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Dynamic subgrid-scale scalar-flux model based on the exact rate
of production of turbulent fluxes
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A dynamic subgrid-scale (SGS) scalar-flux model, based on the exact rate of production
of turbulent scalar fluxes, is proposed. The model is derived from an assumption that
the pressure-scalar correlation in the equation for turbulent scalar flux is a vector that
is approximately aligned with the scalar flux itself. The formulation then yields a tensor
diffusivity which allows nonalignment of the SGS scalar fluxes with respect to the resolved
scalar gradient. In contrast to eddy diffusivity models and to general gradient diffusion
hypothesis models, for which the diffusivity tensor is symmetric, the present formulation
produces an asymmetric diffusion tensor; for theoretical and experimental reasons, that
tensor is known to be very asymmetric. The model contains a single coefficient, which is
determined dynamically. The model is validated in fully developed turbulent channel flow
and in separated and reattaching flow over a backstep.
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I. INTRODUCTION

Passive scalar transport is important in many flows of practical interest: the rate of mixing in
reacting flows, transport of contaminants, and dispersion of internal energy driven by small tem-
perature variations are some examples where modeling the passive scalar fields plays an important
role.

Advances in scientific computing have made large eddy simulation (LES) a preferred approach
to simulate the underlying physics of hydrodynamic and scalar fields, at a relatively lower cost
than direct numerical simulations (DNS). To effect that efficiency, LES requires closure formu-
lations to replace unresolved quantities, that arise from filtering the governing equations. It is
imperative to model these unresolved quantities, as they are representative of turbulent dispersion
at scales smaller than the filter width. In a sense, the predictive power of an LES depends to a
significant extent upon how effective the subgrid model is in parameterize the physics of small
scales.

Closures for the subgrid scale (SGS) scalar flux follow those that have been devised for Reynolds
averaged modeling, the simplest being a simple gradient diffusion hypothesis (SGDH). This invokes
a scalar subgrid diffusivity, often equated to the subgrid viscosity divided by a turbulent Prandtl
number. The dynamic procedure of Germano [1] was employed by Moin et al. [2] to evaluate
the subgrid diffusivity directly, which provides the dynamic eddy diffusivity model (Dyn-EDM).
A method to determine the subgrid Prandtl number dynamically, without invoking the Germano
identity, was developed by Yin and Durbin [3], and found to be more accurate than Dyn-EDM.
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By invoking an isotropic turbulent diffusivity, the SGDH assumes alignment of the instantaneous
SGS scalar flux and resolved scalar gradient,

hEDM
iθ = −αT ∂θ/∂xi,

and thus fails to represent the anisotropic effects encountered in complex 3D flows. That error may
have a small influence on the predictions of the average scalar concentration profile, because only
the wall normal flux contributes to the mean flux divergence [4], but the fluctuating fluxes will be
inaccurate. Thus there is cause to consider a more physically justified subgrid closure.

It has been noted in several studies [5] that the turbulent diffusivity is not independent of orien-
tation of the mean scalar gradient. Numerical investigations of homogenously sheared turbulence
[6] have revealed that the turbulent Prandtl number is significantly smaller than 0.9 [7] when the
applied mean scalar gradient is orthogonal to the mean shear. Thus, in such situations, the scalar
turbulent diffusivity is grossly in error, thereby questioning the physical relevance of scalar turbulent
diffusivity models. Such considerations argue for the turbulent diffusivity to be represented by a
tensor, i.e.,

hiθ = −αTi j ∂θ/∂x j,

where αTi j is asymmetric [4]. Models with tensor diffusivity rotate the SGS flux vector with respect
to the resolved scalar gradient, and yield scalar fluxes in directions other than that of the imposed
mean scalar gradient—hence the name generalized gradient diffusion hypothesis (GGDH). Daly
and Harlow [8] suggested a constitutive relation

hGGDH
iθ = −CGθT τi j

∂θ

∂x j

based on the Reynolds stress tensor, τi j . Wang et al. [9], and Peng and Davidson [10] extended it
to LES for active and passive scalars by using the deviatoric part of the SGS stress tensor in place
of τi j , and adopted the dynamic method [1] to compute the model coefficient locally. This will be
referred to as Dyn-GGDH hereinafter.

Wang et al. [9] extended the original GGDH approach to incorporate a full linear as well
as a quadratic tensor diffusivity, derived according to the theory of tensor polynomial functions.
Invoking tensor representations, Wang et al. [11] have also expressed the SGS scalar-flux vector as
a function of resolved strain rate and rotation rate tensors and the resolved scalar gradient. Note,
however, that these models with higher order nonlinear tensor diffusivity are not derived from
the transport equation of the SGS scalar fluxes. Moreover, computing the additional terms arising
in the zeroth-order, linear, and quadratic tensorial polynomial components requires additional
numerical operations and adds expense and stiffness. In addition to the various functional forms,
many structural modeling recipes have been prescribed for the SGS scalar fluxes. One example
would be the extension of scale similarity models for SGS stresses [12] to SGS scalar fluxes. As a
consequence of relating the SGS closure directly to the smallest resolved scales, these models are
generally better at predicting the structure of the SGS fluxes, but deal inadequately with the transfer
of scalar energy between the resolved and the subgrid scales. To remedy their underdissipative
character, scale-similar models must be supplemented with a dissipative term [13], resulting in a
mixed model. Salvetti and Banerjee [14] proposed a dynamic mixed model for the SGS scalar-flux
vector, in which the scale similarity term is added to the simple eddy diffusivity model. To avoid the
problems associated with functional models, some studies [15] have also proposed regularization of
the gradient model to avoid the backscatter of scalar variance. Their idea is to neglect the stretching
effect in the model formulation by considering the part of the filtered strain rate tensor built only
with the negative eigenvalues. Other approaches include modulated gradient model [16], which
computes the structure of the subgrid flux based on the normalized gradient vector, derived from the
Taylor expansion of the exact subgrid flux. The magnitude of the flux is computed from the relevant
subgrid scales which are estimated based on the local-equilibrium hypothesis.
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In light of these considerations, we propose herein a dynamic SGS scalar-flux model based on
the exact rate of production of turbulent fluxes and a semiequilibrium scalar-flux assumption. The
semiequilibrium approximation consists of ignoring the transport and nonhomogeneous terms. It
is not a consistent equilibrium approximation, because the fluxes are not scaled [17]; rather it is
seen as a route to devise an algebraic model. In this work, we advance this idea, taken from the
RANS literature, to the framework of SGS modeling. The focus of the present work is on the
development of a robust and inexpensive tensor diffusivity SGS scalar-flux model, having an explicit
dependence on the SGS stress tensor and on the resolved shear rate. The shear is the cause of αTi j

being asymmetric.

II. MATHEMATICAL FORMULATION

A. Governing equations

The filtered, LES, continuity, momentum, and passive scalar transport equations are

∂ui

∂xi
= 0,

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
− ∂τi j

∂x j
,

∂θ

∂t
+ ∂

∂x j
(u jθ ) = α

∂2θ

∂x j∂x j
− ∂h jθ

∂x j
, (1)

where θ is the filtered passive scalar, α is the molecular diffusion coefficient, hjθ is the SGS scalar-
flux vector which needs to be parameterized, and the remaining symbols have their usual meanings.
In the following subsection, the derivation and the implementation of the proposed SGS scalar-flux
model are described.

B. SGS scalar-flux model

1. Model derivation

The most general expression for the transport equation of the SGS scalar flux, hiθ = uiθ − uiθ ,
is [13]

D

Dt
hiθ = PSGS

iθ − ESGS
iθ + �SGS

iθ + DSGS
iθ , (2)

where

PSGS
iθ = −τi j

∂θ

∂x j
− h jθ

∂ui

∂x j
, ESGS

iθ = (α + ν)

〈
∂θ

∂x j
,

∂ui

∂x j

〉
,

�SGS
iθ = 1

ρ

〈
p,

∂θ

∂xi

〉
, DSGS

iθ = − ∂

∂x j

(
〈ui, u j, θ〉 + δi j

ρ
〈p, θ〉 − α

〈
ui,

∂θ

∂x j

〉
− ν

〈
θ,

∂ui

∂x j

〉)
.

The terms on the right of Eq. (2) represent production, dissipation, pressure-scalar correlation,
and molecular and turbulent diffusion, respectively. The angled bracket operation represents the
Germano notation [1] for a typical LES filter.

Assuming local equilibrium, we conveniently drop the transport and nonhomogeneous terms and
invoke the small-scale isotropy assumption, that Eiθ ≈ 0. This leaves the pressure-scalar correlation
to be modeled. For homogeneous shear and Reynolds averaged equations, Rogers et al. [6] have
shown that both the pressure-scalar correlation term and the time change of scalar flux are approx-
imately aligned with the scalar flux itself. Hence, for filtered fields, we adopt a simple, relaxation
model,

�SGS
iθ = − hiθ

CθT
,

where T is a timescale for relaxation and Cθ a dimensionless constant.
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FIG. 1. Rapid variation in the scalar field calculated by Eq. (6) in plane channel flow.

Along with these assumptions, keeping the production term and the time derivative, Eq. (2)
becomes

∂hiθ

∂t
= −τi j

∂θ

∂x j
− h jθ

∂ui

∂x j
− 1

CθT
hiθ . (3)

As the resulting system is implicit in scalar fluxes, for ease of numerical implementation, at any
time level, n, we follow RANS numerics [4] by treating the second and third term on the right-hand
side (RHS) of Eq. (3) explicitly and implicitly, respectively,

hn
iθ − hn−1

iθ


t
= −τi j

∂θ

∂x j
− hn−1

jθ

∂ui

∂x j
− 1

CθT
hn

iθ . (4)

This was tested as a method to update the SGS scalar flux at each time step. The results differed
little from the simplified version that we finally adopted. The SGS scalar fluxes are dominated by
length scales of the order of the filter width [18], and the corresponding time scales are 5–10 times
larger than the time step [19]. Based on these observations, the model is simplified by dropping the
time derivative and, finally, written as

hn
iθ = −CθT

(
τi j

∂θ

∂x j
+ hn−1

jθ

∂ui

∂x j

)
. (5)

For RANS, Rogers et al. [6] solved the steady state version of Eq. (3) via a matrix inversion,
O−1 = (I + CθT ∇u)−1,

hiθ = −CθT O−1
in τn j

∂θ

∂x j
. (6)

However, as those authors report, this approach has been observed to produce a stiff matrix Oi j

for some values of the model coefficient Cθ , leading to a rapid variation in the solution as shown in
Fig. 1. Younis et al. [20] pointed out a more serious problem of Eq. (6) becoming singular in the case
of plane strain. Singular, or near singular, behavior indicates that the equilibrium approximation is
not valid.
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It is to circumvent these numerical issues and to extend the applicability of the model to SGS
modeling that we have proposed a simple explicit approach, as described above in Eq. (5). Using
the basic representation of a tensor diffusivity,

hiθ = −αTi j

∂θ

∂x j
, (7)

in Eq. (5), that equation can be expressed as

αn
Ti j

= CθT

(
τi j − α∗

Tk j

∂ui

∂xk

)
, (8)

with α∗
Tk j

= αn−1
Tk j

. The scalar gradient has been evaluated at time n and removed. This equation
depends only on properties of the turbulence, and not on the scalar field, as a turbulent diffusion
coefficient should. The subgrid stress tensor is given by

τi j = 2
3δi jksgs − 2νsgsSi j,

with the Smagorinsky eddy viscosity and with (A3) for the isotropic stress ksgs. Equations (7) and
(8) are the basis of the SGS scalar-flux model. The switch from (5) to the gradient diffusion form
(7) allows the flux to be implemented numerically as an implicit diffusion term, in the temperature
equation. Also, a more formal equilibrium assumption [17] requires that approximation to be applied
to a diffusion tensor, independent of the scalar gradient.

Equation (8) together with (7) represent the model forms. The results obtained by this approxi-
mation are reasonably accurate, reduce the number of operations, and increase the robustness. No
attempt was made to use a higher-order approximation for αTi j . This approximation also makes the
dynamic evaluation of Cθ straightforward.

2. Model implementation

To close Eq. (8), the coefficient Cθ (x, t ) is computed by minimizing the error norm of the
Germano identity as follows. At grid-filter level, ( ), the SGS scalar-flux vector is

hiθ = −CθT

(
τi j − α ∗

Tk j

∂ui

∂xk

)
∂θ

∂x j
. (9)

At test-filter level, (̂ ), the SGS scalar-flux vector is

Hiθ = −Cθ T̂

(
Ti j − α̂

∗
Tk j

∂ ûi

∂xk

)
∂θ̂

∂x j
, (10)

where τi j and Ti j represent the full SGS stress tensors at grid and test filter levels, respectively. The
deviatoric parts of τi j and Ti j are evaluated using the dynamic Smagorinsky model [21], while the
isotropic parts are computed by invoking the assumption of a local balance between the SGS energy
production and dissipation; see (A3) in the Appendix.

The characteristic timescale at both filter levels is evaluated by using the norm of the resolved
strain rate tensor, T = 1/|S|. Since |S| is a feature of length scales of the order of the filter width,
and as the SGS scalar flux is dominated by those scales, the timescale derived from it gives a
consistent magnitude of the flux [18].

We define vectors Niθ and Miθ at grid-filter and test-filter levels, respectively,

Niθ = 1

|S|

(
τi j − α∗

Tk j

∂ui

∂xk

)
∂θ

∂x j
, Miθ = 1

|̂S|

(
Ti j − α̂

∗
Tk j

∂ ûi

∂xk

)
∂θ̂

∂x j
. (11)

With these, Eqs. (9) and (10) become

hiθ = −Cθ Niθ , Hiθ = −Cθ Miθ . (12)
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We invoke the Germano identity for scalar fluxes,

Fiθ = Hiθ − ĥiθ , (13)

where

Fiθ ≡ ûiθ − ûîθ

is a scalar flux, directly computable from the resolved turbulence, and substitute the model (12) into
Eq. (13),

Fiθ = −Cθ (Miθ − N̂iθ ) = −Cθ Giθ , (14)

where Giθ = (Miθ − N̂iθ ) is a differential vector. Equation (14) is regarded as a method to prescribe
Cθ . As this is overdetermined, the solution will be prescribed as the least-squares minimization. In
the interest of robustness, the minimization is carried out after summing over all cell faces, treating
Cθ as a constant:

min
∑
faces

(Fiθ + CθGiθ )2.

Then

Cθ = − 〈Giθ Fiθ 〉
〈Giθ Giθ 〉 , (15)

where 〈 · 〉 denotes the local average of the quantity over the cell faces. This value of Cθ is used on
the right side of (8) to update αTi j .

In the following sections predictions are compared to the Dyn-EDM and Dyn-GGDH models.
For reference, the model forms of Dyn-EDM and Dyn-GGDH are

Dyn-EDM: hEDM
iθ = −CEθ


2|S| ∂θ

∂xi
, (16)

Dyn-GGDH: hGGDH
iθ = −CGθ

τi j

|S|
∂θ

∂x j
, (17)

where CEθ and CGθ are dynamically computed model coefficients and the remaining symbols have
their usual meanings.

The variation of model coefficients across a turbulent channel flow, for all the three models, is
shown in Fig. 2. From Figs. 2(a) and 2(b), it is observed that the model coefficient of the proposed
model is much different from the other two. The coefficient of the proposed model is larger than
those of Dyn-EDM and Dyn-GGDH, throughout the channel. In the core of the channel, away from
the walls, the coefficient of all models remains approximately constant. Figure 3 compares Cθ at
Reτ = 395, 640, and 1020. Inner and outer regions are seen at all Reynolds numbers.

The ratio of the Smagorinksy coefficient for the Dyn-EDM, to the SGS flux model coefficient,
gives the turbulent Prandtl number PrT . No such interpretation of this ratio exists for models with
tensor diffusivities. In our simulations, the negative values of the model coefficients were not
clipped; hence, in Fig. 2(c), the instantaneous values of the model coefficient of some of the models
may be negative. In the case of the proposed model, negative values are sometimes observed very
near the wall, but not in the case shown in the plots. Contours of model coefficients at y+ = 5 are
provided in Fig. 4. They are elongated in the direction of shear, as expected. CGθ and CEθ show
negative patches, while Cθ is entirely positive.

In the EDM model, for the SGS heat flux to go to zero at the walls, the model coefficient must
go to zero. However, this is not a requirement for the present model. Since the SGS stress tensor
is the nonhomogeneous term in Eq. (8), the modeled SGS heat flux tends to zero by virtue of the
stress tensor going to zero. To construct the eddy diffusivity tensor, we have used the full SGS stress
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FIG. 2. Averaged model coefficients in fully developed turbulent channel flow at Reτ = 395 for different
models: in outer scaling (a), in inner scaling (b), and their instantaneous values at x/Lx = z/Lz = 0.5 in outer
scaling (c).

tensor consisting of the dynamic Smagorinsky closure for the deviatoric part, and the subgrid kinetic
energy, computed by the dynamic procedure, for the isotropic part.

The near wall scaling of the dynamic Smagorinsky model is incorrect except for τ12 and τ23,
which are the critical components. Furthermore, it is reported in the literature that dynamic models
can be very sensitive to the test filtering procedure and the stabilization method. Indeed, we have
observed this same effect (incorrect near-wall scaling of the SGS stress tensor) in our channel flow
simulations. The modeled heat flux tensor inherits its scaling from near-wall behavior of the stress
tensor. Hence it becomes small, but not with the theoretical y+ scaling. However, it has been verified
that the eddy diffusivity becomes orders of magnitude less than the molecular diffusivity in the
near-wall region (y+ < 5), as shown in Fig. 5. Incorrect scaling is not desirable, but it has a small
effect, as long as the eddy diffusivity becomes small where it should.

III. NUMERICS, TEST CASES, AND RESULTS

The proposed model was tested after implementing it in the open source code OpenFOAM
[22,23]. Gaussian finite volume integration, with a second order accurate, central differencing
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FIG. 3. Averaged model coefficients in fully developed turbulent channel flow at various Reτ .

scheme was used for spatial discretization of the gradient and divergence terms in the governing
equations. For convection of the passive scalar, the third order accurate flux interpolation scheme,
QUICK, was chosen. A second order accurate, implicit scheme was chosen for temporal discretiza-
tion. The pressure and momentum equations were solved by the generalized geometric-algebraic
multigrid method and the symmetric Gauss-Seidel method, respectively. The PISO algorithm was
used to solve the pressure and momentum equation correctors two times in each step.

A. Turbulent Poiseuille flow

An incompressible, pressure-driven, fully developed turbulent channel flow is considered for
validation of the proposed model. The geometry of the computational domain which has dimensions
(Lx, Ly, Lz ) = (6.4δ, 2δ, 3.2δ) is shown in Fig. 6. The Reynolds number of the flow is Reτ =
uτ δ/ν = 395 and the molecular Prandtl number is chosen as Pr = 0.71. Here, δ is the half-channel
width and uτ represents the wall-friction velocity. Two coarse grids, G1 and G2, with resolutions
sufficient for a feasible LES have been used to validate the model and to examine the importance
of SGS effects. The grids are uniformly spaced in the streamwise and spanwise directions, and
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FIG. 4. Contours of instantaneous model coefficient at y+ = 5 for present model (a), Dyn-GGDH (b), and
Dyn-EDM (c). The results are shown for fully developed turbulent channel flow at Reτ = 395.

stretched in the wall normal (y) direction by rexp, the cell-to-cell expansion ratio. The grid details
are summarized in Table I.

The boundary conditions are all set to periodic in streamwise and spanwise directions. The top
and bottom walls are no slip for velocity, with a fixed gradient (constant heat flux) for the scalar
(temperature) field. The mean momentum and temperature are held constant with respect to time
by adding source terms to the momentum and scalar transport equations. From here on, “scalar”
and “temperature” will be used interchangeably. It is to be noted that these grids are not overly
fine, so that the SGS model plays a role in the velocity and scalar field solutions. To confirm that
the numerical dissipation is not dominant in our test cases, the results obtained by the proposed
model are compared in Fig. 7, with the LES without subgrid model for the fluxes. It is clear that the
predictions from simulations with no SGS flux model are poorer in comparison to those obtained
with the proposed model. This shows that the dissipation introduced by the model is greater than
the numerical dissipation. The rms value of the scalar concentration is defined by θ ′+

rms = [{(θ −
[θ])/θτ }2

]
1/2

, where [·] represents the time average. The wall-friction temperature θτ is defined in
Eq. (18).

The viscosity ratio for both the grids used is shown in Fig. 8. The considered Reynolds
number is small, which may be why the averaged SGS viscosity is low compared to the
molecular viscosity. However, instantaneous SGS viscosity ratios as high as 10 were ob-
served in the simulations. In subsequent sections, we will show that the model delivers
promising results in moderately high Reynolds number flows, as well as in separating flows
on relatively coarser grids, with the viscosity ratios as high as 2–4. Also, as we will dis-
cuss, the effect of the proposed model is observed to be significant, even in an averaged
sense.

1. Resolved velocity and scalar fields

Before analyzing the SGS effects of the proposed scalar-flux model, resolved fields are consid-
ered. In this section, both the velocity and the scalar fields will be presented.
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FIG. 5. Relative magnitude of eddy diffusivity components and molecular diffusivity at y+ < 10 for the
present model. The results are shown for fully developed turbulent channel flow at Reτ = 395.

Figure 9(a) shows the predictions of the standard root-mean-square deviations of all the three
components of the velocity in the wall normal, y, direction and Fig. 9(b) shows the mean streamwise
velocity. The rms values of the resolved velocity are defined by

u′+
i,rms = [{(ui − [ui])/uτ }2]1/2,

where [·] represents the time average. The predictions are compared for G1 with the DNS results of
Moser et al. [24].

Although grid G1 is the finer of the two grids, it is still moderately coarse, considering the
standard resolution requirements for a proper wall-resolved LES of channel flow. The wall-normal
and spanwise components of the rms velocity fluctuations are slightly underpredicted, while the
streamwise component has a higher peak followed by a region of underprediction closer to the core
of the channel. Despite these slight inaccuracies in the rms values, the grid G1 is fine enough to
produce a reasonably accurate mean velocity profile [Fig. 9(b)] suitable for testing the model for
passive scalar advection.

The resolved streamwise and wall-normal heat fluxes are shown in Fig. 10(a), and the mean
temperature profile is compared to DNS of Kawamura et al. [25] in Fig. 10(b). The fluxes and the
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FIG. 6. Schematic of the flow domain and boundary conditions for fully developed channel flow.

temperature profile are normalized by wall-friction velocity, uτ , and the wall-friction temperature,

θτ = α

uτ

∂θ

∂y

∣∣∣∣
w

, (18)

where α is the molecular diffusivity and the subscript w denotes the quantity computed at the wall.
The temperature profile is plotted as

θ
+ = θw − θ (y)

θτ

, (19)

where θw is the mean resolved wall temperature. Figure 11 shows this scaled temperature at two
higher Reynolds numbers on the grids with resolution the same as G1. The mean temperature
predictions are excellent.

To highlight the effect of modeling the SGS scalar fluxes, in Fig. 10(b), the resolved mean tem-
perature prediction of the proposed model is compared with those of Dyn-EDM and Dyn-GGDH.
It is observed that the prediction of the wall-normal distribution of the mean temperature by the
proposed model is more accurate than the others, especially in the logarithmic layer. It is important
to note here that the present model reverts back to Dyn-GGDH if the velocity gradient term (5) is
neglected. Hence it is clear that the contribution of this term is very important in improving the
resolved mean temperature predictions. Furthermore, this confirms that there is no physical reason
for the diffusivity tensor to be symmetric.

To examine the validity of the current LES and to investigate the efficiency of the proposed SGS
scalar-flux model, it is reasonable to look at the scalar energy balance across the channel. The fluxes
are normalized by the viscous heat flux at the wall. Figure 12 shows the heat flux budget. The total
heat flux consists of the contributions from the resolved viscous fluxes, resolved turbulent fluxes,
and the subgrid fluxes, and varies approximately linearly across the channel with respect to the

TABLE I. Grid details for fully developed turbulent channel flow validation cases.

Case (Nx × Ny × Nz ) 
x+ 
z+ rexp

G1 (64 × 88 × 64) 40 20 1.09
G2 (44 × 68 × 44) 60 30 1.125
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FIG. 7. Mean resolved temperature (a) and resolved scalar fluctuations (b) for grid G1 with and without
the subgrid model.

wall-normal coordinate normalized by wall units,

q+
total = 1

Pr

∂θ
+

∂y+ − v′+θ ′+ − h+
yθ ≈ 1 − y+

Reτ

. (20)

It is evident from Fig. 12 that the total computed heat flux is close to the theoretical linear
variation. An instantaneous SGS heat flux at x/Lx = z/Lz = 0.5 is also shown. Although the time
and span averaged SGS heat flux is relatively small, the magnitude of the local and instantaneous
value is observed to be appreciable.

FIG. 8. Time averaged SGS viscosity compared to the molecular one for fully developed channel flow.
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FIG. 9. Resolved velocity fluctuations (a) and resolved mean streamwise velocity (b) for grid G1.

2. Subgrid scalar-flux structure

The previous subsection focused mainly on the resolved quantities associated with the velocity
and scalar fields. To evaluate the effectiveness of the proposed tensor diffusivity model at the
subgrid scale, it is important to quantify the SGS effects. Some studies [11] have recommended
characterizing the SGS scalar-flux model by the magnitude of the effective diffusivity and by the
alignment between the SGS scalar flux and the resolved temperature gradient. In this subsection, we
will examine such quantities for the proposed model, in comparison with the Dyn-EDM and Dyn-
GGDH models. The asymmetry in the diffusion tensor and relative magnitude of the streamwise
and wall-normal fluxes will also be discussed.

FIG. 10. Resolved streamwise and wall-normal heat fluxes (a) and mean resolved temperature (b) for
grid G1.
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FIG. 11. Mean temperature at Reτ = 640, 1020.

The alignment angle � between the resolved temperature gradient and the modeled SGS heat
flux is

� = cos−1

(
hiθ · θ,i

|hiθ ||θ,i|

)
. (21)

Figure 13 shows the PDF of the instantaneous alignment angle predicted by the Dyn-EDM,
Dyn-GGDH, and the present model. Negative values of the model coefficients have been allowed
for all of the described models. It is evident in Fig. 13(a) that � predicted by the Dyn-EDM is
either 0◦ or 180◦ corresponding to CEθ < 0 or CEθ > 0, respectively. The predictions are similar in
the regions near the wall (y+ = 3) and near the center of the channel (y+ = 350). As the physical
mechanism of heat transfer at the subgrid scale is significantly different from the simple gradient

FIG. 12. Normalized heat-flux budget in the wall-normal direction on grid G1 for fully developed channel
flow.
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FIG. 13. PDF of the alignment angle between the resolved temperature gradient and the SGS heat flux for
Dyn-EDM (a), Dyn-GGDH (b), and the proposed model (c). The results are shown for fully developed channel
flow on grid G1.

diffusion constitutive relation, the Dyn-EDM fails to accurately describe the physics of heat transfer
at such scales.

Tensor diffusivity models, however, are able to predict a SGS heat flux vector which is rotated
with respect to the temperature gradient, giving rise to a wide range of alignment angles. In the
case of Dyn-GGDH, as shown in Fig. 13(b), the PDF of the instantaneous alignment angle is quite
scattered with a substantial contribution from � = 180◦. The near wall predictions are better than
those away from the wall.

In the proposed SGS heat flux model, Fig. 13(c), a single angle of � ≈ 125◦ is preferred in the
near wall region. This property is in accordance with the physical intuition that, in the near wall
region, the direction of the flux is governed by both the wall-normal temperature gradient and the
advection of temperature parallel to the wall, giving rise to the SGS heat flux vector aligned at the
angles weighted toward � = 90◦. In the core region of the channel, the proposed model predicts �

closer to 150◦, which is still better than both the Dyn-EDM and Dyn-GGDH model predictions.
In order to compare the SGS effects of tensor diffusivity models with the Dyn-EDM, it is

reasonable to define the effective SGS diffusivity as

αeff
sgs = −h2θ /(∂θ/∂y). (22)
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FIG. 14. Effective SGS diffusivity for Dyn-EDM, Dyn-GGDH, and the proposed model.

The ratio of the averaged effective SGS diffusivity to the molecular diffusivity is quantified for
all three models in Fig. 14. This ratio signifies how important the SGS diffusion is, compared to
molecular diffusion. It is observed that the degree of variability in the effective SGS diffusivity
is greatest in the case of the proposed model. The value of αeff

sgs/α predicted by Dyn-EDM and
Dyn-GGDH models ranges from zero at the wall to a maximum of ≈0.4 and ≈0.9 in the core
region, respectively. However, the effective diffusivity of the present model is close to 1.5 over most
of the channel and has a maximum of about 6.5. It is to be noted that, in the case of the Dyn-EDM,
diffusivity is expressed simply by a scalar αT and there is no question of defining an effective
diffusivity.

The effectiveness of any SGS heat flux model is best gauged by how well it can represent the
geometrical structure of the fluxes at subgrid level. Considering the case of resolved fluxes, it is
evident that the magnitude of streamwise fluxes is always greater than the magnitude of wall-normal
fluxes, i.e., |u′θ ′| > |v′θ ′|; see Fig. 10(a). A good SGS heat flux model should be able to preserve
this structure for the SGS heat fluxes, i.e., |h1θ | > |h2θ |.

From Fig. 15(a), it is clear that the Dyn-EDM fails to produce a streamwise heat flux. Fig-
ure 15(b) displays the SGS heat flux structure predicted by the Dyn-GGDH and the proposed model.
Although Dyn-GGDH is able to predict the streamwise fluxes slightly better than the Dyn-EDM, it
yields |h+GGDH

1θ | < |h+GGDH
2θ |, which is not in agreement with the structure of fluxes prescribed by

the resolved scales. The present model generally predicts a larger magnitude of the streamwise and
wall-normal fluxes than those of the Dyn-EDM and Dyn-GGDH models, and it also successfully
preserves the correct geometrical structure of the fluxes with |h+present

1θ | > |h+present
2θ |.

The diffusivity tensor, αTi j , given by Eq. (8) consists of the contributions from the SGS stress
which is symmetric and from the shear rate which is asymmetric. Thus αTi j can be written as the
sum of a symmetric part and an asymmetric part,

αTi j = αS
Ti j

+ αA
Ti j

, (23)

where αS
Ti j

= CθT τi j and αA
Ti j

= −CθT α∗
Tk j

∂ui/∂xk . Averaged values of the normalized diffusivity
tensor components for the present model are shown in Fig. 16. From Fig. 16(a), it is clear that
the model captures anisotropy of the diffusivity tensor. The model is also able to reproduce the
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FIG. 15. Comparison of time and span averaged SGS heat fluxes in streamwise and wall-normal direction
between Dyn-EDM (a), Dyn-GGDH (b), and the proposed model. The values of normalized by friction velocity
and friction temperature.

expected asymmetry, αT12 
 αT21 < 0, in Fig. 16(b). The asymmetry in the diffusivity tensor is due
to the contribution of the velocity gradient to flux production.

3. Grid G2 predictions

Grid G2 is the coarser of the two grids used. Figure 17(a) displays the ratio αeff
sgs/α. Evidently, for

the proposed model, on a coarse grid the ratio becomes large and goes as high as 18. It is interesting
to note that diffusivities of the Dyn-EDM and Dyn-GGDH models are still small in comparison with
the molecular value. Although the SGS effects predicted by the proposed model are larger on grid
G2, it nevertheless yields a reasonably accurate mean temperature profile as shown in Fig. 17(b).
The Dyn-EDM and Dyn-GGDH models are observed to be unsuccessful in doing that. Since the

FIG. 16. Anisotropy (a) and asymmetry (b) of the model diffusivity tensor, αTi j , for the present model.
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FIG. 17. Ratio of the averaged absolute effective diffusivity and molecular diffusivity (a) and mean
resolved temperature (b) predictions on grid G2 by different models.

mean temperature profiles for both the grids G1 and G2 are reasonably close to the DNS data, they
serve to show a capability of the model to reduce mesh insensitivity.

4. Numerical efficiency

Table II lists the normalized computational time (with respect to that of Dyn-EDM) of all the
considered models at various Reynolds numbers for the plane channel flow. The flow was computed
for a fixed time of 60, 40, and 20 flow through times for Reτ = 395, 640, and 1020, respectively,
with the appropriate number of processors, which was kept constant for the same Reτ . It can be seen
that the proposed model incurs about 20% additional cost with respect to the Dyn-EDM model for
almost all of the Reynolds numbers. Keeping in mind that the solutions derived from Dyn-GGDH
and Dyn-EDM were not accurate, an increase of 10–20% in computational cost with respect to
Dyn-GGDH and Dyn-EDM models, respectively, is justifiable.

B. Flow and heat transfer over a backward facing step

It is important to test the performance of the model in a flow with separation. Separated and
reattaching flows with heat transfer are of practical interest in nuclear reactors, gas turbines, and
electronic circuits. Here we consider the well studied case of the flow over a backward facing step
with heat transfer downstream of the step.

The simulation is of the reference case in Adams et al. [26] and Vogel and Eaton [27]. A
schematic of the simulation domain and the grid are shown in Fig. 18. The dimensions of the domain
are (22H × 5H × 3H ) with an entrance length of 2H , upstream of the step. The grid consists of

TABLE II. Computational cost comparison of the proposed model with Dyn-GGDH and Dyn-EDM models.

Reτ \Model Present Dyn-GGDH Dyn-EDM

395 1.22 1.05 1.00
640 1.24 1.06 1.00
1020 1.20 1.10 1.00
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FIG. 18. Computational domain (a) and the grid used (b) for the backward facing step simulations.

144 × 96 nodes in streamwise and spanwise directions, downstream of the step. The grid is stretched
in the wall normal, as well as the streamwise direction, away from the step, as evident in Fig. 18(b).
In wall units of the upstream boundary layer, the grid resolution at some pivotal locations in the
domain are


x+
min = 15, at the step,


x+
max = 450, at the exit boundary,


z+ = 42.5, uniform in span,


y+
min = 1.0, at all the walls.

Let it be reiterated here that the grid is coarse, as the ratio of subgrid to molecular viscosity
was observed to be as high as 2.5 over almost all of the domain. The Reynolds number based
on the step height is ReH = 28 000 and the expansion ratio of the channel at the step is 1.25.
The molecular Prandtl number is Pr = 0.71. The boundary conditions are all set to periodic in
the spanwise direction. For the temperature field, a constant heat flux of 270 W/m−2 is prescribed
on the lower wall, downstream of the step. The inflow condition consists of an inlet boundary layer
on both the top and bottom walls, upstream of the step, separated by a somewhat undisturbed core.
The inlet boundary layers for the reference case are described by the momentum thickness Reynolds
number Re� = 3370 and a measured thickness of δ/H = 1.1. At the exit, the boundary condition
on velocity and temperature fields is set to zero gradient.
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FIG. 19. Mean velocity (a), mean temperature (b), skin friction coefficient (c), and Stanton number
(d) profiles along the lower wall downstream of the step.

A precursor channel flow simulation (3.3H × 4H × 3H ) was calculated to generate the upstream
boundary layer flow by rescaling and recycling the boundary layer near the outlet of the channel
back to the inlet. Then the turbulent boundary layer was mapped from the channel exit to the inlet
of the backstep domain. Care has been taken to match the inlet turbulent boundary layer to that of
the experiments. However, certain discrepancies still exist due to the short length of the precursor
simulation; thus it was not possible to exactly simulate the upstream boundary layer. This might
possibly affect the accuracy of the simulation results. However, it has been shown by Westphal et al.
[28] that, if the renormalized coordinate x∗ = (x − xr )/xr is used, where xr is the mean reattachment
length, statistical data are quite insensitive to the inflow conditions. This has been observed by
various researchers in LES of the backward-facing step.

The mean velocity, skin friction coefficient, mean resolved temperature, and Stanton number
predictions are shown in Fig. 19. The mean profiles of velocity and temperature, predicted by the
proposed model, are reasonably accurate and match well with the experimental results of Vogel
and Eaton [27]. The mean temperature profile is compared with the predictions of Dyn-GGDH and
Dyn-EDM models in Fig. 19(b). The results are nearly identical far downstream of the step, but
near the location of the step the proposed model predicts a better agreement with the experiments.
However, the proposed model slightly overpredicts the wall temperature, which is seen with other
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models, too. The near wall temperature data from the experiment is not reliable and some data
points have been ignored for clarity. From Fig. 19(c), it can be observed that, in the recirculation
zone, the LES results show a larger negative value of Cf . It is not clear why the LES overpredicts
the magnitude of Cf , but the same inaccuracy has been reported by Keating et al. [29] and Akselvoll
and Moin [30]—as depicted in Fig. 19(c). The reason for the poor agreement in the skin-friction
coefficient could be attributed to the inflow generation method and/or to inadequate grid resolution
in this region. However, Keating et al. [29] used a finer grid and did not see any improvements in
the Cf . Another cause might be the limited spanwise extent of the domain; but, preliminary studies
by Keating et al. [29] with wider domains did not improve the results.

The wall heat transfer characteristics predicted by the proposed heat flux model are quantified
by the Stanton number in Fig. 19(d). The Stanton number profile matches well with the exper-
imental data. The Stanton number predictions of Dyn-EDM and Dyn-GGDH differ from those
of the proposed model near the step location and far downstream where the mesh is coarse.
For the rest of the domain, the profiles are somewhat similar. The contrast, that St matches well
with the experimental data, while Cf does less so, is probably because of different mechanisms
that are responsible for heat and momentum transfer, as evidenced by the breakdown of Reynolds’
analogy in the recirculation zone.

IV. CONCLUSIONS

In this work, a dynamic SGS scalar-flux model is proposed which is based on the exact
rate of production of turbulent fluxes. The model incorporates a tensor diffusivity with explicit
dependence on the subgrid stresses and the resolved velocity gradient. The fact that the diffusivity
is represented by a tensor allows the scalar-flux vector to be misaligned with the filtered temperature
gradient.

Some numerical challenges were faced in representing the fluxes by the explicit formula,
Eq. (6)—i.e., stiffness and unphysicality of the solution. To overcome these issues, the flux term
on the RHS of Eq. (8) is updated explicitly. Then the model coefficient is computed dynamically.

To validate the model, predictions were compared to DNS data in channel flow and to the
predictions by the Dyn-EDM and Dyn-GGDH models. It was shown that the prediction of the mean
resolved temperature (on two coarse grids) is better than these other two models. The proposed
model is observed to correctly predict the relative magnitude of wall-normal and wall-tangential
flux and the PDF of the instantaneous alignment angle between turbulent flux and temperature
gradient.

It is noteworthy that the subgrid to molecular diffusivity ratio was much larger than those of the
Dyn-EDM and Dyn-GGDH models; so the improved predictions are due to a greater reliance on
the subgrid model. While it is not entirely deductive, it can be presumed that adopting the exact
flux production term into the model, and accepting that it produces an asymmetric diffusion tensor,
as exemplified by Fig. 16, are useful properties of the formulation. The larger value of the model
coefficient, Cθ , and especially its rise near the wall, also contrasts to the comparison models. The
free index in Eq. (9) contains a contribution from the direction of the resolved velocity, rather than
the direction of its gradient. Near the wall, where the velocity in the x direction is dominant, the
streamwise flux will make a large contribution to Eq. (15), and that may explain the behavior
of Cθ .

The results reflecting the performance of the proposed scalar-flux model at the subgrid scale are
promising and its ability to correctly predict the near-wall heat transfer characteristics in a separated
and reattaching flow is encouraging.
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APPENDIX

An estimate of the subgrid turbulent kinetic energy is based on the dynamic Smagorinksy model,
as implementation by Passalacqua [31] for OpenFOAM. The SGS stress tensor τi j = uiu j − uiu j is
modeled by 2

3 ksgsδi j − 2νsgsSi j , where

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
.

The subgrid kinetic energy is the trace of the stress tensor, ksgs = τkk = (ukuk − ukuk ).
Let

νsgs = Ck

√

ksgs. (A1)

Using a local equilibrium approximation that production equals dissipation, and representing dissi-
pation by Cεk1.5

sgs/
,

S : τi j = Cε

k1.5
sgs



⇒ Cε

k1.5
sgs



= 2νsgs|S|2, (A2)

where |S| =
√

2S : S. Hence

ksgs = Cdyn

2|S|2. (A3)

Cdyn is computed dynamically by using trace of the resolved stress tensor and modeled ksgs at the
test and grid level filters.
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