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Modeling the pressure-Hessian tensor using deep neural networks
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The understanding of the dynamics of the velocity gradients in turbulent flows is crit-
ical to understanding various nonlinear turbulent processes. Several simplified dynamical
equations have been proposed earlier that model the Lagrangian velocity gradient evolution
equation. A robust model for the velocity gradient evolution equation can ultimately
lead to the closure of the system of equations in the Lagrangian probability distribution
function method. The pressure Hessian and the viscous Laplacian are the two important
processes that govern the Lagrangian evolution of the velocity gradients. These processes
are nonlocal in nature and unclosed from a mathematical point of view. The recent fluid
deformation closure model (RFDM) has been shown to retrieve excellent statistics of
the viscous process. However, the pressure Hessian modeled by the RFDM has various
physical limitations. In this work, we first demonstrate such limitations of the RFDM.
Subsequently, we employ a tensor basis neural network (TBNN) to model the pressure
Hessian using the information about the velocity gradient tensor itself. Our neural network
is trained on high-resolution data obtained from direct numerical simulation (DNS) of
isotropic turbulence at the Reynolds number of 433. The predictions made by the TBNN
are evaluated against several other DNS datasets. Evaluation is made in terms of the
alignment statistics of the pressure-Hessian eigenvectors with the strain-rate eigenvectors.
Our analysis of the predicted solution leads to the finding of ten unique coefficients of the
tensor basis of the strain-rate and the rotation-rate tensors, the linear combination of which
is used to accurately capture key alignment statistics of the pressure-Hessian tensor.
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I. INTRODUCTION

In a turbulent flow, various processes such as energy cascade, intermittency, and fluid element
deformation are strongly related to the small scale velocity gradient field. Various experimental,
direct numerical simulation, and simple dynamical models based studies have been performed
to understand the dynamics of the velocity gradient tensor (Ashurst et al. [1], Vieillefosse [2],
Cantwell [3], Martín et al. [4], Lüthi et al. [5], Kalelkar [6]). In continuation to these works, several
other studies have been reported as well [1,7–26]. These studies are not just fundamental in nature,
but also provide viable modeling approaches to model the processes governing the evolution of
velocity gradients in turbulent flows.

Over the years, there have been various attempts to develop a simple ordinary differential
equation (ODE) based closed set of dynamical equations which can provide a robust model for
the Lagrangian evolution of velocity gradients [4,18,27–30]. Such models are not just intended to
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develop a better understanding of velocity gradient dynamics, but also serve as a set of closure
equations for Lagrangian PDF methods [31] for solving turbulent flows, which provides a com-
putationally tractable way of calculating the statistics of turbulent flows of practical interest. The
basic thrust of the models is to model the pressure-Hessian tensor and the viscous-Laplacian tensor,
which are the two important nonlinear processes governing the evolution of the velocity gradient
tensor. Although, in an Eulerian description of the flow field, the pressure field in an incompressible
flow can be directly derived from the velocity field, in the Lagrangian description, the pressure field
cannot be directly derived from the velocity field. This makes both the pressure-Hessian as well
as the viscous-Laplacian unclosed processes in the Lagrangian evolution equation of the velocity
gradient tensor.

Vieillefosse [2] made the first attempt to provide a simple ODE based model, named restricted
Euler equation (REE), for the Lagrangian evolution of velocity gradients. The REE model has
matured over the years due to subsequent attempts made by various researchers [4,18,27–30]. The
recent fluid deformation closure model (RFDM) developed by Chevillard et al. [29] is currently
the most advanced model for the Lagrangian velocity gradient dynamical equation. Although the
RFD model robustly captures various statistics of the viscous process, it has various inherent
limitations in predicting the pressure-Hessian tensor (discussed in Sec. III). These limitations arise
due to an endeavour to model the pressure Hessian using velocity gradients alone, which ultimately
contributes to an independent closed set of ODEs intended to model the velocity gradient dynamical
equation. Such an attempt to model the pressure-Hessian tensor, which is expected to be dependent
on a wide range of flow quantities, using simple algebraic functions over velocity gradients is a
key bottleneck to the existing RFD model. Hence, in this work, we focus on finding more complex
functions which can lead to a more sophisticated model for the pressure Hessian without changing
the existing modeling paradigm of using instantaneous velocity gradient information for modeling.
For this, we resort to a machine learning based approach using deep neural networks to learn
a sophisticated functional mapping between pressure Hessian and velocity gradients using direct
numerical simulation (DNS) data of incompressible isotropic turbulence.

In the recent past, machine learning has gained popularity in the turbulence research community.
The earliest such contribution in the field of machine learning aided turbulence research was made
by Duraisamy and Durbin [32], where the authors developed an intermittency transport based
model for bypass transition using machine learning and inverse modeling. Since then, a large
number of researchers have tried to model various turbulence processes using machine learning
models [33–39]. Ling et al. [40] employed a deep neural network to directly model the Reynolds
stress anisotropy tensor using strain-rate and rotation-rate tensors. In doing so, they developed a
novel tensor basis neural network (TBNN), which can be employed to map a given tensor from
known input tensors. The TBNN has been shown to achieve superior performance by embedding
tensor invariance properties in the network itself. Later Fang et al. [41] used the TBNN for turbulent
channel flow and compared their results against standard turbulence models. Sotgiu et al. [42]
developed a new framework in conjunction with TBNN for predicting turbulent heat fluxes. Further,
Geneva and Zabaras [43] developed a Bayesian tensor basis neural network for predicting the
Reynolds stress anisotropy tensor.

The TBNN developed by Ling et al. [40] has already been shown to map tensorial quantities
robustly and hence fits well for our problem of interest. In this work, we use high-resolution
incompressible isotropic turbulence data from John Hopkins University turbulence database,
JHTD [44–46] to train a neural network model inspired by TBNN. Further, we show that appropriate
normalization of the input data and a few apt modifications in the network can lead to significant
improvements in the alignment characteristics of the predicted output. The predictions made by the
TBNN are compared against three different datasets that were not used for training the network: (i)
incompressible isotropic turbulence at Taylor Reynolds number of 433, JHTD [44,45]; (ii) incom-
pressible isotropic turbulence at Taylor Reynolds number of 315 (UP Madrid database [47]) [48];
and (iii) nearly incompressible decaying isotropic turbulence at Taylor Reynolds number of 67.4.
Further evaluation of the neural network output helps us retrieve ten unique coefficients of the tensor
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basis of the strain-rate and the rotation-rate tensors, the linear combination of which can be used to
predict the pressure-Hessian tensor robustly.

This paper is organized into six sections. In Sec. II, we present the governing equations. In
Sec. III, we explain the limitations of the RFD model. In Sec. IV, we present the details of the tensor
basis neural network architecture employed for this study. The analysis of the predicted solution
from the TBNN is also presented in Sec. IV. Further, in Sec. V, we explain the modifications
introduced in the TBNN network and compare its results against the RFD model. Section VI
concludes the paper with a brief summary.

II. GOVERNING EQUATIONS

The governing equations of an incompressible flow field are the continuity and the momentum
equations:

∂Vk

∂xk
= 0, (1)

∂Vi

∂t
+ Vk

∂Vi

∂xk
= − 1

ρ

∂ p

∂xi
+ μ

ρ

∂2Vi

∂xk∂xk
, (2)

where Vi and xi represent the velocity and position, respectively, and μ represents the viscosity
coefficient. Density and pressure are represented by ρ and p, respectively. The velocity gradient
tensor is defined as

Ai j ≡ ∂Vi

∂x j
. (3)

Taking the gradient of momentum equation (2), the exact evolution equation of Ai j can be derived:

ρ
DAi j

Dt
= −ρAikAk j − ∂2 p

∂xi∂x j︸ ︷︷ ︸
Pi j

+μ
∂2Ai j

∂xk∂xk︸ ︷︷ ︸
ϒi j

, (4)

where P and ϒ represent the pressure Hessian and the viscous Laplacian governing the evolution
of the velocity gradient tensor. The rate of change of Ai j following a fluid particle is represented
using the substantial derivative: D/Dt (≡∂/∂t + Vk∂/∂xk ).

III. EVALUATION OF THE RFD MODEL

The state of the art model for the pressure-Hessian tensor in the context of incompressible flows
is the RFDM developed by Chevillard et al. [29]. The RFD pressure Hessian (PRFD) is expressed
as

PRFD = − {A2}{
C−1

τk

}C−1
τk

, (5)

where C is the right Cauchy Green tensor modeled as Cτk = eτkAeτkAT
, τk is the Kolmogorov time

scale, and the symbol {·} represents the trace of the tensor. The pressure Hessian predicted by the
RFD model has some inherent inconsistencies as compared to the actual pressure Hessian obtained
from DNS. These limitations are listed below:

(1) PRFD is always positive definite or negative definite: It is evident that Cτk is a positive-definite
matrix as it is a product of a real matrix (eτkA) and its transpose. Since the inverse of a positive-
definite matrix is also positive definite, C−1

τk
is always positive definite and PRFD is guaranteed

to be either positive definite or negative definite, depending on the sign of − {A2}
{C−1

τk
} . Therefore, the

eigenvalues of PRFD are either all negative or all positive. This behavior of PRFD is nonphysical

114604-3



PARASHAR, SRINIVASAN, AND SINHA

FIG. 1. Alignment of PRFD eigenvectors (pi) with S eigenvectors (si). Here, i (=α, β, or γ ) denotes the
three eigenvectors corresponding to the three eigenvalues α � β � γ .

since the governing equations do not impose any such restriction on P . The pressure-Hessian
tensor is real symmetric by nature, and hence typically, it has at least one positive and one negative
eigenvalue most of the time.

(2) In strain-dominated regions, the eigenvectors of PRFD coincide with the strain-rate eigenvec-
tors: As discussed above, PRFD is always either negative definite or positive definite. Further, it is
evident that if A is close to being symmetric (strain dominant, A ≈ S), the eigenvectors of PRFD will
be approximately parallel or perpendicular to the eigenvectors of S itself. Hence, in strain-dominated
regions PRFD is expected to show biased alignment towards the strain-rate eigenvectors which
is nonphysical. In order to verify this claim, we show the alignment of the eigenvectors of P
and PRFD with strain-rate eigenvectors in Fig. 1. In Figs. 1(a)–1(c) we show the PDF of the
alignment of eigenvectors of PRFD with strain-rate eigenvectors. Further, in Figs. 1(d)–1(f) we
show alignment of P eigenvectors with S eigenvectors for comparison. It can be observed that
for a large percentage of particles, PRFD eigenvectors are either parallel or perpendicular to the S
eigenvectors [Figs. 1(a)–1(c)]. On the other hand, the eigenvectors of P obtained from DNS show
no such alignment tendencies as shown by PRFD eigenvectors.

IV. NEURAL NETWORKS BASED MODELING

It is evident from the discussion in the previous section that the functional relationship between
the pressure-Hessian and local velocity gradient tensor, if any, is far too complex to be addressed by
simple algebraic models. In general, the evolution of pressure Hessian of individual fluid elements is
expected to be governed by higher derivatives of velocity and pressure. Nevertheless, in this work,
we intend to explore the maximum potential of local velocity gradients to describe the pressure
Hessian accurately. For this purpose, we employ deep neural networks. Given, a sufficiently large
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FIG. 2. Schematic of the feedforward densely connected neural network. W (i) and b(i) are the learnable
parameters called weight matrix and the bias vector of the ith layer, respectively. φ is a nonlinear activation
function.

network and training data, neural networks can potentially find some functional relationship (if
any) existing between the quantities of interest. With this motivation, we resort to neural networks
to provide a better mapping between the pressure-Hessian and the velocity-gradient tensors. In
Sec. IV A, we provide a brief overview of artificial neural networks. In Sec. IV B, we provide a
brief overview of the tensor basis neural network [40]. Further, in Sec. IV C, we present the details
of the training procedure for the TBNN model. Finally, in Sec. IV D, we test the performance of the
trained model.

A. Artificial neural networks

In this work, we employ a feedforward densely connected artificial neural network (ANN). In
such an ANN, there are various layers, each layer consisting of a number of nodes. All the nodes of a
particular layer of an ANN are connected to the nodes of the adjacent layers in a densely connected
ANN. In Fig. 2, we show a basic representation of a simple densely connected feedforward ANN.
In this illustration, X is the input layer, Z is a hidden layer, and Y is the output layer. In a deep ANN,
there can be a large number of hidden layers. However, in Fig. 2, we have only shown one hidden
layer (Z) for simplicity. Each connection in an ANN is associated with a weight. These weights are
represented in the form of a matrix (W i) containing weights of all connection from the ith layer to
the (i + 1)th layer. Further, there is also a bias vector associated with these connections.

The node values of the (i + 1)th layer are calculated as a linear combination of the output of the
ith layer and the corresponding weights followed by a nonlinear activation function φ:

Zi+1 = φ(WiZi + bi ). (6)

For the output layer, no activation function is used. The objective function (J) of the network (also
called the loss function) estimates the difference between the output of the network and the ground
truth. Mean square error is a common choice of the loss function:

J = 1

2m

i=m∑
i=1

(
Yi − Y true

i

)2
, (7)

where m is the number of training examples used to train the neural network.
The weight matrices and the bias vectors form the learnable parameters (parameters to be

optimized) of the neural network. The loss function (J) is minimized using any appropriate gradient
descent based optimizer [49]. As an outcome of this optimization process, the most optimal values
of the weights and the biases are discovered by the network. This process is termed as the training
phase of the neural network. The trained network’s performance is validated on a separate held-out
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dataset other than the one used for training. There are standard ways to improve the performance of
the network, in case of any underfitting or overfitting issues. The reader is referred to Goodfellow
et al. [49] for further details on feedforward densely connected ANNs.

In this work, as starting baselines, we experimented with a simple dense, fully connected
network (FCN) with different hyperparameters and activation functions. We also experimented
with different ways to represent the input and the output tensors by expressing them locally in
the principal coordinate system of strain rate. In these simple baselines, we observed overfitting
issues even with using standard regularization techniques. Further, in these baselines, we find that
the correct alignment statistics are not recovered between the predicted pressure-Hessian and the
known velocity gradient tensor. To overcome these issues, we resorted to a more sophisticated neural
network architecture called the tensor basis neural network [40], which is known to be robust for
mapping tensors.

B. Tensor basis neural network architecture

In this work, we employ the TBNN developed by Ling et al. [40]. The architecture design of this
network is inspired by the work of [50], where the author derived the ten trace-free integrity basis
(T i) and five independent invariants (λi) of the strain-rate (S) and the rotation-rate (R) tensors for
incompressible flows. These tensor bases and invariants are listed below:

T 1 = S, T 2 = SR − RS, T 3 = S2 − 1
3 I{S2}, T 4 = R2 − 1

3 I{R2},
T 5 = RS2 − S2R, T 6 = R2S + SR2− 2

3 I{SR2}, T 7 = RSR2− R2SR, T 8 = SRS2 − S2RS,

T 9 = R2S2 + S2R2 − 2
3 I{S2R2}, T 10 = RS2R2 − R2S2R; (8)

λ1 = {S2}, λ2 = {R2}, λ3 = {S3}, λ4 = {R2S}, λ5 = {R2S2}. (9)

The symbol {·} represents the trace of the tensor. A linear combination of these ten tensor bases (T i)
can represent any trace-free tensor that is directly derived from S and R.

In Fig. 3, we present a schematic of the TBNN network. The TBNN increases the representation
power of the neural network by embedding knowledge of tensor basis (T i) and invariants (λi) in the
network itself. The TBNN network takes advantage of the Caley-Hamilton theorem, which states
that any function derived from a given tensor alone can be expressed as a linear combination of the
integrity basis [51] of the given tensors. The predictions made by the TBNN network are basically
a linear combination of the integrity basis (T i) of the input tensors. Hence, the TBNN network
explores the full spectrum of all the mappings that any input tensor can offer, by enforcing the
output of the network to be a linear combination of its integrity basis. Further, the TBNN network
has embedded rotational invariance, which ensures that the predictions made by the TBNN network
are independent of the orientation of the coordinate system. If the input tensors are expressed in a
rotated-coordinate system, the predicted output will also get rotated accordingly. Hence, the TBNN
network predicts the same output tensor irrespective of the orientation of the coordinate system.

For incompressible flows, we can obtain the exact expression for the trace of the pressure Hessian
from Eq. (4) (Poisson’s equation):

{P} = −ρAikAki. (10)

Since the trace of the pressure Hessian can be directly derived from the velocity gradient informa-
tion, we do not need to model it. Now, the ten trace-free integrity bases (Ti) can be readily used to
model the trace-free (anisotropic) part of the pressure Hessian using the TBNN. We use the symbol
Pt f to denote the anisotropic part of P . To find the relevant mapping between velocity gradient
tensor and Pt f the ten coefficients (Ci) corresponding to the ten integrity bases (T i) need to be
modeled. The five invariants (λi) of S and R form the primary input of the TBNN. The output of the
last layer of the network yields the ten coefficients Ci. A secondary input containing the ten tensor
basis T i (called tensor layer) is fed to the last layer of the network. Finally, a dot product between
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FIG. 3. Schematic of the TBNN network. W (i) and b(i) are the weight matrix and the bias vector of the ith
layer. Rectified linear unit (RELU) nonlinear activation function is used. Both W (i) and b(i) are the learnable
parameters of the neural network, which are optimized using the RMSprop optimizer [54].

the coefficient layer and the tensor layer of the network makes the final output of the network, which
can be expressed as

PTBNN
t f =

10∑
i=1

CiT i. (11)

The cost function of the network can be expressed as

J = 1

2m

m∑
j=1

[∥∥(
PTBNN

t f − Pt f
)

j

∥∥
F

]2
, (12)

where m is the number of training examples required to train the TBNN and the symbol ‖ · ‖F
represents the Frobenius norm.

C. Training of the neural network

The details of the turbulence datasets employed in this study are mentioned in Table I. The
employed tensor basis neural network (TBNN) model is trained using data from an isotropic
incompressible flow field at the Reynolds number of 433 (dataset A, Table I). This data is taken
from the John Hopkins University’s Turbulence database [44,45] available online [46]. The open
source library Keras [52] with TensorFlow backend is used for training the TBNN model. The
velocity gradient tensor and pressure-Hessian information are extracted from the database at a
particular time instant. The velocity gradient tensor is nondimensionalized with the mean value
of the Frobenius norm of the whole sample of 262,144 data points. No further normalization was
used for the derived tensor basis (T i) and invariants (λi). A total number of 262 144 unique data
points are extracted from the flow field. Out of these 262 144 data points, 236 544 points are used
for training the network, while the remaining 25 600 data points are reserved for the cross-validation
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TABLE I. Parameters of isotropic turbulence datasets. [Symbols: (i) Reλ: Taylor Reynolds number; (ii)
Mt : turbulent Mach number; (iii) τk : Kolmogorov timescale; (iv) η: Kolmogorov length scale; (v) ν: dynamic
viscosity; (vi) λ: Taylor microscale; (vii) ε: dissipation rate; (viii) P0: mean pressure; and (ix) K : turbulent
kinetic energy.]

Case Dataset type Reλ τk η ν λ ε P K

A Training/Testing 433 0.0446 0.00287 0.000185 0.118 0.0928 0 0.695
B Testing 67.4 0.0113 0.00077 0.1655 0.182 2.801×105 8.801×104 5.597×103

C Testing 315 0.0041 0.0247 0.00066 0.1415 0.10947 0 3.2933

of the predicted solution. The training data is distributed at random into 924 minibatches of 256 data
points each at the beginning of every epoch. One epoch is one complete pass through the training
dataset overall minibatches. Hence, one epoch accounts for 924 iterations of the training cycle.

A deep network with 11 hidden layers and a combination of 50, 150, 150, 150, 150, 300,

300, 150, 150, 150, 100 in the consecutive hidden layers was found to yield the best performance
of all the combinations that were tested. We use the Glorot normal initialization [53] for weight
matrices and RELU (rectified linear unit) nonlinear activation function for the hidden layers. The
RMSprop optimizer [54], with a learning rate of 1.0×10−6 was used to train the network. The
training was stopped when the value of cost function J became stagnant. The minimum value of
the training cost and the cross-validation cost recorded while training was 4.1×10−4 and 5.4×10−4,
respectively. In Fig. 4, we show the training and cross-validation cost as a function of a number
of training epochs. The cross-validation cost did not show any significant rise during the training
process. A low dropout rate of 10% was used to facilitate ensemble learning in the network. There
was no gain in model performance with a further increase in data size and network depth.

D. Testing of the trained network

The primary testing of the trained TBNN model was performed on a separate testing dataset
(other than training and validation data) of isotropic turbulence (extracted from dataset A, Table I).
The relative Frobenius-norm error of the pressure Hessian obtained from the trained model on the

FIG. 4. Decay of cost function during training for TBNN. Minibatch size = 256; 1 epoch = 924 iterations
of the optimizer.
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FIG. 5. Alignment of PT BNN eigenvectors (pi) with S eigenvectors (si). Here, i (=α, β, or γ ) denotes the
three eigenvectors corresponding to the three eigenvalues α > β > γ (dataset A, Table I).

testing dataset was found to be 0.6491. On the same dataset, an error of 0.7764 was obtained by
the RFDM model. Hence, in terms of elementwise mean squared error comparison, the accuracy of
the trained TBNN model is comparable to the existing RFDM model. However, just the elementwise
comparison is not a wise comparison metric for comparing tensorial quantities. We have earlier
(in Fig. 1) seen that the RFD model fails to capture the alignment statistics with the strain-rate
tensor. In Fig. 5, we present the alignment of the pressure-Hessian eigenvectors predicted by the
TBNN [Figs. 5(a)–5(c)] with the strain-rate eigenvectors compared against that obtained from DNS
[Figs. 5(d)–5(f)]. We observe that although the alignment statistics [Figs. 5(a)–5(c)] have improved
as compared to the RFD model results [Figs. 1(a)–1(c)], the obtained statistics are still far off from
that obtained from DNS.

V. MODIFIED NEURAL NETWORK ARCHITECTURE

We have observed that TBNN is unable to capture the alignment statistics of the pressure-Hessian
tensor. It implies that assuming the pressure Hessian to lie on the tensor basis of the strain-rate and
the rotation-rate tensors is not an appropriate modeling assumption. Constraining the network to
obey the tensor invariance properties restricts us to using only global normalization of the input
tensors. However, the velocity gradients in a turbulent flow field are known to be highly intermittent.
Hence, global normalization of the input tensors might not be an effective strategy. The learning of
important feature mappings by a neural network relies heavily on effective normalization strategies.
At this juncture, we performed several experiments on the TBNN by choosing various normalization
strategies which allow TBNN to deviate from its tensor invariance characteristics. We found out
through trial and error that normalizing the tensor basis such that all its elements are scaled between
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FIG. 6. Decay of cost function during training for the modified TBNN. Minibatch size = 256; 1 epoch =
924 iterations of the optimizer.

[0, 1], yields tremendous improvement in network output. Two matrices F(i) and G(i) are used to
scale the tensor basis:

F (i)
pq = max

(
T (i)

pq

)
, (13)

G(i)
pq = min

(
T (i)

pq

)
. (14)

Using F(i) and G(i) the tensor basis can be appropriately scaled using the following relationship:

T (i)′ = (T (i) − G(i) ) � (F (i) − G(i) ), (15)

where symbol � represents the Hadamard division between the two tensors. With this normaliza-
tion, the network loses most of the properties of the original TBNN. However, it leads to significant
improvements in alignment statistics of the predicted output.

We employ the modified network with the same settings (viz., the number of hidden layers,
neurons per layer, activation function, learning rate, etc.) as used with the original TBNN network.
In Fig. 6, we show the learning curve obtained while training the modified TBNN. We use an early
stopping criterion while training the network, at the point when the validation-loss curve becomes
almost flat (no further decline with increasing epochs).

A. Testing modified TBNN for isotropic turbulence flow

In Fig. 7 we show the alignment statistics obtained on the testing dataset A (Table I) with the
modified TBNN. This data, although extracted from the same database (case A, Table I) used for
training, consists of separate data points other than those used for training. We observe that modified
TBNN predictions [Figs. 7(a)–7(c)] demonstrate excellent alignment statistics as compared to that
obtained from DNS [Figs. 7(d)–7(f)]. Although this testing dataset is extracted at different grid
locations other than the training dataset, it still has the same Reynolds number as the training dataset
(433). To make a better judgment of the generalization of the learned pressure-Hessian mapping, we
scrutinize the performance of the trained model for the isotropic turbulence dataset at two different
Reynolds numbers of 67.4 (dataset B, Table I) and 315 (dataset C, Table I).

The testing dataset B is extracted from our own decaying isotropic compressible turbulence
simulation [25,55]. Although this data is from a compressible simulation, the turbulent Mach
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FIG. 7. Alignment of PT BNN eigenvectors (pi) obtained from modified TBNN with S eigenvectors (si).
Here, i (=α, β, or γ ) denotes the three eigenvectors corresponding to the three eigenvalues α � β � γ (dataset
A, Table I).

number is quite low (Mt = 0.4) for any significant compressibility effect to be observed. Further,
this data is extracted at a reference time of t = 2.7t0, where t0 is the eddy turnover time. Since it is
a decaying turbulent flow, the Reynolds number of the flow has decayed to a value of 67.4 and the
turbulent Mach number to a further lower value of 0.3 at this time instant of t = 2.7t0. In Fig. 8, we
plot the alignment statistics obtained from the learned modified TBNN model for testing dataset B.
We find that statistics obtained from modified TBNN show good agreement with that obtained from
the DNS dataset (Fig. 8).

The testing dataset C (Table I) is extracted from the UP Madrid turbulence dataset of incom-
pressible isotropic turbulence simulation at the Reynolds number of 315 [48]. In Fig. 9 we plot the
alignment statistics obtained from the learned modified TBNN model for testing dataset C. Since
this database does not provide pressure information, we are unable to provide the exact pressure
Hessian alignment statistics for this dataset. However, it can be observed from both Fig. 7 and
Fig. 8 as well as from the alignment statistics reported by previous works of Kalelkar [6] that the
statistics of the alignment of pressure-Hessian and strain-rate eigenvectors are fairly independent of
the Reynolds number. We can expect the alignment statistics obtained from DNS dataset C (Fig. 9)
to reflect the general trend as observed for other isotropic turbulence datasets as well. Hence, we can
conclude that the trained modified TBNN has learned key physical features that can be generalized
for an isotropic turbulent flow independent of its Reynolds number.

B. Predicted coefficients by the modified network

In Fig. 10, we show the scatter plot of the coefficients predicted by the modified TBNN. We
observe that each of these ten coefficients (C(i)) have negligible variance. The overall distribution
can effectively be replaced by the mean value of the distribution of each of the coefficients. Further,
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FIG. 8. Alignment of PT BNN eigenvectors (pi) obtained from modified TBNN with S eigenvectors (si).
Here, i (=α, β, or γ ) denotes the three eigenvectors corresponding to the three eigenvalues α > β > γ .
(Decaying isotropic turbulence testing dataset B, Table I, initial Reynolds number 250, and turbulent Mach
number of 0.4.) Note that the field is extracted at t = 2.7t0, where t0 is the eddy turnover time. At this instant,
the Reynolds number of the flow has decayed to the value of 67.4 and the turbulent Mach number is 0.3.

we find that by using the mean value of the coefficients, we retrieve the same statistics as obtained
by passing the velocity gradient information through the modified TBNN.

With this revelation, it is no longer required to use the trained network for pressure-Hessian
estimation. Rather, we can just use a very simple process for pressure-Hessian prediction:

FIG. 9. Alignment of PT BNN eigenvectors (pi) obtained from modified TBNN with S eigenvectors (si).
Here, i (=α, β, or γ ) denotes the three eigenvectors corresponding to the three eigenvalues α � β � γ (dataset
C, Table I).
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FIG. 10. Scatter plot of the ten coefficients predicted by the modified TBNN.

(1) Nondimensionalize the velocity gradient tensor, using the mean value of the Frobenius norm
of the whole sample.

(2) Calculate the ten tensor bases and five independent invariants of strain-rate and rotation-rate
tensors using Eqs. (8) and (9).

(3) Normalize the tensor basis using the scaling matrices used for the trained network (details in
the Appendix).

(4) Take a linear combination of the tensor basis using the mean value of the coefficients obtained
from the trained network. This would yield the modeled normalized pressure Hessian (refer to the
Appendix).

(5) Scale the predicted pressure Hessian back to its original dimensional form, using the same
scaling matrices that were used while training the network.

FIG. 11. Alignment of PT BNN eigenvectors (pi) obtained using mean value of coefficients (using the
methodology shown in the Appendix) with S eigenvectors (si) for testing dataset B (Table I). Here, i (=α, β,
or γ ) denotes the three eigenvectors corresponding to the three eigenvalues α � β � γ . More details in the
caption of Fig. 8.
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FIG. 12. PDF of eigenvalues of pressure-Hessian tensor (a) α eigenvalue, (b) β eigenvalue, and
(c) γ eigenvalue. The eigenvalues are normalized by the respective standard deviation (σ ).

(6) Enforce the predicted solution to have the desired trace (since the trace of P is the same as
the trace of −A2). The complete details of the step-by-step process for calculation of the modeled
pressure-Hessian tensor are presented in the Appendix. For illustration, we show the statistics
obtained by using the mean value of the coefficients using the approach shown in the Appendix
for dataset B (Table I) in Fig. 11. Excellent agreement with the statistics obtained directly using the
modified TBNN (Fig. 8) is observed.

At this juncture, we also test the performance of our method (Appendix) in predicting the PDF of
pressure-Hessian eigenvalues. These statistics have been reported in the previous notable works of
Kalelkar [6] and Danish et al. [56] on the pressure-Hessian tensor. In Fig. 12, we show the PDF of
eigenvalues (α > β > γ ) of the pressure Hessian predicted from our model against the DNS dataset
(dataset A, Table I) and the RFDM model.

In Fig. 12(a), we show the PDF of the α eigenvalue. It can be seen thay the PDF obtained from
our model is in good agreement with the DNS result and performs better than the RFDM model.
Similarly, in Fig. 12(b), we observe that the PDF of β eigenvalues obtained from our model is in
excellent agreement with the DNS result. In Fig. 12(c), although both RFDM and our model try to
capture the shape of the PDF on both the negative and the positive side of the plane, RFDM performs
slightly better than our model. However, overall we see that our model exhibits good performance
while capturing the PDF of pressure-Hessian eigenvalues.

VI. CONCLUSIONS

In this work, we develop and evaluate a machine learning model for the pressure-Hessian tensor
in isotropic incompressible turbulence using velocity gradient information. This model for the
pressure-Hessian tensor can be used to develop a closure model for the Lagrangian velocity gradient
evolution equation, which in turn can lead to the closure of the set of equations in the Lagrangian
PDF method for solving turbulent flows. To achieve a functional mapping between pressure-Hessian
and velocity gradient tensors, we employ a TBNN architecture [40]. This neural network is trained
on high-resolution isotropic turbulence data at a Reynolds number of 433. With the help of TBNN,
the pressure-Hessian tensor is modeled in terms of the trace-free and symmetric tensor basis of the
strain-rate and the rotation-rate tensors.

The performance of the machine learning based model is evaluated against direct numeri-
cal simulation data for incompressible turbulence. We find that the accuracy (relative L2-norm
error) of the predicted pressure Hessian by TBNN is comparable to that obtained from the
RFD model. However, only a marginal improvement in the alignment statistics in the TBNN
prediction is obtained as compared to the RFD model. We report that by scaling the tensor
basis of strain-rate and rotation-rate tensors such that each element of the basis lies between
[0, 1], the predicted output of the neural network yields excellent alignment statistics with the
strain-rate tensor for isotropic turbulent flows at different Reynolds number. With this finding,
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we come to the conclusion that there does exist a relevant physical mapping between pressure-
Hessian and velocity gradients which force their eigenvectors to align appropriately with each
other. This mapping is found to be fairly independent of the Reynolds number for isotropic
turbulence.

Finally, we find that the distribution of the coefficients of the tensor basis obtained from the
neural network has a negligible variance. In the light of this finding, we have been able to identify
ten unique coefficients of the tensor basis, the linear combination over which can be used to model
the pressure-Hessian tensor directly. The pressure Hessian predicted by the proposed method shows
good alignment statistics with the strain-rate eigenvectors. Finally, we test our model in its ability
to predict the PDF of the pressure-Hessian eigenvalues. We find that our model indeed shows good
agreement with DNS results.
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APPENDIX

We present a step-by-step process for the modeled pressure-Hessian calculation based on mean
values of the coefficients derived from the modified TBNN.

(1) Nondimensionalize the strain-rate and rotation-rate tensors:

ε = 〈√Ai jAi j〉,

where 〈·〉 represents the mean over the whole sample.

S = A + AT

2ε
, R = A − AT

2ε
.

(2) Find the ten tensor basis and the five independent invariants:

T 1 = S, T 2 = SR − RS, T 3 = S2 − 1
3 I{S2}, T 4 = R2 − 1

3 I{R2},
T 5 = RS2 − S2R, T 6 = R2S + SR2 − 2

3 I{SR2},
T 7 = RSR2 − R2SR, T 8 = SRS2 − S2RS,

T 9 = R2S2 + S2R2 − 2
3 I{S2R2}, T 10 = RS2R2 − R2S2R;

λ1 = {S2}, λ2 = {R2}, λ3 = {S3}, λ4 = {R2S}, λ5 = {R2S2}.

(3) Normalize the tensor basis (T (i)):

T (i)′ = (T (i) − G(i) ) � (F (i) − G(i) ),
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where symbol � represents the Hadamard division between the two tensors. F (i) and G(i) represent
the matrices used to scale the tensor basis T (i):

G(1) =
⎡
⎣−3.5709 −3.0858 −2.7680

−3.0858 −3.0346 −3.0692
−2.7680 −3.0692 −4.2937

⎤
⎦, F (1) =

⎡
⎣2.7021 3.2914 2.3884

3.2914 3.3876 2.8077
2.3884 2.8077 2.8905

⎤
⎦,

G(2) =
⎡
⎣−25.6104 −31.8796 −21.5908

−31.8796 −30.5056 −22.2121
−21.5908 −22.2121 −28.0164

⎤
⎦, F (2) =

⎡
⎣32.0154 35.4956 20.6083

35.4956 29.8806 30.5352
20.6083 30.5352 31.7193

⎤
⎦,

G(3) =
⎡
⎣ −9.2866 −6.4438 −10.5787

−6.4438 −6.4369 −5.4972
−10.5787 −5.4972 −8.4430

⎤
⎦, F (3) =

⎡
⎣8.2153 7.9086 7.8492

7.9086 6.0971 5.9908
7.8492 5.9908 9.3168

⎤
⎦,

G(4) =
⎡
⎣−14.8512 −15.3252 −13.8140

−15.3252 −11.2078 −11.7173
−13.8140 −11.7173 −13.0263

⎤
⎦, F (4) =

⎡
⎣16.6632 9.6823 12.9011

9.6823 27.8775 15.5748
12.9011 15.5748 23.0473

⎤
⎦,

G(5) =
⎡
⎣−54.1672 −26.9697 −23.7045

−26.9697 −43.5902 −36.9865
−23.7045 −36.9865 −30.1412

⎤
⎦, F (5) =

⎡
⎣27.5052 57.6332 33.7410

57.6332 53.5055 38.4958
33.7410 38.4958 55.2717

⎤
⎦,

G(6) =
⎡
⎣−119.1511 −78.0652 −112.3875

−78.0652 −186.4133 −80.4339
−112.3875 −80.4339 −116.5743

⎤
⎦, F (6) =

⎡
⎣195.0304 143.0951 108.0702

143.0951 92.4415 169.8799
108.0702 169.8799 135.2173

⎤
⎦,

G(7) =
⎡
⎣ −737.6056 −1038.4397 −640.3922

−1038.4397 −963.7453 −551.0073
−640.3922 −551.0073 −537.7603

⎤
⎦, F (7) =

⎡
⎣780.8498 970.6533 540.2198

970.6533 808.6133 523.5790
540.2198 523.5790 924.0598

⎤
⎦,

G(8) =
⎡
⎣−496.1792 −376.4132 −245.1099

−376.4132 −341.9391 −345.2818
−245.1099 −345.2818 −405.4714

⎤
⎦, F (8) =

⎡
⎣390.7658 778.0012 298.8682

778.0012 658.3773 509.5283
298.8682 509.5283 444.1750

⎤
⎦,

G(9) =
⎡
⎣−526.6148 −345.7790 −276.1035

−345.7790 −188.0288 −293.5551
−276.1035 −293.5551 −339.0242

⎤
⎦, F (9) =

⎡
⎣381.9239 194.5271 578.1185

194.5271 197.7692 170.3597
578.1185 170.3597 598.0897

⎤
⎦,

G(10) =
⎡
⎣−595.3592 −1679.5692 −922.0738
−1679.5692 −1466.6689 −674.1032
−922.0738 −674.1032 −1079.9475

⎤
⎦, F (10) =

⎡
⎣1335.8832 1173.0048 438.1600

1173.0047 1126.0351 671.8583
438.1600 671.8582 662.4745

⎤
⎦.

(4) Take a linear combination of tensor basis using mean coefficient values:

PTBNN′ =
10∑

i=1

CiT i′ ,

where Ci are the mean coefficient values predicted by the modified TBNN:

C(1) = −0.0023, C(2) = +0.2460, C(3) = −0.1049, C(4) = −0.0400, C(5) = −0.0007,

C(6) = +0.5098, C(7) = −0.6009, C(8) = +0.8583, C(9) = +0.3299, C(10) = −0.0764.

(5) Scale the predicted pressure Hessian back to its dimensional form:

PTBNN′ = [PTBNN′ ◦ (Fp − Gp) + Gp]ε2,
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where the symbol ◦ represents the Hadamard product of two matrices and Gp and Fp are the scaling
matrices:

Gp =
⎡
⎣−26.9693 −13.2321 −12.5971

−13.2321 −26.0595 −17.4419
−12.5971 −17.4419 −24.2304

⎤
⎦, F p =

⎡
⎣19.1816 23.7427 17.5106

23.7427 27.9531 25.3751
17.5106 25.3751 20.1042

⎤
⎦.

(6) Trace correction step:

PTBNN = PTBNN′ − {PTBNN′} I
3 + {−A2} I

3 ,

where I is the identity matrix and {·} represents the trace of the matrix.
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