemporal analysis using a finer grain, we have computed

the 4D Fourier transform of ρ ′(x, t ) for the DNS run at lowest resolution, run R1.6. This has been
done using a similar approach and postprocessing code compared to those used in Ref. [19]. This
has led us to the true potential energy in frequency–wave-number space, EP(k, ω), which was then
reduced to the θ−ω space to obtain the exact version of EP(θ, ω). In Fig. 17, color maps of EP(θ, ω)
for this run obtained from the reduced analysis [cf. Fig. 7(b)] and from this full 4D spatiotemporal
analysis are given. Loosely speaking, it appears that the energy map obtained from the reduced
analysis is a “noisy” version of the energy map obtained from the full analysis. The main features

TABLE II. Comparison of wave potential energy EP,ω∼N obtained from full and reduced analyses for run
R1.6.

EP,ω∼N (reduced) EP,ω∼N (full) EP,ω∼N/E ′
K (reduced) EP,ω∼N/E ′

K (full) Error

0.1334 0.1336 0.1454 0.1456 0.2%

114802-29



MAFFIOLI, DELACHE, AND GODEFERD

FIG. 19. Kinetic energy content EK (k, θ, ω) at the first eight wave numbers of run R9.9. The color map is
the same across all color plots and is given on the plot corresponding to k = 2; the upper limit of the color map
has been chosen to make the wave energy visible in all plots, i.e., the energy in the vicinity of the dispersion
relation. This results in the energy close to ω ≈ 0 (corresponding to vortex energy) saturating in a few cases as
it is higher than this upper limit.

of the true EP(θ, ω) are recognizable in the reduced analysis version, for example, the dispersion
relation and the additional two branches at higher frequency that appear for θ f ,min < |θ | < π/2. Yet
it is clear that significant deviations occur on a point-by-point basis. To further explore the effect of
the approximation on the results presented herein, we recalculate the distribution of the maxima of
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EP(θ, ω) within the wave envelope as a function of θ (the wave envelope is defined using the same
Doppler shift as before). The results are presented in Fig. 18. This figure highlights that the same
trends are presented by the two versions of EP,max(θ ), with most energy peaks of the true version
being reproduced by the reduced analysis version at the same θ but with some variation of the height
of the peaks.

Finally, we estimate the wave potential energy as obtained from the full analysis by summing
EP(θ, ω) over the wave envelope. The results are shown in Table II where they are compared to the
results of the reduced analysis. The comparison is very good and the error of the reduced analysis
is very small for EP,ω∼N . In conclusion, the full 4D analysis confirms that there are pointwise errors
in the reduced analysis that result in added noise in EP(θ, ω). At the same time, the full analysis
confirms that the main physical features observed using the reduced analysis, including the wave
energy budget, are accurate, and therefore gives us confidence in the results presented previously.

APPENDIX C: VARIATION IN WAVE ENERGY AT THE LARGEST WAVE NUMBERS

In this Appendix, the distribution of wave and vortex kinetic energy over the largest scales, from
k = 1 to k = 8, is considered. In Fig. 19, the kinetic energy maps EK (k, θ, ω) are presented, with
k = 1 up to k = 8. It can be seen that, while the overall kinetic energy for every wave number
is not constant, wave signatures (as well as vortex signatures) are present over all k. Moreover,
the individual θ that are excited as a function of k are now visible. Note that the number of wave
vectors having a certain magnitude k is limited due to the discrete numerical grid—in practice we
have integer wave numbers—and so the number of θ is also limited. Clearly, due to this geometric
constraint, the number of accessible θ is smallest for k = 1 (only θ = 0◦, 45◦, 90◦ are accessible)
and increases with increasing k. Considering individual θ , i.e., individual waves, as a function of k,
it seems that the energy content is roughly constant across all excited θ and across all k. However,
the number of excited θ and so the number of peaks is not constant as a function of k leading
to a nonconstant overall wave energy from one map to the next, which may be due to the above
geometric constraint. Overall, it seems reasonable to say that energy is distributed relatively evenly
across all the waves excited in the range of wave numbers k = [1 8].
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