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Soliton and breather solutions of the nonlinear Schrödinger equation (NLSE) are known
to model localized structures in nonlinear dispersive media such as on the water surface.
One of the conditions for an accurate propagation of such exact solutions is the proper
generation of the exact initial phase-shift profile in the carrier wave, as defined by the NLSE
envelope at a specific time or location. Here, we show experimentally the significance
of such initial exact phase excitation during the hydrodynamic propagation of localized
envelope solitons and breathers, which modulate a plane wave of constant amplitude (finite
background). Using the example of stationary black solitons in intermediate water depth
and pulsating Peregrine breathers in deep water, we show how these localized envelopes
disintegrate while they evolve over a significant long distance when the initial phase
shift is zero. By setting the envelope phases to zero, the dark solitons will disintegrate
into two gray-type solitons and dispersive elements. In the case of the doubly localized
Peregrine breather the maximal amplification is considerably retarded; however, locally,
the shape of the maximal focused wave measured together with the respective signature
phase-shift are almost identical to the exact analytical Peregrine characterization at its
maximal compression location. The experiments, conducted in large-scaled shallow-water
as well as deep-water wave facilities, are in very good agreement with NLSE simulations
for all cases.

DOI: 10.1103/PhysRevFluids.5.114801

I. INTRODUCTION

Wave propagation in nonlinear dispersive media are known to be modeled by weakly nonlinear
evolution equations such as the nonlinear Schrödinger equation (NLSE) [1,2]. Even though the
NLSE is restricted in taking into account only weak nonlinearities of the wave field and narrow-band
processes, several laboratory studies have confirmed its validity to predict the dynamics of stationary
and pulsating coherent structures in optics, hydrodynamics, and plasma [3–8]. One remarkable
feature of the hydrodynamic NLSE is that it takes into account the correct ratio of group and phase
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velocity even when higher-order effects are at play [9], which are captured in the modified NLSE
framework [10,11].

Indeed, the vast and manifold families of exact NLSE solutions allow us to quantitatively study
the dynamics of localized structures, especially within an experimental context [12–14], since they
provide an exact parametrization of the wave field in time and space. In particular, the time-NLSE
provides a convenient framework where the evolution of the wave packet is described in space
along the longitudinal propagation coordinate, with the temporal coordinate playing the role of
transverse variable. When modeling a localized wave packet on a finite background (i.e., a carrier
wave of constant amplitude and single frequency), an exact solution of the time-NLSE determines
and applies a specific temporal transverse phase-shift profile with respect to the background wave,
which can evolve or remain constant. This fundamental feature is an essential attribute to ensure
coherence. Without the correct temporal phase-shift in the initial and launching condition of the
NLSE solution, the envelope is expected to diverge from the anticipated trajectory, resulting in the
disintegration into several similar or different localized structures.

NLSE solutions with finite background differ in the defocusing and focusing regimes, respec-
tively, which describe water wave propagation at different water depths. In the defocusing regime the
NLSE supports one-soliton solutions in the form of stationary dark solitons [15] or multisoliton dark
solutions [16]. The simplest one-soliton solutions are characterized by a single parameter that fixes
the maximal phase-shift along the envelope profile ranging from 0 to π , which in turn is related to
the darkness of the envelope and to its velocity with respect to the reference group velocity [17]. The
limiting case corresponds to the black solution which has a characteristic shift of π , zero velocity,
and total darkness at the dip. This shift in the carrier is expected to remain constant throughout the
whole propagation in time and space.

Conversely, in the focusing case, the solutions are bright and pulsating and have obviously the
property of exhibiting a phase profile which varies with the focusing of the envelope. The most
fundamental solution is the Peregrine breather, which describes the modulation instability for the
case of infinite modulation period [18]. When modeled in the framework of the time-NLSE, the
Peregrine breather has a temporal phase profile with maximum shift between the background and
the peak elevation that ranges from 0 to π upon evolution, where the maximum value of π occurs
across the two transverse zeros of the envelope, and is achieved exactly when the wave packet
reaches its maximal focusing point [19,20]. This abrupt temporal π -shift at the focus point is the
most distinctive feature of Peregrine solitons that we specifically address here.

The general aim of this paper is to investigate numerically and experimentally the significance
of the initial transverse temporal phase profile of the launched soliton and breather hydrodynamics
using the black soliton and the Peregrine breather as references. Considering a background field
with input negative (dip) envelope modulation in the defocusing or positive (bump) modulation in
the focusing regime, respectively, we show that the suppression of the appropriate phase-shift would
engender the disintegration of the localization. All reported experimental results are in excellent
agreement with numerical NLSE simulations. We also discuss the long-term propagation and the
universal feature of solitons and breathers deprived from their distinctive phase setting.

II. LOCALIZED ENVELOPES AND EXPERIMENTAL SETUP

Nonlinear waves in intermediate water depth as well as in deep water can be described by the
defocusing and the focusing time-NLSE, respectively. In dimensional form, this evolution equation
reads [21]

−i
(∂ψ

∂x
+ β1

∂ψ

∂t

)
+ 1

2
β2

∂2ψ

∂t2 + γ |ψ |2ψ = 0, (1)
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where

β1 = 1

cg
, (2)

β2 = − 1

c3
g

∂2ω

∂k2
, (3)

γ = ωk2

16cg sinh4 (kh)
[cosh (4kh) + 8 − 2 tanh2 (kh)] − ω

2 sinh2(2kh)

[2ω cosh2 (kh) + kcg]2

cg
(
gh − c2

g

) . (4)

Here, g denotes the gravitational acceleration, h is the water depth, k is the wave number of the
carrier wave, while the dispersion relation reads ω = √

gk tanh kh, and cg = ∂ω
∂k is the group velocity

of the wave packets. When kh < 1.363, i.e., shallow or intermediate water depth, β2γ < 0 the NLSE
is known to admits a family of dark one-soliton solutions [15,17], which are characterized by a
negative envelope dip.

One limiting case of the family of dark solitons, which locally diminishes the amplitude of
the carrier to zero, is referred to as black soliton and has the following simple form for a given
normalized background amplitude

ψB(x, t ) = tanh

[√−γ

β2

(
t − x

cg

)]
exp(−iγ x). (5)

This fundamental solution has been observed in a wide range of nonlinear dispersive media,
for instance, in optics [22], Bose-Einstein condensates [23], plasma [24], and recently also in
hydrodynamics [25].

In deep water, when kh > 1.363, β2γ > 0 and, besides the propagation of stationary envelope
soliton packet, the NLSE can also accurately describe the modulation instability dynamics [26].
Indeed, the family of Akhmediev breathers describe the Stokes waves’ instability for each case
of unstable modulation frequency [27,28]. The limiting case of zero modulation frequency is
analytically described by the Peregrine breather [18], parametrized for a normalized background
as

ψP(x, t ) =
⎛
⎝−1 + 4 − 8iγ x

1 + 4 γ

β2

(
t − x

cg

)2 + 4γ 2x2

⎞
⎠ exp (−iγ x). (6)

Note that the maximal wave focusing occurs at x = 0 in this parametrization.
The corresponding dimensional spatiotemporal surface elevation, taking into account the second-

order Stokes correction, in both, focusing and defocusing cases, is modeled by

η(x, t ) = Re{ψ (x, t ) exp [i(kx − ωt )] + 1
2 kψ2(x, t ) exp [2i(kx − ωt )]}. (7)

Equation (7) can be used to determine the experimental boundary conditions for the hydrodynamic
experiments. These NLSE solutions can be represented as ψ (x, t ) = A(x, t ) exp [iϕ(x, t )] [26] and
hold a phase-shift in the complex envelope, which is also transmitted to the corresponding water
surface elevation signals. That said, each exact NLSE solution assigns a local phase dynamics,
which is determined by the parametrization of the solution. To physically observe such solutions,
it is mandatory to take these phase-shifts into consideration in defining the initial conditions as
prescribed by Eq. (7). To ignore this phase-shift in the initial condition, as designated by the exact
NLSE solution while keeping the same initial envelope configuration and geometry, we have to
simply replace, at some specific location x, ψ (x, t ) by |ψ (x, t )| in Eq. (7),

η(x, t ) = Re{|ψ (x, t )| exp [i(kx − ωt )] + 1
2 k|ψ (x, t )|2 exp [2i(kx − ωt )]}, (8)

which means setting all the phases equal to zero. Consequently, it is expected from weakly nonlinear
theory that the envelope dynamics will be significantly different. For instance in the case of the
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FIG. 1. Left: Propagation of black soliton, starting with an exact initial condition, as described from the
exact NLSE framework. The amplitude of the carrier is a = 0.036 m, the steepness ε = ka = 0.08, the still
water depth is h = 0.4 m corresponding to a dimensionless depth kh = 0.9. Right: Propagation of a similiar
initial localized structure having the carrier parameter as in left panel, however, suppressing the characteristic
black soliton phase-shift of π in the initial conditions.

black soliton, the condition for the stationary wave propagation is going to be violated. We shall
investigate this type of wave motion experimentally and numerically in detail together with the
Peregrine breather for deep-water conditions. We emphasize that a significant wave propagation in
space is required to experimentally study the disparity in the wave propagation.

The experiments have been conducted in two large water wave facilities. The first with water
of intermediate depth is installed at the Technical University of Berlin, with dimensions of 110 ×
8 × 0.4 m3 and a piston-type wave maker, whereas the deep-water wave flume installed at The
University of Tokyo generates the waves by means of flap-type wave maker while its dimensions
are 85 × 3.5 × 2.2 m3. The remaining configuration of the facility are similar: A number a wave
gauges are installed along the wave facilities to measure the evolution of the nonlinear wave field
and a wave absorber is installed at the end of the facility to avoid the reflection of the waves.

III. EXPERIMENTAL AND NUMERICAL RESULTS

A. Dark solitons

We will first start with the description of the experiments in the defocusing regime. We recall
that to generate dark solitons, we have to satisfy the hydrodynamic dimensionless depth condition
kh < 1.363 [25].

A first set of experiments is carried out with carrier parameters determined by the amplitude
a = 0.036 m, a steepness of ε = 0.08 for a dimensionless depth of kh = 0.9. Figure 1 shows the
evolution of the black soliton wave (left panel) as well as the case of same envelope depression
structure without the initial phase-shift of π [17] (right panel), both propagating over a considerable
propagation distance of 75 m. Note that at the first gauge, i.e., at the lowest time series in the Fig. 1,
the surface elevation are almost indistinguishable by eye in the two cases. Clearly, we can observe
a very clean stationary propagation of the black soliton, as expected form NLSE predictions and as
already reported by means of a different facility [25]. In the latter work the wave flume and thus the
propagation distance was significantly shorter as in these reported tests. Note that the present one
is to date the longest propagation of a black soliton reported in water waves and the result proves
the robustness of such localized structures during their evolution. The right panel in Fig. 1 shows
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FIG. 2. Left: Propagation of black soliton, starting with an exact initial condition, as described from the
exact NLSE framework. Right: Propagation of a similar initial localized structure having the carrier parameter
as in (Left), however, ignoring the characteristic black soliton phase-shift of π in the initial conditions.
Compared with data in Fig. 1, the water depth is the same (h = 0.4 m, kh = 0.9), but the carrier amplitude
is larger, a = 0.045 m, corresponding to higher steepness ε = ak = 0.10.

the result of the same type of experiment, however, when the π -phase-shift is ignored in the initial
conditions the dynamics evidently differs. Indeed, a visible distortion of the wave field is noticed
and the initial envelope dip in the dark wave envelope does not remain localized, but rather leads to
fission into two shallower envelope dips that separate from each other with definite (opposite) group
velocities, since the coherence is distorted and dispersive effects become more significant. This
suggests that the initial profile is embracing in this case two gray solitons and weaker dispersive
waves. It is expected that this can be detected using advanced inverse scattering eigenvalue analysis
[16,29,30]. The latter envelope distortions is discussed below in more detail with reference to Fig. 4.

A second example of the same type of experiments is illustrated by choosing different carrier
parameters. In this example, we slightly modify the degree of nonlinearity by increasing the ampli-
tude of the background to a = 0.045 m so that the steepness becomes ε = 0.10. The experimental
results are depicted in Fig. 2. As in Fig. 1, we observe again an ideal propagation of the black soliton
for the initial conditions dictated by the NLSE, whereas without correct initial phases, the initial
dark zero dip fissures. As we increase the steepness, compared to the first experiment, the degree
of nonlinearity is increased as well and the envelope-splitting behavior is much more pronounced
(this will be clearly illustrated in Fig. 4). We point out that the observed behavior is consistent
with similar observations previously reported in optics [31,32] and Bose-Einstein condensation
[33]. To investigate the nature of the fission in these observations, we also conducted numerical
NLSE simulations of these latter four cases, as described above and as shown in Figs. 1 and 2. The
numerical integration scheme is based on the common split-step technique [34,35]. The simulations
of wave envelope profiles as depicted in Fig. 3 (top left panel) and (bottom left panel) have been
performed to demonstrate the accuracy of the numerical scheme predicting the evolution of the
stationary black soliton and thus, for the sake of accurate interpretation of the numerical results. As
can be noticed in such panels, the initial dark soliton envelopes remain indeed stationary. However,
by ignoring the π -phase-shift of the carrier around the envelope-depression-type localization, we
evidently observe the break-up of the localized envelope zero dip, seemingly into two gray-type
structures with additional dispersive waves (ripples) emitted towards the edges of the temporal
window. In this case, the initial envelope cannot stand the absence of phase jump across its zero and
breaks into two shallower dips (each with its own phase jump, as we will discuss in the following)
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FIG. 3. Numerical NLSE simulation of the experiments in Figs. 1 and 2. The top row is relative to the case
shown in Fig. 1 (left: soliton input; right: suppressed phase input). The bottom row is relative to the case shown
in Fig. 2 (left: soliton input; right: suppressed phase input).

that moves away from the initial zero to conserve the overall momentum. The excess energy radiated
in the form of ripples is caused by the fact that the initial dip with suppressed phase is no longer a
soliton solution of the NLSE, and hence its spectral content contains also radiation.

As next step of the study, we compare the measurements recorded from farthest wave gauge,
placed 75 m from the wave maker, with the corresponding envelope prediction, extracted from
the NLSE simulations. In other words, the final temporal traces in the four cases shown in Fig. 3
superimposed to the farthest water wave tank observations. These comparison results are shown in
Fig. 4.

Figure 4 shows a very good agreement achieved between these farthest measurements, recorded
at a distance of 75 m of wave propagation and the corresponding NLSE simulations. This confirms
the validity of the NLSE in describing the dynamics of water waves in finite water depth. We
also observe a particular agreement for the cases related to the fission, when injecting initial
conditions ignoring the π -phase-shift. We believe that these prediction results are quite remarkable
in view of the very long propagation distance trailed while considering that higher-order effects and
experimental imperfections are always present.

Interestingly enough, we point out that the black soliton with suppressed phase-shift can break
in several pairs (instead of a single pair) of symmetric gray solitons when one enters the semi-
classical regime [36,37] which implies a dominant nonlinearity, i.e., for a given width a much larger
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FIG. 4. Blue continuous lines: wave tank measurements after 75 m of wave propagation. Red dashed lines:
NLSE prediction at the same gauge position. Top Left: Last measurement of Fig. 1 (Left) compared with the
exact black soliton solution. Top Right: Last measurement of Fig. 1 (Right) compared with numerical NLSE
simulations. Bottom Left: Last measurement of Fig. 2 (Left) compared with corresponding numerical NLSE
simulations after 75 m of propagation. Bottom Right: Last measurement of Fig. 2 (Right) compared with
corresponding numerical NLSE simulations after 75 m of propagation.

wave amplitude compared with the soliton amplitude, or for a given amplitude a much larger width
compared with soliton width [33,38]. This regime, however, is not accessible in our experiment and
will be addressed in the future.

B. Peregrine soliton

As next, we discuss the experiments related to bright doubly-localized (i.e., in x and t) breather
structures. Therefore, we will consider deep-water regime in the following. Due to the expected
strong focusing of the wave field, we keep the steepness parameter small to expect a good agreement
with weakly nonlinear theory. At the wave maker we excite either a plane wave with small envelope
perturbation as given (in modulus and phase) by Eq. (6) at x = −25, or the same type of wave,
though with suppressed envelope phase. The results for the deep-water case for the carrier parameter
a = 0.010 m and ε = 0.06 are depicted in Fig. 5. Considering the significant propagation distance
of 70 m, we can notice at first glance the growth and decay of the Peregrine breather. However,
when the specific initial phase-shift at the input stage is ignored, a longitudinal retarded wave
focusing dynamics is observed. Instead of a maximal focusing expected to occur after 25 m from
the wave generator, it has been observed around 50 m. Note that, due to the finite number of
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FIG. 5. Left: Propagation of Peregrine breather, starting with an exact initial condition as described by
Eq. (6) at x = −25 m. The amplitude of the carrier is a = 0.010 m, while the steepness is ε = 0.06. Right:
Propagation of a similar initial breather structure for the same carrier parameters as in left panel, however,
suppressing the characteristic Peregrine phase-shift imposed in the exact initial condition [Eq. (6), at x = −25].

wave gauges (namely, placed at spatial intervals of 10 m) and therefore the discrete character of
water wave field measurements, we are not able to establish the exact position of maximal wave
amplification. The role of initial phase manipulation in the propagation of an Akhmediev breather
had been studied numerically [39]. This type of wave focusing retardation is indeed observed in our
corresponding Peregrine breather experiments. We recall that the Peregrine breather is the limiting
case of an Akhmediev breather when the modulation frequency tends to zero. To confirm these
observations, we repeat the same type of experiment with the same carrier amplitude, however,
for an increased wave steepness. This allows a faster evolution of the focusing process due to the
increase of the nonlinearity of the wave field, compared to the previous case. Figure 6 shows the
results of measured wave profiles, assigned to these latter initial conditions of the experiment. The
results in Fig. 6 confirm the same wave attributes, already noticed in the observations depicted in
Fig. 5. Namely, as the Peregrine breather evolves as expected according to the exact NLSE theory,
that is, when exact initial conditions are injected to the wave maker, the evolution of the wave field
when the initial Peregrine phases are not satisfied show a similar focusing feature in the evolution,
however, noticeably retarded. In this latter case the maximal wave focusing occurs after 40 m and
not 25 m from the wave maker. We also note a distortion of the wave field that may allow the
follow-up focusing of ensuing wave packets. Following these tank observations, numerical NLSE
simulations were performed to confirm these physical observations. The latter are shown in Fig. 7.
The numerical results in Fig. 7 effectively confirm the experimental observations and the dynamics
the corresponding wave field undergoes, as shown in Figs. 5 and 6. In fact, we can annotate the
retardation of waves’ maximal amplification. These simulations also allow to quantify the nature of
the retardation of maximal wave amplification as well as the wave envelope distortion that result
from the phase-shift prohibition. In the first case the spatial deviations for maximal wave focusing
are of about 25 m whereas in the second of 15 m.

IV. PHASE EVOLUTION ANALYSIS

So far, a comparison of the dark and the Peregrine solitons with the respective cases with equal
envelope but phases set equal to zero has been done only in terms of the envelope amplitude. Here
we make an extra effort and we compute the phases of the complex envelope from the time series
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FIG. 6. Left: Propagation of Peregrine breather, starting with an exact initial condition, as described from
exact Peregrine NLSE solution for x = −25 m. The amplitude of the carrier is a = 0.010 m, while the steepness
is ε = 0.07. Right: Propagation of a similar initial breather structure for the same carrier parameters as in
(Left), however with suppression of the characteristic Peregrine phase-shift imposed at x = −25 m in the
initial conditions.

FIG. 7. Numerical NLSE simulation of the experiments in Figs. 5 and 6. The top row is relative to the case
shown in Fig. 5 (left: soliton input; right: suppressed phase input). The bottom row is relative to the case shown
in Fig. 6 (left: soliton input; right: suppressed phase input).
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FIG. 8. Phase profiles generated by the input black envelope, as in the data set of Fig. 1: blue and red lines
display the measured profile of envelope amplitude and phase-shift, respectively, taken at the same longitudinal
location. Top row, launch of exact black soliton (as in Fig. 1, left panel). Here left and right panels refer to data
from first gauge (5 m from wave generator) and last gauge (75 m from wave generator, respectively. Bottom
row, launch of dark soliton with suppressed phase (as in Fig. 1, right panel). As above, left and right panels
refer to data from first gauge at 5 m, and last gauge at 75 m, respectively. Here ε = 0.08.

of the carrier wave. The procedure is based on the theory of analytic signals and relies on the
following procedure: using the inverse discrete Fourier transform, the Fourier amplitudes, η̂(ω), of
the time series η(t ) of the surface elevation are numerically computed; then, positive frequencies are
multiplied by 2 and negative ones by zero. The discrete Fourier transform is then used to calculate
the filtered signal in physical space. The product of the original time series with the one obtained
after filtering is the so-called analytic signal, ηa(t ); the complex envelope is then computed by
removing the fast oscillation characteristic of the carrier wave as follows [26]:

ψ (t ) = ηa(t ) exp[−iωt], (9)

with ω the frequency of the carrier wave. The phases ϕ(t ) are then computed by standard means as

ϕ(t ) = tan−1

( �[ψ (t )]

�[ψ (t )]

)
. (10)

Such procedure has been applied to all our data sets and the results are displayed in Figs. 8 and 9 for
the dark soliton and Figs. 10 and 11 for the Peregrine soliton, respectively. Note that this approach
may not be applicable for complex and broad-banded temporal signals [40].

In all Figs. 8–11 we superimpose the experimentally retrieved phase temporal profiles, reported
as solid red lines, to the corresponding wave elevation (solid blue lines), obviously measured at the
same longitudinal location. Specifically, as far as the evolutions shown in Fig. 1 are concerned, we
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FIG. 9. Same as in Fig. 8 for the data reported in Fig. 2 corresponding to a larger steepness ε = 0.10.

compare in Fig. 8 the phase profiles for the case of ideal soliton excitation (see top row in Fig. 8) to
the case of suppressed phase input (bottom row in Fig. 8). In particular, the exact dark soliton clearly
exhibits a phase-shift of π across the vanishing dip of the field. As shown, the soliton phase-shift
remains nearly unchanged from the first gauge (see top left panel in Fig. 8) to the last one (x = 75 m,
see top right panel in Fig. 8), except for a slight distortion from the flat phase-shift profile of the
tails at x = 75, which is more evident at earlier times (t < 30 s, top right panel). Conversely, when
the input phase-shift is suppressed, the wave packet develops an intrinsic phase dynamic, which is
already noticeable at the first gauge at x = 5 m (see bottom left panel in Fig. 8), and which evolves
at the farthermost gauge at x = 75 m in the profile shown in the bottom right panel in Fig. 8. The
latter shows a peak value of the phase-shift (compared with the tails) close to the expected value
of 0.36π from NLSE integration. The phase-shift profile in Fig. 8, bottom right panel, has positive
slope across the left depression envelope amplitude and negative slope across the right depression
envelope amplitude, consistently with the phase profile of dark solitons which exhibit negative and
positive group velocity deviation (with respect to natural group velocity), respectively. A distortion
of the profile (dip in the envelope phase for t < 30 s in bottom right panel) is also present in this
case, similar to the black soliton case (top right panel in Fig. 8). Finally, we observe a similar
scenario for the phase-shift, also for the larger steepness ε = 0.10, as explicitly displayed in Fig. 9,
which correspond to the data set reported in Fig. 2. We remark that what we report here constitutes:
(i) the first direct evidence of the phase dynamics of a hydrodynamic black soliton; (ii) the evidence
for the phase dynamics of the fissioning wave packets, which in other areas, such as optics or
Bose-Einstein condensation, remains a challenging issue due to the involved fast scales. In Fig. 10 a
similar analysis is performed for the experimental data dealing with the Peregrine solutions. The top
row in Fig. 10 shows the Peregrine, close to the input (top left panel; 5 m from the wave generator),
and at the focus point (top right panel; 30 m from the wave generator). In particular, the smooth
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FIG. 10. Phase profiles of the Peregrine breather waveform shown in Fig. 5: blue and red lines display the
measured profile of envelope amplitude and phase-shift, respectively, taken at the same longitudinal location.
Top row, launch of exact Peregrine (as in Fig. 5, left panel). Here left and right panels refer to data from the first
gauge (5 m from the wave generator) and the closest gauge to maximal amplification point of focusing (30 m
from the wave generator). Bottom row, Peregrine with suppressed phase (as in Fig. 5, right panel). As above,
left and right panels refer to data from first gauge (x = 5 m) and closest gauge to maximum amplification (60 m
from wave generator). Here ε = 0.06.

temporal profile of the phase at 5 m slowly evolves to end up forming, at 30 m, two π -phase-shifts,
one of each side of the maximum of the envelope. Indeed, once the Peregrine solution has reached
the maximum amplitude, the π -phase-shifts are visible around the zeros of the envelope amplitude
(top right panel in Fig. 10). A slight asymmetry around the peak amplitude, which can be noticed
at 30 m is attributed to higher-order effects [10,41], which are likely to cause the formation of
the exact zeros on the left and right side of the peak at slightly different propagation lengths (not
detectable in the experiment due to discreteness of wave gauge positions). These discrepancies in
large-amplitude wave profiles can be tamed by decreasing the wave steepness [42]. Nevertheless,
here, the comparison with the phase-suppressed case in the input is even more interesting because,
as explicitly shown in Fig. 10 comparing the top row and the bottom row, a π -phase-shift develops
also in the case when the phases are set to zero in the initial condition, i.e., even if the phase of the
perturbation of the background strongly deviates from that of the exact solution. This is a remarkable
fact that finds its roots in the universality of the Peregrine soliton in the dynamics ruled by the NLSE
[37,43]; indeed, in the limit of long perturbations (weak dispersion), it has been shown [37] that the
evolution of a wide class of bumps leads to the formation of a local Peregrine soliton. This is a
rigorous result in the semiclassical regime, for which the reader is referred to Ref. [37] for more
details. Our results seem to indicate the validity of this argument also if we strongly deviates from
the semiclassical regime dominated by the nonlinearity, consistently also with observations in [43].
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FIG. 11. Same as in Fig. 10 for the data reported in Fig. 6 corresponding to a larger steepness ε = 0.07.

We stress here that the evolution, once reached its maximum amplitude, is locally a Peregrine
soliton, i.e., it has the same envelope shape as a Peregrine solution, it displays a π -phase-shift at the
points where the envelope touches vanishing amplitude and its amplification factor is equal to three.
Remarkably, a very similar behavior is also exhibited by the evolution characterized by a larger
steepness (ε = 0.07), as shown in Fig. 11.

Finally, we point out that the comparison between the left and right panels in the top rows of
Figs. 10 and 11 show that the temporal phase profile of the Peregrine solution is not fixed but
rather evolves during propagation, at variance with the phase of dark solitons. Indeed, at fixed time
(e.g., at peak amplitude in time) one can define a spatially varying phase of the breather, which
turns out to be a smooth function of x, and represents a local variation of the phase with respect to
the background nonlinear phase [44]. Such longitudinal phase profile, however, cannot be reliably
determined from our experimental data, due to the limited number of gauges.

V. DISCUSSION AND CONCLUSION

To summarize, we have discussed experimentally and numerically importance of correct wave
phase-shift settings in the boundary conditions for an experiment for the accurate propagation of
localized NLSE envelope solutions, both of stationary- and pulsating-type in finite and infinite water
depth, respectively. Two experimental campaigns were performed for different carrier parameters.
Two unique large hydrodynamic wave facilities were used in this experimental study: the black
soliton in finite water depth and the Peregrine model in deep water. Both sets of experiments confirm
the validity of weakly nonlinear NLSE theory, namely in the case of exact initial conditions that
take into account the initial phase-shift and in the case when this information in the carrier wave
is removed. In this latter case the initial localizations exhibit fission behavior into several localized
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FIG. 12. Left: Propagation of the dark soliton envelope for carrier parameters as in Fig. 3 (bottom right
panel) over a much larger propagation distance of 300 m. Right: Propagation of the Peregrine breather envelope
for carrier parameters as in Fig. 7 (bottom right panel) over a much longer propagation distance of 300 m.

structures of similar kind in very good agreement with our numerical simulations. To overcome the
experimental restrictions that limit the distance for clean hydrodynamic propagation to 75 and 70 m,
respectively, and hence do not allow to establish the nature of the asymptotic states, we performed
further numerical simulations for the reported cases corresponding to the largest wave steepness
values by increasing the distance to 300 m. These are shown in Fig. 12. Indeed, we can observe
an interesting type of fission expected from the two types of wave envelope models (black soliton
and Peregrine breather). Both show similarities and differences in the fission behavior. Even though
the basic features of the evolution dynamics can be interpreted as being dominated by dispersive
effects only, yet for the dark soliton case we can see that the input localized dip effectively splits
into two propagation-invariant gray envelopes with additional dispersive tails, in agreement with
observations over 75 m. However, the Peregrine bright envelope shows, at distances substantially
exceeding 70 m, a further break-up which produces a cascade of Peregrine type localizations that
can be seen as limiting case of higher-order modulation instability [45] or universal type of rogue
wave cascade [36], or, in a different language, the decay into a Kuznetsov-Ma soliton [46,47]
coexisting with quasi-Kuznetsov-Ma symmetric pairs at non-zero velocities. We emphasize that
further advanced hydrodynamic numerical simulations associated with inverse scattering analysis
[48] as well as motivated experiments in water and other nonlinear media would provide more
information about the realistic distribution of such pattern.
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