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Roughness effects on scalar transport
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We have studied the transport of a passive scalar for passive scalar with Prandtl numbers
near unity in a plane channel with rough walls. The study was carried out by direct
numerical simulations of the Navier-Stokes equations; an immersed boundary method
was used to model the roughness. The well-known departure from the Reynolds analogy,
which postulates similarity between the statistics of the scalar and the velocity, is veri-
fied. Townsend’s similarity, suggesting the smooth-wall and rough-wall statistics collapse
away from the wall is confirmed. The role of the form-induced production was a focus
of this work. Additional form-induced contributions appear in the Reynolds-stress and
scalar-variance budgets due to the roughness; they were quantified and compared between
passive scalar and momentum. The form-induced production is more significant for the
scalar variance than for the streamwise Reynolds stress and could be the cause of the
reduced damping of scalar fluctuations by the roughness. The sheltering caused by tall
roughness elements decreases the mean gradients significantly but, in the case of the scalar,
is countered by diffusion, so that the form-induced production is larger for the scalar
variance. The implications of this finding are discussed.
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I. INTRODUCTION

Scalar transport occurs frequently in engineering applications and natural processes, from dis-
persion of particles and pollutants in the atmosphere to heat transfer in mechanical systems. It is,
therefore, critical in many applications (particularly those involving heat transfer) to understand the
phenomena that govern scalar transport.

One of the cornerstones of our knowledge of scalar transport is the Reynolds Analogy [1,2],
which relates the heat and momentum transport. This analogy is based on the observation that both
momentum and heat transport depend on the same turbulent eddies and that the governing equations
for momentum and scalar transport are nearly identical; if the Prandtl number (the ratio of viscosity
to diffusivity) is equal to one, the only difference between them is the pressure gradient, which is
absent in the scalar transport equation. Thus, it can be expected that the velocity and scalar profiles,
properly normalized, are analogous, and that the ratio of heat transfer coefficient (the Stanton
number) to the skin friction coefficient, known as the Reynolds-analogy ratio, is constant. The
analogy was further extended, as additional similarities between momentum and scalar transport
(mean stresses and fluxes, fluctuation intensities and Reynolds stresses and fluxes) were observed.
The Reynolds analogy has been verified experimentally, and holds well in a variety of flows over
hydraulically smooth surfaces [3–7].

Since all surfaces are hydraulically rough for sufficiently high Reynolds number, the understand-
ing of roughness effects on scalar transport is important. While a very large body of work examines
the momentum transport in the presence of roughness, fewer researchers have investigated the effect
of roughness on scalar transport.
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The effects of roughness on the momentum transport in boundary layers have been reviewed
by Raupach et al. [8] and Jiménez [9]. The main ones are (1) an increase in the drag [10,11]; (2)
the amplification of the wall-normal and spanwise fluctuations, at the expense of the streamwise
ones, resulting in decreased flow anisotropy [12–14]; (3) the breakup of the near-wall structures
and modifications of the near-wall turbulence generation cycle [8,15]. Townsend [16] proposed the
hypothesis that the outer layer is insensitive to the inner region, except in the role it plays in setting
the length and velocity scales for the outer flow. This implies that roughness effects are confined
to a layer near the roughness, and that at some distance above the roughness crest the turbulent
stresses, scaled by the friction velocity, collapse on the smooth data. Several studies confirmed this
hypothesis, determining this distance to be roughly 3–5 times the equivalent sand-grain roughness
height (ks) [16,17]. Thus, roughness modifies the flow in the roughness sublayer and determines the
velocity scale, but does not directly affect the stresses in the outer flow.

Early experimental studies of heat transfer in smooth- and rough-wall boundary layer quantified
the relation between the Stanton number and the skin friction coefficient as a function of the
Reynolds and Prandtl numbers [6,18–21]. The studies concluded that roughness increases the
Stanton number, but this increase is accompanied by a larger increase in the skin-friction coefficient.
It was observed that, while the Reynolds Analogy holds well for hydraulically smooth walls without
significant pressure gradients, it is not valid for rough wall pipes, channels and boundary layers.
Dipprey and Sabersky [19] conjectured that this breakdown is due to the increasing importance of
the pressure mechanism in the momentum transfer (i.e., in the drag force) without a corresponding
mechanism in the transport of scalar.

Direct numerical simulations (DNS) have also been used to investigate scalar transport. Several
studies ([22–29] among others) have highlighted the physics of the near-wall region in smooth-wall
flows and compared spectra and budgets for velocity and scalar. It was found that the scalar
fluctuation and wall-normal fluxes were closely correlated with the streamwise velocity fluctuation
and wall-normal stress, respectively, particularly in the near-wall region. The kinetic energy and
scalar variance spectra were found to be reasonably analogous in both inner and outer regions
and in both streamwise and spanwise directions. These studies also examined the scalar-fluctuation
budgets, remarking on the similarity with that of the streamwise velocity fluctuation. Specifically, in
channel flow the ratio between the characteristic time scales of the velocity and scalar fluctuations
was found to be approximately constant over the greater part of the channel when Re is sufficiently
large and Pr is near unity. Differences between the scalar large-scale structures and their streamwise
velocity counterparts were observed, as the scalar structures were both larger in the spanwise
direction and steeper in inclination. Another key observation apparent in all the studies is the sharper
interface of the scalar structures, emphasizing the unmixed nature of the scalar.

Nagano et al. [30], Leonardi et al. [31], Orlandi et al. [32] performed simulations in channels
with transverse ribs (square, triangular and circular) and regular roughness (cubes) with focus on
augmenting heat transfer through passive means. These studies confirmed that the roughness in-
creases heat transfer less than drag, and proposed that the pressure-temperature gradient correlation
is important in maintaining the turbulent heat flux. They also point out that the turbulent fluxes
are usually the largest component of the total flux. Nagano et al. [30] also determined that k-type
roughness resulted in better heat transfer performance compared with transverse-rib and d-type
roughness. Leonardi et al. [31] deduced that the heat transfer augmentation from roughness is mostly
due to ejections at the leading edge of the roughness elements. They note that the spacing between
roughness elements has a crucial influence on heat transfer and mixing since complete reattachment
ahead of a downstream roughness element results in a strong stagnation at the leading edge, which
results in stronger ejections. They show that scalar fluxes adhere to Townsend’s similarity away
from the crests (distance depends on the geometry) and that turbulent Prandtl number also collapses
on the smooth wall case away from the wall. In the roughness layer, however, the turbulent Prandtl
number can be higher or lower than the smooth-wall one, depending on the geometry and flow
conditions. They also considered the dispersive heat fluxes, observing that the maximum dispersive
flux is located at crests plane and an additional, smaller peak is present above the crest plane.
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The relative contribution of the dispersive fluxes was found to depend on the geometry and flow
conditions, but no definitive conclusion was made on the issue. This was confirmed by Li and
Bou-Zeid [33], who also stated that the dispersive stresses and scalar fluxes show more pronounced
differences compared with their turbulent counterparts, suggesting that they are due to the nonlocal
action of pressure. They also highlighted the need for further examination of the dispersive terms in
the context of passive scalar trnasport.

Recently, Forooghi et al. [34,35] performed a systematic study of the effects of roughness
morphology (geometry, density, solidity, etc.) with artificial and realistic surfaces. They point out
that the “sheltering” effect behind roughness elements reduces the Stanton number for denser
roughness and that the roughness geometry can affect scalar and momentum differently. MacDonald
et al. [36] studied channels with wavy walls, and presented a correlation between the shift in the
logarithmic profile, or roughness function, of passive scalar versus the equivalent sand-grain size ks.
They quantified the scalar roughness function and concluded that it tends asymptotically to a value
of ∼4.4 as ks increases, unlike the velocity roughness functions that increases monotonically. For
Pr = 0.7, they found that the scalar roughness function was smaller than the velocity counterpart.
They also illustrated the “sheltering” effect and how the instantaneous scalar forms a diffusive
sublayer that remains attached to the surface, even at high Reynolds numbers (as opposed to
the velocity, which separates between roughness elements). Peeters and Sandham [37], using
grit-blasted surfaces, also quantified the scalar roughness function, confirming the trend shown
by Ref. [36]. They further considered the Reynolds-Analogy ratio, and the behavior of the scalar
streaks, compared the Reynolds stresses and scalar fluxes and performed quadrant analysis on the
wall-normal turbulent stresses and fluxes. They concluded that within the roughness the dominant
events (quadrants) of the turbulent scalar flux are different than those of the turbulent stresses
while above the roughness they match. Both works identified that in the fully rough regime, the
scalar exhibits a thin thermal diffusive sublayer which closely follows the geometry, resembling
the viscous sublayer on smooth wall. The treatment of scalar variance budget in rough-wall flows,
particularly with respect to form-induced terms, received little-to-no attention. Specifically, to the
best of the authors’ knowledge, the form-induced contribution to the scalar variance production
was not investigated at all. This is in contrast to works such as Yuan and Aghaei Jouybari [38]
which covered the form-induced terms in the momentum variance budgets extensively, indicating
that form-induced terms are important in momentum balance and budgets.

The purpose of the present paper is to examine the mechanisms that drive the exchange of scalar
in the roughness sublayer, comparing them with those that govern the momentum transfer. Special
focus is given to the budgets of scalar variances and Reynolds stresses, in particular with respect to
the form-induced terms in the momentum and energy balance, and highlight their effect on the dif-
ferent behaviors of streamwise velocity and scalar. This is achieved by performing direct numerical
simulations of the flow in a plane channel with rough walls. The problem will be formulated in the
next section. Then, some results will be presented; concluding remarks will close the paper.

II. PROBLEM FORMULATION

We consider the transport of a passive scalar in a fully developed turbulent channel with rough
walls, illustrated in Fig. 1. The flow is driven by a mean streamwise pressure gradient in a periodic
domain. A constant flux of the passive scalar is maintained through the walls, which is a good
approximation of many practical applications, and was considered in previous works [23,24,29,37].

The transport of momentum is governed by the incompressible Navier-Stokes equations and mass
conservation:

∂uk

∂xk
= 0, (1)

∂ui

∂t
+ ∂ (uiuk )

∂xk
= �δi1 − ∂ p

∂xi
+ ν∇2ui + Fi, (2)
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FIG. 1. (a) Sketch of the computational domain. The arrow indicates the flow direction. (b) Detail of the
roughness geometry and mesh size. The color indicates the wall-normal (y) distance relative to the virtual wall
(to be defined in Sec. III B).

where i = 1, 2, and 3 (or x, y, and z) are the Cartesian coordinates in the streamwise, wall-normal
and spanwise directions respectively. ui (or u, v, and w) are the velocity components in the Cartesian
directions, p = P/ρ is the pressure divided by the (constant) density, Fi is a forcing term used by
the immersed boundary method (IBM) to impose the roughness geometry in the Cartesian domain.
� is the driving pressure gradient, which is adjusted at each time to maintain a constant mass flux
through the channel. No-slip conditions are used at the wall, while periodicity is enforced in the
streamwise and spanwise directions.

For the passive scalar, we follow the approach of Ref. [23], which has been used extensively in
the literature. Note that, although this is valid for any passive scalar, for brevity we will often refer
to it as the temperature, and use the corresponding nomenclature (Prandtl number, specific heat,
etc.). Starting with the passive scalar T , we define the transformed scalar θ ≡ Tw − T , where Tw is
the time-averaged value of the scalar T at the wall. If a constant flux at the walls is assumed, Tw

increases linearly with x, resulting in the governing equation for θ :

∂θ

∂t
+ ∂ (ukθ )

∂xk
= α∇2θ + Q + Fθ , (3)

where α is the kinematic diffusivity, and the forcing term Q is

Q = u
dTw

dx
= qw

ρcpδ

u

Ub
, (4)

where cp is the specific scalar capacitance (i.e., specific heat, specific moisture etc.). The source term
Q in Eq. (4) is defined by the prescribed scalar flux through the wall, qw. The ratio of viscosity to
diffusivity defines the Prandtl number Pr = ν/α. We considered Pr = 0.7–1.41, the range for which
the Reynolds analogy is known to hold. Using this formulation, θ also satisfies periodic boundary
conditions in x and z, while a Dirichlet boundary condition, θ = 0, can be applied at the wall; this
implies that the wall fluctuations are zero, while a constant wall flux allows for wall fluctuation.
Kasagi et al. [39] showed that for this range of Prandtl number the fluctuations at the wall are small
enough to justify this assumption. This is further supported by the findings of later works which used
different approaches to maintain a constant wall flux without limiting wall fluctuation [25,26,29].

The roughness is modelled by an Immersed-Boundary Method (IBM) based on the volume-of-
fluid (VoF) approach [40]. The surface geometry is a distribution of randomly oriented ellipsoids
with semiaxes k, 1.4k, and 2k, where k is 4% of the effective channel half-height. The roughness
crest is located at ycr ≈ 1.5k ≈ 0.06δ. This model results in k-type roughness, in which the
equivalent sand-grain roughness ks � k in the transitionally rough regime, and ks � 1.6k in fully
rough flow.
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TABLE I. Summary of the numerical setup.

Case Domain size Nx Ny Nz 	x+ 	z+ k/δ k+ k+
s nx ny nz ncrest

Smooth 6δ × 2δ × 3δ 1024 320 512 6.0 6.0 – – – – – – –
Rough 6δ × 2.064δ × 3δ 1024 530 512 10 10 0.04 65 90 7 85 7 125

The governing equations are solved using second-order accurate central difference in space on
a staggered mesh. A fractional-step method is used for the time advancement [41,42]. A second-
order accurate semi-implicit time advancement method is employed in which the Crank-Nicolson
scheme is used for the wall-normal diffusive terms, while low-storage third-order Runge–Kutta
scheme is applied to the remaining terms. The Poisson equation is solved directly using an efficient
Fourier Transform solver. The code is parallelized using the message-passing interface (MPI). The
numerical model has been widely validated for rough-wall flows [43,44].

The channel half-width, δ and the bulk velocity Ub, can be used to define the bulk Reynolds
number Reb = Ubδ/ν. All calculations are performed with Reb = 21 000, resulting in a Reynolds
number based on friction velocity uτ of Reτ � 1 020 for the smooth-wall case and Reτ � 1 700
for the rough-wall one. In calculations of channel flow, one can maintain either a constant Reb, or
a constant Reτ ; both approaches can be found in the literature. We chose a constant Reb to make
our results more directly applicable to boundary layers, in which the free-stream velocity (rather
than the friction velocity) is constant. The equivalent sandgrain height, in wall units, is 90, so that
the flow is close to the fully rough regime, as will be further discussed later. For the smooth case,
1024 × 320 × 512 grid points are used to discretize a domain of dimensions 6δ × 2δ × 3δ, and
1024 × 530 × 512 are employed in the rough one. Note that in the latter, the actual domain height
is 2.064δ (rather than 2δ) to compensate for the blockage due to the roughness. This results in
	x+ = 	z+ � 6 in the smooth case, and 10 in the rough one. 	z+ � 10 is slightly larger than the
value used in most DNS of this type (usually around 6) but the size of the turbulent eddies near the
wall, in this flow, is determined by the roughness geometry and not by the viscous sublayer physics.
Although this domain is somewhat smaller (in x and z) than those commonly used, it is significantly
larger than the minimal channel used by Ref. [36] in similar calculations. The resolution of the
roughness is nx = nz = 7 cells per k in the x and z directions while in the y direction there are
ny = 85 cells per k and a total of ncrest = 125 cells covering the region from the base to the crest.
Yuan and Piomelli [45] showed that, as long as at least four points are used in each wall-parallel
direction, the drag and the flow statistics converge. A grid-refinement study, reported in Appendix A,
indicates that this resolution is sufficient for all Prandtl numbers. The parameters of the calculations
are summarized in Table I.

III. RESULTS

A. Triple decomposition

Several averaging operators can be used in rough-wall channel flows [46]. Time averaging is
indicated by an overbar. In the xz plane we utilize two spatial averages as defined by Ref. [46]: the
intrinsic spatial average 〈·〉, and the superficial average 〈·〉s. The whole plane surface is denoted by
A0 while A f denotes the region of the plane surface occupied by fluid. The fluid fraction φ(y) =
A f /A0, i.e., the ratio of fluid area to total area, relates the two averages: 〈θ〉s = φ〈θ〉. The spatial
averages do not commute with spatial derivatives, resulting in additional terms in the transport
equations [46,47], which will be discussed in Sec. III in their respective context.

A flow quantity f can be decomposed into three terms [46–48]: (1) a component that is averaged
in time and space (or double-averaged), 〈 f 〉; (2) the spatial variation of the time-averaged quantity,
f̃ ; and (3) the instantaneous fluctuation f ′:

f (xi, t ) = f (xi ) + f ′(xi, t ) = 〈
f
〉
(y) + f̃ (xi ) + f ′(xi, t ). (5)
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FIG. 2. Double-averaged velocity (a) and scalar (b). The dashed vertical line denotes the roughness crest.
×: DNS data by Abe et al. [26].

f̃ is known as the “wake field,” or “form-induced perturbation.” It represents the deviation of the
time-averaged field from the time-and-space averaged one, and highlights the geometry-induced
effects. By definition, 〈 ·̃ 〉 = 0; ·̃ = 0 in the smooth case and away from the roughness sublayer,
where the time-averaged fields are spatially uniform (in x and z), and the triple decomposition
reverts to the standard Reynolds decomposition. The wake-field is a (temporally) persistent spatial
perturbations field, i.e., it is nonzero whenever the time averaged field is nonuniform.

B. Mean velocity and scalar profiles

Figure 2 shows profiles of the temporally and superficially averaged streamwise velocity 〈u〉s
and scalar 〈θ〉s. The normal coordinate y is displaced by the location of the force centroid d [49].
To define wall units, velocities are normalized by uτ = (τw/ρ)1/2, lengths by ν/uτ , and the scalar
by θτ = qw/(ρcpuτ ).

A logarithmic layer is present for the scalar, similar to the one for the velocity, with a slightly
lower slope, as also observed by other researchers [29,36]. While the Von Kàrmàn constant of
the scalar logarithmic layer (κθ = 0.46) is independent of the Prandtl number, the intercept is not,
increasing with Pr. The data is in good agreement with the DNS by Abe et al. [26].

When the wall is rough, the logarithmic layers for velocity and scalar maintain the same slope,
but are shifted downwards; this offset is known as the “roughness function.” An extensive discussion
on the roughness function in this context can be found in Peeters and Sandham [37], from which the
definitions for the roughness functions are taken:

	U + = 〈u〉+s |ks=0 − 〈u〉+s |ks ; 	+ = 〈θ〉+s |ks=0 − 〈θ〉+s |ks . (6)

Here, the roughness function is calculated by averaging the difference between the log law on a
region over which they are nearly constant. We used 200 < y+ < 600; the results are not strongly
dependent on the choice of the averaging interval, unless it extends into the wake region or the
buffer layer, nor on the choice of origin (force centroid or geometric mean). The roughness function
for the velocity, 	U +, is in good agreement with that obtained by other researchers at comparable
equivalent sandgrain roughnesses, Fig. 3(a) and Table II, while the values of 	+ predicted in the
present study are consistently higher, perhaps because of the different geometries, that have some
effect at the lower edge of the fully rough regime. The value of k+

s = 100 is at the beginning of
the fully rough regime, where 	U + becomes independent of the type of roughness, and follows a
logarithmic behavior [11], and the drag is mostly due to the pressure drag. Some residual transitional
effect can still be observed, however, in the difference between the various values obtained with
different roughness shapes. The roughness function of the scalar, 	+, depends on the Prandtl
number: the logarithmic layers for the scalar in the rough-wall case are more clustered together
compared to the smooth-wall case, resulting in the decrease of 	+ as Pr decreases. 	+ in
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FIG. 3. (a) Velocity and (b) scalar roughness functions. Comparison data taken from MacDonald et al. [36]
(MHC 2019) and Peeters and Sandham [37] (PS 2019).

this range of Pr is lower than the velocity roughness function, 	U +, in line with the findings of
Refs. [36,37].

C. Mean momentum and scalar balances

Applying the double-averaging procedure to the conservation of streamwise momentum, Eq. (2),
yields the mean momentum balance:

−〈�〉s = d

dy

[
ν

d〈u〉s

dy
− 〈u′v′〉s − 〈̃u ṽ〉s

]
+ fp + fν, (7)

where the left-hand side (LHS) is the driving mean pressure gradient; on the right-hand side (RHS),
in addition to the gradients of viscous and stochastic shear stresses, which are also present in
smooth-wall flows, there are three terms that are directly induced by the roughness: the gradient
of the dispersive stress 〈̃u ṽ〉s, the form-induced pressure force fp, and the form-induced viscous
force fν . The last two are given by

fp = −
〈
∂ p̃

∂x

〉
s

; fν =
〈

∂

∂xk

(
ν

∂ ũ

∂xk

)〉
s

− 2ν
d〈u〉
dy

dφ

dy
− ν〈u〉d2φ

dy2
. (8)

Similarly, double-averaging Eq. (3) yields

−〈Q〉s = d

dy

[
ν

d〈θ〉s

dy
− 〈θ ′v′〉s − 〈̃θ ṽ〉s

]
+ fα, (9)

where the LHS is the averaged scalar source term Q given in Eq. (4) and on the RHS the first two
terms are the diffusive and turbulent fluxes, which are also present in smooth-wall channel, while the

TABLE II. Summary of the mean velocity and scalar profile parameters.

Reτ k+
s Pr 	+ 	U + Coordinate origin

MacDonald et al. [36] 1680 380 0.71 4.3 10.9 Geometric mean
395 90 3.0 6.5

Peeters and Sandham [37] 720 102 1.0 4.7 8.6 Geometric mean
540 80 4.6 7.7

Present study 1680 90 0.71 4.2 8.6 Force centroid
1.0 5.7
1.41 7.8
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FIG. 4. Mean (a) stresses and (b) scalar fluxes (Pr = 1.0). Stress and flux components are in wall units.
The dashed vertical line marks the roughness crest; the thick brown dotted line is the solid fraction 1 − φ.

last two terms are the dispersive flux and the form-induced conduction, fα , which is the equivalent
of fν :

fα =
〈

∂

∂xk

(
α

∂θ̃

∂xk

)〉
s

− 2α
d〈θ〉
dy

dφ

dy
− α〈θ〉d2φ

dy2
. (10)

Integrating Eq. (7) and Eq. (9) in the wall-normal direction results in the total stress and scalar flux.
The form-induced contributions are

Fp =
∫

fpdy; Fν =
∫

fνdy; Fα =
∫

fαdy. (11)

Figure 4 shows the contribution of the various terms to the total stress and flux. Note that the total
stress is not linear in the roughness sublayer because the fluid fraction is not constant. The total drag
acting on a rough-wall is the sum of viscous and pressure contributions [9,10,47]. The latter, also
known as form drag, is a result of the pressure difference between the stagnation regions in front of
the roughness elements and the separated-flow areas downstream of them. It is dominant in the fully
rough regime. In the present case, 70% of the total wall stress is due to the form drag, Fp; since the
flow is at the lower edge of the fully rough regime, the viscous drag is significantly smaller, but not
negligible, contributing the remaining 30% as form-induced viscous force. The form-induced terms
(Fp, Fν , and 〈̃u ṽ〉s) account for more than half of the momentum flux up to the virtual wall, y = d;
from this point on the stochastic Reynolds stresses dominate the momentum transfer. The dispersive
stresses, however, are not insignificant even near the crest.

Dipprey and Sabersky [19] showed experimentally, in the context of heat transfer, that the
behavior of a scalar quantity in the presence of roughness is different than that of momentum,
specifically pointing to the absence of a pressure or pressurelike mechanism. Figure 4(b) shows
that the scalar wall flux is indeed almost entirely due to the form-induced conductive flux (Fα). The
form-induced flux follows very closely the distribution of the solid fraction, 1 − φ, emphasizing the
importance of the wetted area to scalar transport, while for momentum the viscous contribution is
overall much less significant, due to the pressure dominance. The behavior of the dispersive scalar
flux 〈̃θ ṽ〉s is similar to that observed for 〈̃u ṽ〉s.

D. Turbulent stresses and fluxes

Figures 5 and 6 show the second-order moments of velocity and scalar for Pr = 0.71 and 1.0. The
agreement with the data by [26] at Pr = 0.71 is very good. As observed previously [13,14,50,51]
the presence of roughness dampens the streamwise fluctuation, 〈u′u′〉s, by approximately 50% while
〈v′v′〉s and 〈w′w′〉s are nearly unchanged, making the Reynolds-stress tensor more isotropic. The
scalar variance 〈θ ′θ ′〉s is also reduced, but less than the streamwise flux 〈θ ′u′〉s or streamwise
velocity variance 〈u′u′〉s, at all Prandtl numbers considered.
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FIG. 5. Superficially averaged Reynolds stresses, scalar fluxes, and scalar variance; Pr = 0.71. All mo-
ments are normalized by viscous units. (a) Stochastic Reynolds stresses; (b) stochastic scalar fluxes and
variance.

〈θ ′v′〉s and 〈u′v′〉s remain similar, as noted by Peeters and Sandham [37]. All the quantities
collapse on their smooth-wall equivalent several roughness-heights from the wall (y/ks � 3 − 5),
confirming that Townsend’s similarity hypothesis, known to apply for momentum [16,52], also
applies for scalar in the range of Prandtl numbers examined. The stochastic fluxes are significant
inside the roughness sublayer; in fact, apart for the wall-normal one, all the components have their
peak below the roughness crest.

While the dispersive stresses have been examined before [38,43], very little attention was given
to the scalar dispersive fluxes, although they were shown to possibly be significant [31,33]. The
dispersive stresses and fluxes, Figs. 6(c) and 6(d) are significant. Throughout the roughness sublayer
they are of the same order as (and sometimes larger than) the stochastic ones, as can be seen in
Fig. 7. Note that deep into the roughness sublayer (y/k < 0.2) both the stochastic and dispersive
fluxes, 〈θ ′u′〉s and 〈̃θ ũ〉s are very small and negative, and they change sign at different points; this

FIG. 6. Superficially averaged Reynolds stresses, scalar fluxes, and scalar variance; Pr = 1.00. All mo-
ments are in normalized by viscous units. (a) Stochastic Reynolds stresses; (b) stochastic scalar fluxes and
variance; (c) dispersive stresses; (d) dispersive scalar fluxes and variance.
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FIG. 7. Ratio of the superficially averaged dispersive stresses and scalar fluxes to their stochastic counter-
part; Pr = 1.00. (a) Reynolds stresses; (b) scalar fluxes and variance.

causes the spike in Fig. 7. The dispersive fluxes contribute a larger percentage of the scalar transport,
compared to the dispersive stresses. Above the roughness sublayer the dispersive stresses and fluxes
are small, but not zero, as they should be. Coceal et al. [53], Leonardi et al. [31], Yuan and Piomelli
[44], and Yuan and Aghaei Jouybari [38] also observed similar phenomena. Since the time scales
outside the roughness are significantly longer than those of the near-wall region, an extremely long
averaging time is required for the the point-wise time-averaged quantities in the bulk region to
converge to the correct, spatially homogeneous ensemble average.

E. Reynolds stress and scalar variance budgets

The budgets of the Reynolds stresses and scalar fluxes can be written as

0 = Pi j + Ai j + Ti j + Di j − εi j + �i j, (12)

0 = Pθ + Aθ + Tθ + Dθ − εθ + Qθ , (13)

where the terms on the RHS of these equations are the production P , wake transport A, turbulent
transport T , viscous/conductive diffusion D, and dissipation ε. In addition, Eq. (12) contains the
pressure-work term �i j [not to be confused with � in Eq. (2)] and Eq. (13) contains the source
term Qθ [not to be confused with Q in Eq. (3)]. The explicit expressions of the terms and additional
details can be found in Appendix B.

Figure 8 shows the budgets of the streamwise normal Reynolds stress, 〈u′u′〉s, and scalar variance
〈θ ′θ ′〉s, normalized by uτ , θτ , and ν. The scalar is shown for Pr = 1.0 to emphasize the difference
between the quantities under the most similar conditions.

Of particular interest is the production P , which can be decomposed into “shear production,” P s

and “form-induced production,” P f i. The former is present in both smooth and rough flows, whereas
the latter is due to the roughness geometry. The form-induced production can be further split into
the “mean production” Pm, and the “wake production,” Pw:

P11 = −2〈u′v′〉s
d〈u〉
dy︸ ︷︷ ︸

P s
11

−2〈u′u′
k〉s

〈
∂ ũ

∂xk

〉
︸ ︷︷ ︸

Pm
11

−2

〈
ũ′u′

k

∂ ũ

∂xk

〉
s︸ ︷︷ ︸

Pw
11

, (14)

Pθ = −2〈θ ′v′〉s
d〈θ〉
dy︸ ︷︷ ︸

P s
θ

−2〈θ ′u′
k〉s

〈
∂θ̃

∂xk

〉
︸ ︷︷ ︸

Pm
θ

−2

〈
θ̃ ′u′

k

∂θ̃

∂xk

〉
s︸ ︷︷ ︸

Pw
θ

. (15)
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FIG. 8. Budgets of (a) 〈u′u′〉s and (b) 〈θ ′θ ′〉s with Pr = 1.0. Lines: Smooth wall; Lines with markers: rough
wall. Terms are normalized by u4

τ /ν in the Reynolds stress budget, and u2
τ θ

2
τ /ν in the scalar one. The vertical

line marks the roughness crest. Only significant terms are shown; enlarged figure including all terms can be
found in Appendix B.

While the shear production represents the work of the mean Reynolds stresses against the mean
(double-averaged) velocity gradient, the form-induced production represents the work of the the
mean Reynolds stresses (for the case of Pm) and of the form-induced Reynolds stresses (for the case
of Pw) against the form-induced velocity fluctuations. Analogous interpretations can be given to the
production terms for the scalar variance. It has been shown [8,38] that, in the context of momentum
transport, the form-induced production can be significant and provides an alternative mechanism
(the “spectral short-cut”) for producing turbulent kinetic energy directly at the roughness scales.

In the smooth-wall case, the budgets are very similar to each other. The pressure work �11,
responsible for the energy redistribution between the three normal stresses, acts as a sink term for
〈u′u′〉s. Near the wall, �11 is not significant compared with ε11; however, away from the wall they
are roughly equal, and act as the sinks balancing the shear production. In the rough case �11 is as
significant as ε11 both near and away from the wall, balancing the shear production, which, although
much reduced compared to the smooth-wall case, is still the main gain term. All other terms are
significantly smaller.

The budget of 〈θ ′θ ′〉s presents some interesting features. An equivalent to �11 is not present
in the scalar budget while the scalar source term contribution Qθ is negligible. The dissipation is
the leading sink term near the wall, and the only one away from the wall; the magnitude of εθ is,
therefore, larger than that of ε11 by an amount roughly equal to �11, compensating for the lack of
the pressure work. This is consistent in both smooth and rough cases. The shear production P s

θ is
similar to P s

11, mirroring the similarity between 〈u′v′〉s and 〈θ ′v′〉s [shown in Figs. 6(a) and 6(b)] and
between the mean velocity and scalar profiles (Fig. 2). The form-induced production P f i

θ is much
larger than P f i

11. In fact, up to the force centroid, y = d , it is the largest positive term in the budget.
The larger form-induced production may be a primary reason for the reduced damping of 〈θ ′θ ′〉s,
compared to 〈u′u′〉s, which was mentioned in Sec. III D.

Raupach and Shaw [47] considered the budget of the wake kinetic energy (WKE) for the flow
over a canopy, and observed that, if the dispersive stresses are negligible, the WKE equation reduces
to

−2

〈
ũ′u′

k

∂ ũ

∂xk

〉
s

= 〈ui〉
〈

∂ p̃

∂x j

〉
s

, (16)

indicating that the wake production represents the work of the mean flow against the pressure drag.
In our case, Pm

11 would also appear on the left-hand side. This interpretation of the form-induced
production does not seem to apply to this case, since the dispersive stresses are not negligible (see
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FIG. 9. Breakdown of the contributions to the form-induced production P f i
11 and P f i

θ for Pr = 1.0. Terms
are normalized by u4

τ /ν in the Reynolds stress budget and u2
τ θ

2
τ /ν in the scalar one. The vertical line marks the

roughness crest.

Fig. 7). Furthermore, the behaviors of P f i
11 and P f i

θ are very similar, despite the fact that there is no
pressure term in the scalar equation. For the flow over a rough-wall surface, the WKE balance
is considerably more complex than for the canopy. It is then clear that the type of roughness
has significant importance over how the two form-induced production components behave and
contribute, an issue that could be critical when modeling turbulence.

We next consider the breakdown of the form-induced production into the constituent mean
production and wake production. Note that while the shear production only depends on double-
averaged quantities, the mean production is a mix of double-averaged and wake quantities and the
wake production depends purely on the wake fields. The contributions of these terms can be seen in
Fig. 9. For both scalar and Reynolds stress the form-induced production is positive, and significantly
larger for the scalar than for the Reynolds stress.

The mean and wake production can be further split into their x, y, and z components, and the
contribution of each of these terms is also shown in Fig. 9. The mean production terms are simpler,
as only the y component has a nonzero mean contribution:

Pm
11 = Pm

11,y = −2〈u′v′〉s

〈
∂ ũ

∂y

〉
; Pm

θ = Pm
θ,y = −2〈θ ′v′〉s

〈
∂θ̃

∂y

〉
. (17)

For the Reynolds stress, the mean production (y term) and the x component of the wake production
are positive; the mean production nearly balances the y component of the wake production. For the
scalar, however, both x and z components of the wake production are positive, and combine with
the mean production to increase the scalar variance. In both cases, the most important term appears
to be the mean production, which, together with the wake production, represents the rate at which
energy is transferred from the wake field to the turbulent fluctuations.

The mean production terms (Pm
θ and Pm

11) can be further simplified, given that θ and u are zero
on the boundary:

Pm
11 = −2〈u′v′〉

(
〈u〉dφ

dy

)
; Pm

θ = −2〈θ ′v′〉
(〈

θ
〉dφ

dy

)
. (18)

This form underlines a key difference in the roles of the mean and wake production terms: Although
all production terms include some indirect effect of the roughness, only Pm depends explicitly on
the geometry through the derivative of φ (and, in fact, is strictly zero above the crest). The wake
production Pw, however, is only related to the geometry indirectly through the adjustment of the
mean flow field to the roughness shape (which persists above the roughness crest): upwards jets are
generated on the upstream side of the roughness elements, and downwards sweeps on the leeward
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FIG. 10. Breakdown of the total production term Pθ for different Pr and different wall-normal scaling.
Terms are normalized by u2

τ θ
2
τ /ν. The vertical line marks the roughness crest.

side, which propagate into the flow above the roughness crest. Note that in roughness geometries
in which the fluid fraction φ is not a function of y, (e.g., vegetation canopies, arrays of cubes) the
mean production term vanishes [8,47,48].

The decomposition Eq. (18) also explains why the form-induced production contributes more
to 〈θ ′θ ′〉s than to 〈u′u′〉s. The mean and wake production terms are mostly opposite in sign. Both
mean-production terms are the product of three terms: (1) 〈u′v′〉 or 〈θ ′v′〉 (which are very similar to
each other in magnitude and distribution, as discussed in Sec. IIID); (2) a geometry-dependent term,
dφ/dy, which is the same for scalar and Reynolds stress, and (3) the double-averaged streamwise
velocity or scalar. The scalar roughness function is smaller than the velocity one, such that 〈θ〉+ >

〈u〉+ which results in Pm
θ > Pm

11. Similarly, since 〈θ〉+ increases with Pr, Pm
θ also increases with Pr

and, accordingly, so does P f i
θ .

When considering the effect of Prandtl number on the production terms, several interesting
features can be observed. For hydraulically smooth wall it was found that the (shear) production
term divided by Pr, when plotted versus yPr1/3 is nearly independent of the Prandtl number
[24,54]; the peak corresponds to the transition between diffusive/conductive and turbulent fluxes,
i.e., the location where 〈θ ′+v′+〉 � 0.5. Figure 10(a) shows this behavior for the smooth-wall case;
when the wall is rough, however, this scaling does not apply. The shear production peaks further
away from the wall, compared with the smooth wall, and the Pr−1 versus Pr1/3 scaling no longer
collapses the data. The shear production of turbulent kinetic energy (or, equivalently, of 〈u′u′〉s)
peaks at y/kc � 0.8, where kc is the roughness crest height, consistent with the results of previous
studies [8,38,48,55]. This also applies to P s

θ . The scalar shear production no longer adheres to the
smooth-wall scaling and depends on the roughness scale. This could be a result of the buffer layer
being destroyed in the presence of roughness, as reported in Sec. III B and the different behavior
of d〈θ〉/dy in the roughness sublayer. It is, however, interesting to note that P f i

θ scales with Pr−1

despite the fact that both of its constituting components have a clear dependence on the Prandtl
number and do not scale with Pr−1, Fig. 10(b). It is not clear if this behavior has physical meaning,
or if it is due to the small range of Pr examined here.

F. Spatial distributions of mean and wake fields

We now examine the spatial distribution of the various production terms. To this end, we define a
“local production” P̂ , a quantity whose superficial average is equal to the corresponding production
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FIG. 11. Contours of production components in the y = d plane. Shear production: (a) P̂ s
11; (b) P̂ s

θ . Mean
production: (c) P̂m

11; (d) P̂m
θ . Wake production: (e) P̂w

11; (f) P̂w
θ . Form-induced production: (g) P̂ f i

11; (h) P̂ f i
θ .

Terms are normalized by u4
τ /ν in the Reynolds stress budget, and u2

τ θ
2
τ /ν in the scalar one. The green line is

the u = 0 contour. The black line in (h) indicates the location of the xy plane shown in Fig. 13.

term P , and is, therefore, defined by

1

A0

∫
A f

P̂dA = P . (19)

The local production components are

P̂11 = −2u′u′
k

∂u

∂xk
, P̂θ = −2θ ′u′

k

∂θ

∂xk
, (20)

P̂ s
11 = −2u′v′ d〈u〉

dy
, P̂ s

θ = −2θ ′v′ d
〈
θ
〉

dy
, (21)

P̂m
11 = −2

〈
u′u′

k

〉 ∂ ũ

∂xk
, P̂m

θ = −2
〈
θ ′u′

k

〉 ∂θ̃

∂xk
, (22)

P̂w
11 = −2ũ′u′

k

∂ ũ

∂xk
, P̂w

θ = −2θ̃ ′u′
k

∂θ̃

∂xk
. (23)

Contours of the local production terms in the y = d plane are shown in Fig. 11. The shear
production is largest in the regions between roughness elements, reflecting the spatial distribution of
the stochastic stresses and fluxes, u′v′ and θ ′v′ (not shown). The scalar variance and the streamwise
Reynolds stress production have similar spatial distributions. The mean and wake production of the
scalar have higher magnitude than the corresponding terms for the streamwise Reynolds stress, as
discussed in Sec. III E. The mean production is generally positive in the stagnation regions, where
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FIG. 12. Contours of P̂ f i
θ and its components in the y = d plane. (a) −2〈θ ′u′〉(∂θ̃/∂x);

(b) −2〈θ ′v′〉(∂θ̃/∂y); (c) −2θ̃ ′u′(∂θ̃/∂x); (d) −2θ̃ ′v′(∂θ̃/∂y); (e) −2θ̃ ′w′(∂θ̃/∂z); (f) P̂ f i
θ . All terms

are in viscous units. The green line is the u = 0 contour. The black line in (f) indicates the location of the xy
plane shown in Fig 13.

the scalar gradient is large; conversely, the wake production tends to be positive in recirculation
regions. The distribution of the form-induced production resembles that of its most significant term,
the mean production.

Although the x component of the mean production has zero net contribution, it nonetheless plays
a role in determining the distribution of the form-induced production. Figure 12 shows the contours
of the five individual terms that contribute to the form-induced production of 〈θ ′θ ′〉s. It is interesting
to note that regions of P̂m

θ,y > 0 [Fig. 12(b)] tend to surround the roughness elements in a relatively

isotropic way; P̂m
θ,x [Fig. 12(a)], however, tends to be positive in the stagnation regions, negative

behind the elements, thus making the P̂m
θ > 0 regions more prevalent near stagnation points. P̂m

θ,y
appears more sensitive to the scalar transfer by diffusion, which is isotropic.

For the wake production, the local distributions of the P̂w
θ terms resemble those observed by

Yuan and Aghaei Jouybari [38] for their counterpart terms of turbulent kinetic energy production.
The spanwise term gives the largest positive contribution; as observed in Ref. [38] this term is
associated with the convective motions in the shear layers on the sides of the roughness elements,
where the fluid is deflected around the elements, thus generating spanwise velocity and scalar
gradients, and consequently larger stochastic fluctuations. The x component of P̂w

θ , however, is
positive in recirculation regions, while the y component is negative in the shear layer in the front of
the roughness elements.

Figure 13 shows contours of several time-averaged quantities in an xy plane. As observed by
other researchers (e.g., Ref. [36]), a thin diffusive layer can be seen in the mean scalar distri-
bution [highlighted by the θ

+ = 1 contour in Fig. 13(b)], but not in the mean velocity [u+ = 1,
Figure 13(a)]. The recirculation zone behind the roughness elements, however, plays a role in
decreasing the convective scalar transport, and maintaining lower values of θ

+
in those regions.

Velocity and scalar gradients (and similarly, the gradients of the wake velocity and scalar, not
shown) are large in the shear layers formed behind the roughness elements above the separation
region, Figs. 13(c) and 13(d). The scalar gradient is larger than the velocity gradient in the region
above lower roughness elements sheltered by taller ones. The role of sheltering in the context of
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FIG. 13. Contours of (a) u+; (b) θ
+

; (c) ∂u+/∂y; (d) ∂θ
+
/∂y; (e) P̂m

11; (f) P̂m
θ in an xy plane. The solid line

is the u+ = 0 contours. The dashed lines in (a) and (b) are contours of u+ and θ
+ = 1, respectively.

momentum transfer was discussed by Millward-Hopkins et al. [56], who illustrated the effects of
sheltering using examples of “skimming flow” and “wake interference flow.” In the context of heat
transfer, Forooghi et al. [34,35] also considered this issue. We observe here the different effect
of diffusion on scalar and momentum transport: the velocity gradients are small in the regions in
the shadow of the larger elements immediately upstream of them; the scalar gradient, however,
is still significant in the diffusive sublayer, and the regions of positive mean production are more
extended for the scalar, compared with velocity. As a consequence, the regions where P̂m

θ > 0 are
more extended than those where P̂m

11 > 0, Figs. 13(e) and 13(f), explaining the greater role the mean
production plays in the generation of scalar fluctuations.

IV. CONCLUSIONS

This work studied the effects of roughness on the transport of passive scalar. Direct numerical
simulations of fully developed turbulent channel flow with smooth wall and with k-type roughness
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were carried out for Prandtl numbers Pr = 0.71–1.41. The simulations maintained the same mass
flux and effective half-height, such that the bulk Reynolds number (based on channel half-width δ

and bulk velocity Ub) was Reb = 21 000 for both, resulting in a Reynolds number based on friction
velocity uτ of Reτ = 1 020 for the smooth-wall case and Reτ = 1 700 for the rough-wall one.

The velocity and scalar statistics were compared and the budgets of the Reynolds stresses and
scalar variance were examined, focusing on a comparison of the production terms. The triple
decomposition was employed to distinguish form-induced contributions and separate the direct and
indirect effects of roughness.

The scalar exhibits a downwards shift in the log-law region (the roughness function 	+),
similar to the velocity shift but smaller in magnitude. This result is consistent with the observations
of other researchers [36,37]. The scalar roughness function increases with Pr.

The mean wall stress is dominated by the form-induced pressure Fp; the form-induced viscous
contribution Fν accounts for approximately 30% of the wall stress. The mean scalar wall-flux,
conversely, is almost entirely due to the form-induced diffusive flux Fα (equivalent to Fν ), as
there is no mechanism analogous to the pressure drag. Fα follows the solid fraction 1 − φ closely,
emphasizing the importance of the wetted area for the scalar flux. At the virtual wall y = d ,
the form-induced terms Fp, Fν and the dispersive stress 〈̃ũv〉s account for more than half of the
momentum flux.

The dispersive flux 〈̃θ ṽ〉+s is similar, qualitatively and quantitatively, to the dispersive stress
〈̃ũv〉+s . For Pr = 1.0 the dispersive flux is slightly higher than the dispersive stress. Dispersive fluxes
and stresses are significant in the roughness sublayer and are of the same order as (or larger than)
the stochastic stresses and fluxes, in line with the findings of [31].

The roughness significantly dampens the intensity of streamwise fluctuations 〈u′u′〉+s , compared

with the smooth-wall case. The scalar fluctuation variance, 〈θ ′θ ′〉+s , is reduced by a smaller amount,

which also depends on the Prandtl number; the streamwise turbulent flux 〈θ ′u′〉+s mirrored the

behavior of 〈u′u′〉+s . The rough-wall scalar statistics collapse on their smooth-wall equivalent several
roughness-heights from the wall, suggesting that Townsend’s similarity hypothesis also applies to
scalar when Pr is near unity.

For the rough-wall case, the pressure-work �11 and dissipation ε11 are equally important sink
terms in the budget of 〈u′u′〉s. For 〈θ ′θ ′〉s, however, εθ is the only significant sink term, roughly
equal to the sum of magnitudes of �11 and ε11. The shear production of 〈θ ′θ ′〉s and 〈u′u′〉s are
similar in smooth- and rough-wall cases. The presence of roughness dampens both of the shear
production terms in a similar manner; however, the shear production remains the leading source
term away from the wall.

The form-induced production plays a very significant role in the budget of the scalar fluctuation
variance, 〈θ ′θ ′〉+s , more so than in the budget of 〈u′u′〉+s . Up to the location of the virtual wall,
y = d , P f i

θ gives the largest positive contribution to the budget. The form-induced production
has two components: mean and wake production. Generally, the two are opposite in sign, highly
anticorrelated and the mean production Pm is greater in magnitude. Pm depends explicitly on the
geometry and is identically zero above the roughness crest, while the wake production Pw is related
to the geometry indirectly, through the adjustment of the mean flow-field. The mean production
terms for momentum and scalar are proportional to the mean velocity 〈u〉+ and mean scalar 〈θ〉+,
respectively. Since, for the range of Pr examined, 〈u〉+ < 〈θ〉+, the mean production of 〈θ ′θ ′〉s is
larger than that of 〈u′u′〉s. Accordingly, since 〈θ〉+ increases with Pr, the mean production Pm

θ also
increases with Pr as does the form-induced production P f i

θ .
An examination of the (spatially) local contributions to the form-induced production highlights

several interesting features. First, as expected and noted by other researchers, the scalar distribution
(but not the velocity) shows the presence of a diffusive sublayer; however, the separation behind the
taller roughness elements affects the convective scalar transfer, so that in recirculation regions the
scalar gradients are reduced. The spatial distribution of form-induced production is generally similar
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for scalar and velocity fluctuations. Diffusion, however, plays an important role in the form-induced
production: while the velocity gradient is negligible behind the larger roughness elements, the scalar
gradient remains significant because of the thin diffusive sublayer formed around the roughness
elements themselves. This effect increases the form-induced production, resulting in larger scalar
variance, compared to the streamwise Reynolds stress.

The breakdown of the Reynolds analogy has long been attributed to the difference between
the more advective character of momentum, compared with scalar transport, in which diffusion
plays a larger role. The form-induced production is a manifestation of this role. In the scalar
transport, the diffusive sublayer results in significant scalar gradients on lower roughness elements,
which are in the shadow of larger ones. The velocity gradients, however, remain small because
of the recirculation behind the tall elements. These larger gradients result in larger form-induced
production and, consequently, in larger scalar variance.

Our observations on the different effects the roughness geometry has on the scalar and velocity
fluctuations highlight the role of the geometry in the generation of fluctuations of the scalar,
and may have some significance for developers of turbulence models. The only parameter that
characterizes the roughness geometry in turbulence models is the equivalent sandgrain roughness,
k+

s , which is related to the roughness function. While this relation, for the momentum transport,
is well established, and several experimental correlations are available, for the scalar roughness
function the situation is quite different. The results of Refs. [36,37], as well as our own, show
significant scatter of the data and Prandtl-number dependency. The lack of a universal expression is
particularly important because our work indicates that the mechanisms governing the production of
scalar fluctuations are significantly different than those governing the production of TKE, and that
the effect of the geometry (which causes the form-induced production) is much more significant.
Thus, the definition of a “scalar equivalent sandgrain roughness” appears desirable. Additional
geometrical parameters may also be needed to model the effects of the roughness shape.

The present work examined a single roughness height and type, considered a moderate Reynolds
number and Prandtl numbers of order one. It would be interesting to determine how the Prandtl
number affects the scalar transport mechanisms. The effective slope of the surface could also affect
the scalar transport, as the sheltering would probably be less significant for surfaces in the wavy
regime than for those in the rough regime. Thus, different topographical features of the roughness
could play a role. In addition, the specific behaviors of the form-induced production terms could
suggest improved models. These topics will be the subject of future studies.
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APPENDIX A: GRID REFINEMENT

A grid-refinement study was conducted to determine whether the mesh used is sufficient to
resolve the momentum and scalar transport, particularly for the case of Pr = 1.4, in which a wider
range of scales is present for the scalar than for momentum. This study was conducted for the
smooth-wall case, in which diffusive effects are more significant. For rough, wall-bounded flows
the eddy size is determined by roughness geometry rather than by diffusive phenomena. Thus,
restrictions on near-wall resolution (smallest scales) are determined by the roughness scale and, for
high Re case, are less strict than for smooth-wall cases. A resolution of 	x = 	z � k/7 is sufficient
to resolve the momentum [45] in the roughness region and, since the geometry is independent of Pr,
should also suffice for the scalars. Note that the elements themselves (i.e., the ellipsoid semi-axes)
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FIG. 14. Grid refinement study: (a) Mean scalar 〈θ〉s and streamwise velocity 〈u〉s; (b) Scalar variance
〈θ ′θ ′〉s and streamwise flux 〈θ ′u′

i〉s. Markers: coarse mesh; lines: fine mesh. Colors: Blue Pr = 0.71; Red
Pr = 1.0; Green Pr = 1.41.

are larger than the roughness length scale k, so that one roughness element is actually resolved by
more than 7 points in each direction.

We performed calculations on a coarser mesh using 720 × 320 × 360 cells, 1.4 times coarser,
in the homogeneous directions, than the mesh used throughout the study (which had 1024 × 320 ×
512 cells). Figure 14 shows a comparison of the statistics obtained. The mean scalar and velocity
compare very well: the difference between fine- and coarse-mesh results (normalized by the fine-
grid value) is less than 3%. Making the reasonable assumption that the error has the same sign for
smooth and rough walls (for instance, the log-law intercept is overestimated in both cases) would
result in an uncertainty of 2% for 	U + and 3.2%, 4.2%, and 4.5% for 	+ with Pr = 0.71, 1.0,

and 1.41, respectively. In Fig. 3, the symbols used are larger than the error bars would be. If the
errors were in opposite directions, then the uncertainty would be twice as large but still acceptable,
and only slightly larger than the symbols.

The scalar variance 〈θ ′θ ′〉s and streamwise turbulent flux 〈θ ′u′〉s are also in good agreement, the
main difference being a small shift of their peaks, probably due to the larger size of the eddies in
the coarse-mesh calculation.

APPENDIX B: REYNOLDS STRESS AND FLUX BUDGETS

The budget of the double-averaged Reynolds stresses can be written as

0 = Ti j + Ai j + Di j + Pi j + �i j − εi j, (B1)

where the terms on the RHS are the turbulent transport, wake transport, viscous diffusion, pro-
duction, pressure work (or velocity-pressure-gradient), and the dissipation, respectively. They are
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FIG. 15. Budgets of (a) 〈u′u′〉s and (b) 〈θ ′θ ′〉s for Pr = 1.0. Lines: smooth wall; Markers: rough wall.
Budget terms in (a) and (b) are normalized by u4

τ /ν, and u2
τ θ

2
τ /ν, respectively. The vertical line marks the

roughness crest.

defined by
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′
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∂
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∂xk
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. (B2)

In a similar fashion, the budget of the scalar variance can be written as

0 = Tθ + Aθ + Dθ + Pθ + Qθ − εθ , (B3)

where the terms on the RHS are the turbulent transport, wake transport, viscous diffusion, produc-
tion, scalar source contribution, and the dissipation, respectively, and are defined by

Tθ = −
〈

∂

∂xk
(θ ′θ ′u′

k )

〉
s

, Aθ = −
〈

∂

∂xk
(θ̃ ′θ ′̃uk )

〉
s

, Dθ = α〈∇2(θ ′θ ′)〉s,

Qθ = 〈θ ′Q′〉s = qw

ρcpδUb
〈θ ′u′〉s, εθ = 2α

〈
∂θ ′

∂xi

∂θ ′

∂x j

〉
s

. (B4)

The source term contribution Qθ is the interaction of the fluctuating part of the scalar source term
Q′ with the fluctuating scalar θ ′. The terms in Eq. (B2) and Eq. (B4) can be further simplified using
commutation rules presented in Ref. [46].

Figure 8 in Sec. III E presented only the significant terms in the 〈u′u′〉s and 〈θ ′θ ′〉s budgets.
Figure 15 includes all the budget terms over a smaller portion of the domain for improved visibility.
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