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Study of the energy convergence of the Karhunen-Loeve decomposition
applied to the large-eddy simulation of a high-Reynolds-number

pressure-driven boundary layer
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We study the energy convergence of the Karhunen-Loève decomposition of the turbulent
velocity field in a high-Reynolds-number pressure-driven boundary layer as a function of
the number of modes. An energy-optimal Karhunen-Loève (KL) decomposition is obtained
from wall-modeled large-eddy simulations at “infinite” Reynolds number. By explicitly
using Fourier modes for the horizontal homogeneous directions, we are able to construct a
basis of full rank, and we demonstrate that our results have reached statistical convergence.
The KL dimension, corresponding to the number of modes per unit volume required to
capture 90% of the total turbulent kinetic energy, is found to be 2.4 × 105 |�|/H3 (with
|�| the domain volume and H the boundary layer height). This is significantly higher than
current estimates, which are mostly based on the method of snapshots. In our analysis, we
carefully correct for the effect of subgrid scales on these estimates.
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I. INTRODUCTION

Low-dimensional models describing the dynamics of the atmospheric boundary layer (ABL)
have important applications, e.g., ranging from dispersion of pollutants, to predicting the power
output of a wind turbine, to controlling the turbulence in wind farms for enhanced power production.
An assessment of the required dimensionality of a reduced order system can be made by studying
the system dynamics, typically done via the Kaplan-Yorke (KY) definition of the dimension of the
attractor, which is based on the Lyapunov exponents of the dynamical system [1]. This becomes in-
creasingly difficult for large-scale systems. Alternatively, the Karhunen-Loève (KL) decomposition
[also known as proper orthogonal decomposition (POD), empirical orthogonal functions (EOF), or
principal component analysis (PCA)] can be used, which generates modes that are well known to
be energy optimal in the sense that of all possible mode sets, they capture, on average, the most
energy [2]. The KL modes are often used to identify structures in turbulent flows and employed as
a basis for a reduced order system. An assessment of the number of modes required is the so-called
KL dimension, introduced to the fluid dynamics community by Sirovich [3]. This is defined as “the
number of actual eigenfunctions required so that the captured energy is at least 90% of the total (as
measured by the energy norm) and that no neglected mode, on average, contains more than 1% of the
energy contained in the principal eigenfunction mode.” This dimension has previously been found
to be of the same order of magnitude as the KY dimension [4]. The dimensionality of turbulent
flows is typically significantly lower than the amount of degrees of freedom (DOF), ∼∫

�
η−3 dx,

with η the local Kolmogorov scale and � the domain, due to the prevalence of larger-scale structures
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containing the majority of the energy. Moreover, at asymptotically high Reynolds numbers, such as
encountered in the ABL, we expect a finite KL dimension that becomes independent of the Reynolds
number. In the current work, we use large-eddy simulations (LES) of a high-Reynolds-number
pressure-driven boundary layer (PDBL) to study the energy convergence of this type of flows. We
show that the KL dimension is up to three orders of magnitude higher than what is commonly
reported in the literature.

The KL modes φi (i = 1, . . . , 3) are found as the eigenfunctions of the two-point covariance
tensor [5],

〈Ri j (x, x̆)φ j (x̆)〉x̆ = λφi(x), (1)

with Ri j (x, x̆) = 〈u′
i(x, t )u′

j (x̆, t )〉t the two-point covariance tensor, u′
i(x, t ) = ui − 〈ui〉t the velocity

fluctuations around the local mean, and 〈·〉t the averaging operator over time t , and used similarly
for other variables. Further, λ are the eigenvalues, which represent twice the space-time-averaged
turbulent kinetic energy (TKE) captured by the eigenfunction, i.e., λ = 〈〈u′

iφi〉2
x〉t/〈φ jφ j〉x. The

eigenvalues are numbered and ordered in decreasing order, λk � λk+1. The averaged TKE captured
by the largest n eigenvalues Kn is given by [5]

Kn = 1

2

n∑
k=1

λk. (2)

For convenience, we introduce the unresolved energy fraction,

En = 1 − Kn

K
, (3)

where K = K∞ = 1
2 〈u′

iu
′
i〉x,t is the total average TKE. Based on this, the KL dimension DKL is

expressed mathematically as

DKL = arg min
n

n, subject to En � 0.1 and λn+1 � 0.01λ1. (4)

Note that the final constraint is typically not active due to the high-dimensional nature of turbulent
flows. The KL dimension is case dependent and is a function of the dimensionless groups obtained
from main flow parameters, such as friction velocity, boundary-layer (BL) height, viscosity, surface
roughness, and the domain shape.

After discretization, the two-point covariance tensor R has 3N × 3N elements, where N is the
amount of grid points. For a typical high-Reynolds-number turbulent boundary-layer simulation,
N is of the order of 107–1010 points, such that directly solving the eigenvalue problem (1) is too
big to handle with current computational resources. A popular strategy for transforming this into a
tractable problem is the so-called method of snapshots [6], where the spatial eigenvalue problem is
transformed into an eigenvalue problem in time. This is obtained by multiplying (1) by u′

i(x, t̆ ) and
averaging over x, and leads to [6]

〈ρ(t̆, t ) ψ (t )〉t = λψ (t̆ ), (5)

where ρ(t, t̆ ) = 〈u′
i(x, t )u′

i(x, t̆ )〉x is the spatially averaged time covariance between two fields, and
ψ (t ) = 〈φi(x)u′

i(x, t )〉x is the projection of the velocity field fluctuations on the POD mode φi(x).
A similar relationship can be found for transforming the time modes ψ (t ) to the spatial modes,
φi(x) = 〈ψ (t )u′

i(x, t )〉t/λ. After discretization, (5) becomes an eigenvalue problem of size Ns, with
Ns the amount of samples, typically of the order of 103–104. This strategy is applicable to general
flow geometries, but the rank is thereby capped by the number of samples, and the eigenvalue
spectrum has been shown to converge very slowly for large-scale problems [7].

An alternative approach is available if the problem exhibits homogeneous directions, which is
often the case for canonical flow cases studied in turbulence. In the case of a PDBL, both horizontal
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TABLE I. Comparison of different 3D KL studies. DKL is the total Karhunen-Loève dimension; dKL is the
same but normalized by the simulation volume (expressed in units of boundary-layer height H ). CH: channel
flow; ABL: atmospheric boundary layer, including Coriolis forces and/or stability effects; PDBL: pressure-
driven boundary layer; F: Fourier; SC: space correlation; TC: time correlation.

Case Reτ DKL L1/H L2/H L3/H dKL [H−3] Method Reference

DNS-CH 80 380 1.6π 1.6π 2 15.40 F-SC Ball et al. [8]
DNS-CH 110 13452a 5π 2π 2 68.16 F-SC Iwamoto et al. [11]
DNS-CH 125 4186 5 5 2 83.72 F-SC Sirovich et al. [10]
DNS-CH 136 658 π 0.3π 2 111.12 F-SC Webber et al. [9]
DNS-CH 180 18920a 9 4.5 2 233.6 F-SC Housiadas et al. [12]
DNS-CH 300 36520a 2.5π π 2 740.04 F-SC Iwamoto et al. [11]

LES-ABL ∞ 30 30 1 F-SC Keith Wilson [28]
LES-ABL ∞ 8 8 1 F-SC Esau [27]
LES-ABL ∞ 103 2π π 1 50.66 TC Ali et al. [18]

LES-PDBL ∞ 2π 2π 1 F-SC Huang et al. [26]
LES-PDBL ∞ 4 × 103 π π 1 405 TC VerHulst and Meneveau [17]
LES-PDBL ∞ 3 × 103 4π 2π 1 38 TC Zhang and Stevens [19]
LES-PDBL ∞ 9.8 × 106 42 12 1 240000 F-SC Current manuscript

aThe reported values did not take into account the degeneracy of the modes to calculate the dimensionality,
therefore the reported dimension was multiplied by 4 to obtain an approximation.

directions are homogeneous. In this case, the two-point covariance tensor can be rewritten as

Ri j (x, x̆) → Ri j (x1 − x̆1, x2 − x̆2, x3, x̆3). (6)

It is easily shown that the POD modes correspond to Fourier modes in these directions, i.e.,
φi(x) = exp[i(k1x1 + k2x2)]φ̂(k)

i (x̆3), where k = [k1, k2] is the horizontal wave vector and φ̂
(k)
i (x3)

is the horizontally Fourier transformed POD mode. The large-scale eigenvalue problem can then be
replaced by a smaller-scale eigenvalue problem per wave number (see, e.g., [5]),〈

R̂i j (k, x3, x̆3)φ̂(k)
i (x̆3)

〉
x̆3

= λkφ̂
(k)
j (x3), (7)

with R̂i j (k, x3, x̆3) = 〈̂̃u′∗
i (k, x3 )̂̃u′

j (k, x̆3)〉t . After discretization, this leads to a problem of size 3N3

per wave number, where N3 is the amount of grid cells in the vertical direction. This results in a set
of eigenvalues λk,m, with m = 1, . . . , 3N3 per wave number. The contributions of the different wave
numbers can then be brought together again to obtain a complete basis, and ordering the eigenvalues
regardless of the originating wave number from largest to smallest.

The KL dimension has already been determined for canonical flow cases at low Reynolds and/or
Rayleigh numbers. An overview of studies is given in Table I, including reported KL dimensions,
etc. The KL dimension for a turbulent channel flow has been determined in Ref. [8], while in Ref. [9]
a minimum flow unit was studied and compared to a larger test case, identifying a linear increase
in the KL dimension with dimension, in correspondence with the KL dimension being an extensive
property. References [10,11], on the other hand, found a strong increase in dimensionality with
the Reynolds number, while Ref. [12] considered the influence of viscoelasticity. Other flow cases
considered are Couette flow [13], Rayleigh-Bénard convection [4,14], turbulent pipe flow [15], and
a turbulent boundary layer [16].

POD studies considering the high-Reynolds atmospheric boundary layer, simulated using LES,
are numerous. A nonexhaustive overview of case setups and reported KL dimensions is also
provided in Table I. Three-dimensional POD of the ABL using the snapshot POD approach is
performed in Refs. [17–19]. A comparison of POD in two-dimensional (2D) planes significantly
reducing the dimensions, but losing part of the 3D structures, is performed in Refs. [20–25]. In
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TABLE II. Summary of the simulation grid setup and simulation parameters.

Domain size L1 × L2 × L3 42H × 12H × H
Grid size N1 × N2 × N3 2800 × 800 × 200
Cell size 
1 × 
2 × 
3 0.015H × 0.015H × 0.005H
Roughness length z0/H 2 × 10−7

Ref. [26], both 1D and 3D POD computations were performed, where homogeneity assumptions are
used for the latter. For the 1D case, the convergence of LES and direct numerical simulation (DNS)
is compared. A slower convergence of the eigenvalues was found for LES, which was attributed
to the Reynolds number (as was demonstrated in Ref. [11]). Other studies only considered a few
dominant modes [27,28]. Note that studies [17–19] considered the impact of wind turbines in an
atmospheric boundary layer, such that the Fourier approach is no longer applicable, and only discrete
translational symmetry can be used in periodic directions to extend the snapshot base. In addition
to LES studies, experimental wind tunnel studies considering 2D POD modes using the spectral
approach [29] and using the method of snapshots [30] are also found. For reference, the simulation
case considered in the current manuscript is also shown in Table I, with a KL dimension that is
significantly larger than other reported high-Reynolds-number boundary layers. In the remainder
of the manuscript, this case and the determination of the resulting KL dimension are carefully
documented.

In the current work, we consider LES of a rough-wall pressure-driven turbulent boundary as a
substitute for a neutral atmospheric boundary layer. This approach has often been used for LES
studies of the neutral ABL [31–37], and is known to represent statistics in the logarithmic layer
very well. Simulations are based on wall-modeled LES, using a wall-stress model, and direct effects
of viscosity are neglected, so that all dissipation is handled by the subgrid-scale model, effectively
approaching the limit of an “infinite” Reynolds number. Analytical expressions for the modes in the
horizontal homogeneous directions are used, such that a complete KL basis and the corresponding
eigenvalues can be determined. We focus on the eigenvalue spectrum and, more precisely, on the
convergence. The structure of the associated dominant modes is already extensively reported in the
ABL studies summarized above and is not repeated in the current study. We further identify the KL
dimension, i.e., the number of modes required to represent 90% of the energy.

The paper continues by giving a brief overview of our case setup, LES model, discretization, and
the sampling specifications. Subsequently, the results are presented, considering both the statistical
convergence of the results and aspects of dimensionality. Finally, the conclusions are summarized.

II. CASE STUDY AND SIMULATION METHODOLOGY

In this case study, we consider a pressure-driven boundary layer, a summary of the simulation
parameters is given in Table II, and a snapshot of the flow field is given in Fig. 1. We consider a
relatively large domain of 42H × 12H × H to avoid spurious influence of the periodic boundary
conditions on the two-point velocity covariance tensor, which is known to extend up to 10H for
the streamwise velocity component [38,39]. The surface roughness length z0 is chosen such that
for a BL height of H = 1000 m, we get a value of 2 × 10−4 m, which is, e.g., typical for offshore
conditions. The code used for this study has been extensively documented in past studies; see, e.g.,
Ref. [40,41] for further details. In the horizontal directions, we use periodic boundary conditions;
in the vertical directions, we use impermeability in combination with a wall-stress model [42] at the
bottom wall and zero stress at the top. As a subgrid-scale model, we use a classical Smagorinsky
model [43], combined with wall damping close to the wall [44]. ABLs occur at very high Reynolds
number, such that the effect of the kinematic viscosity on the resolved flow can be neglected. In
this way, our flow becomes Reynolds-number independent and can be interpreted as the asymptotic
behavior at infinitely or very high Reynolds number [45]. The horizontal directions use a Fourier
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FIG. 1. A x1–x3 section at x2 = L2/2 (top) and a x1–x2 section at x3 = 0.1H (bottom) of an instantaneous
streamwise velocity field.

spectral discretization, de-aliased using the 3/2 rule (see, e.g., [46]). For the vertical direction, we
employ a fourth-order energy-conservative scheme [47]. For the time integration, we use an explicit
fourth-order Runge-Kutta method combined with a 0.4 Courant-Friedrichs-Lewy number limit on
the time step. In order to speed up the simulations, the equations are solved in a frame of reference
moving at approximately half the maximum flow speed, ∼9.5 H/u∗, in the streamwise direction,
allowing for a doubling of the stability time step.

The flow field is sampled every 3.16 × 10−3 H/u∗ and the reflection symmetry of the equations
in the spanwise directions is used to artificially double the sample size [48]. Note that for small wave
numbers, subsequent samples remain correlated such that the effective sample size will be smaller
and dependent on the considered wave numbers. A total of 8200 samples is generated, leading to an
averaging time of 12.9 H/u∗ time units.

III. RESULTS

In order to carefully establish the KL dimension of our current simulation setup, we first
investigate, in Sec. III A, the effect on the KL spectra of the number of snapshots in computing
the two-point covariance tensor, verifying sufficient convergence of the time average. Moreover,
a first estimate of the KL dimension is established. Subsequently, in Sec. III B, the resulting KL
spectra are further discussed, verifying their expected physical behavior. Finally, in Sec. III C, we
adapt the estimate of our KL dimension by taking into account the effect of the subgrid scales in
our LES.

A. Sampling time: Convergence of the results

Before discussing the convergence of the eigenvalues as a function of number of snapshots, we
first introduce a further definition. Since we are performing LES, we do not formally know the
total turbulent kinetic energy K since a fraction of the kinetic energy is in the subgrid scales (see
Sec. III C for further discussion). Therefore, we introduce the resolved TKE, K
 = 1

2 〈̃u′
iũ

′
i〉x,t , and,
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FIG. 2. (a) Convergence of the eigenvalues λn. (b) Residual energy E

n as a function of the index number

n. The lines are computed using different amounts of samples: (2, ), (8, ), (32, ), (128, ), (512, ),
(2048, ), (8192, ).

further, also

E

n = 1 − Kn

K


, (8)

which is the fraction of LES TKE resolved by the first n POD modes.
In Fig. 2, we show the KL spectra and E


n for different numbers of samples in the calculation of
the two-point covariance tensor. It is observed that starting from 2048 samples upward, the shape of
the different curves becomes almost independent of the amount of samples. The eigenvalue curves
show that the amount of nonzero eigenvalues grows linearly with the amount of samples. For higher
sample numbers, an abrupt change occurs at around 2/3 of the total amount of eigenvalues. This
results from the rank of the spectral correlation matrix, which is limited by the amount of samples,
Ns. The POD basis will span the whole solenoidal space provided Ns > 2N3, in which case the last
third of the eigenvalues is zero. This is a result from the fact that the two-point correlation tensor is
based on solenoidal vector fields.

The KL dimension is the amount of POD methods necessary to capture 90% of energy on average
and can be determined from the unresolved energy [see Fig. 2(b)]. The influence of the amount of
samples on the KL dimension is shown in Fig. 3. After an initial monotonous increase up to around
4000 samples (corresponding to a total averaging time of 6.3 H/u∗), D


KL reaches a steady state
value of 9.8 × 106. The superscript 
 is again added in the notation to indicate that results are
based on a filtered velocity field ũ in the LES, and do not account for possible subgrid energy

0 2000 4000 6000 8000
Ns

0.0

0.2

0.4

0.6

0.8

1.0

D
Δ K

L

×107

FIG. 3. KL dimension D

KL as a function of the amount of samples, Ns.
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FIG. 4. Solid blue line: (a) Eigenvalues λn/u2
∗ and (b) premultiplied eigenvalues nλn/u2

∗ as a function of
the index number n. Dashed black line: n−1 and n−11/9 scaling. The figure is suggestively subdivided into an
inactive range (I), a shear production range (II), and an inertial range (III).

(see Sec. III C for more discussion). The KL dimension is known to be an extensive property [9],
such that the dependence on the horizontal extent of the domain can be eliminated by dividing D


KL
by the nondimensional volume |�′| = |�|/H3, i.e., d


KL = D

KL/|�′|. Using the aforementioned

value of D

KL, we obtain d


KL = 1.9 × 10−4 or, equivalently, D

KL = 1.9 × 10−4|�′|. This is two

to three orders of magnitude bigger than the numbers found by previous studies using snapshot
POD of the ABL (see Table I). The difference can be explained by the slow convergence of the
method of snapshots for high-dimensional systems [7]. The substantial increase of KL dimension
with Reynolds number was already demonstrated in Ref. [11] for channel flows of Reτ = 180 and
Reτ = 300; also see Table I. In Ref. [26], a similar increase was found in the comparison of 1D
vertical POD between DNS and LES. Finally, we note that since the TKE is a large-scale property
of turbulence, we expect at high Reynolds numbers that the KL dimension becomes asymptotically
independent of the Reynolds number, and similarly of H/
 in LES (see, also, Sec. III C for a further
discussion of the estimation of this asymptotic KL dimension).

B. Eigenvalue spectrum

We now take a more in-depth look at the converged eigenvalue spectrum of the flow. Figure 4(a)
shows the eigenvalues as a function of the index number, which is a decreasing function due to
the ordering, and Fig. 4(b) shows the premultiplied spectrum, providing a graphical impression of
the energy distribution in a logarithmic-scale plot (i.e.,

∑
λn ≈ ∫

λ(n) dn = ∫
nλ(n) d ln(n), with

λ(n) the continuous extension of λn, e.g., by using linear interpolation). Similar to the classical
boundary-layer spectrum, three different regions seem to exist, also marked in the figure.

A first region contains the most energetic modes. Table III summarizes the wave numbers,
vertical model numbers m, and eigenvalues of the first 16 most energetic modes. They are all very
long in the streamwise direction and have vertical mode number 0. Note that despite carrying the
most energy per mode, they only have a modest contribution to the total energy because they are
relatively few in total numbers [see Fig. 4(b) for an appraisal of the distribution of energy over the
modes in a logarithmic-scale plot].

A second region shows a λ ∼ n−1 spectrum. Although this reminds one of the well-known k−1

scaling of the streamwise energy spectrum in turbulent boundary layers in the shear production
range [49], a formal connection has not been established to our knowledge. Finally, a third region
exhibits λ ∼ n−11/9 scaling. This corresponds to inertial-range scaling, as was demonstrated in
Ref. [50] and later proven more rigorously in Ref. [51].
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TABLE III. Summary of the properties of the most energetic modes φn. The wave numbers are normalized
by k∗

i = 2π/Li. The degeneracy denotes the multiplicity of the eigenvalues.

n k1/k∗
1 k2/k∗

2 m λn/u2
∗ Degeneracy

1–4 ±1 ±6 0 0.02745 4
5–6 0 ±6 0 0.02132 2
7–10 ±1 ±5 0 0.01190 4
11–12 0 ±4 0 0.01186 2
13–16 ±1 ±2 0 0.01074 4

C. Estimation of the effect of subgrid-scale energy

The slow decrease in the energy of the KL modes with increasing mode number (i.e., λ ∼ n−11/9

in the inertial range) suggests that the KL dimension may be sensitive to the fraction of unresolved
energy in the LES. In this section, we estimate this unresolved energy based on the power-law
scaling found in the inertial zone. Assuming that the LES filter cutoff is in the inertial range, it is
easily shown, by integrating a n−11/9 spectrum from n to ∞, that the residual kinetic energy K − Kn

scales as K − Kn ∼ n−2/9, such that the normalized residual En can be expressed as

En = 1 − Kn

K
= CKL

(
n

|�′|
)−2/9

, (9)

with CKL and K parameters that need to be further identified. Equation (9) is expected to hold far
enough from the wall where the filter falls in the inertial range, i.e., x3 
 
, but is not valid close
to the wall. The contribution of the near-wall region to the TKE is estimated in the Appendix to be
of the order of 1%, and is further neglected here.

We find the parameters CKL and K in Eq. (9) by a least-squares fit using the data of Kn from
Sec. III B, in the range n/|�′| from 103 to 105, resulting in CKL = 1.57 and K = 2.56 u2

∗. In Fig. 5,
we show the result of this fitting. We find from the asymptotic behavior of En to high n that still a
significant portion of the energy is unresolved in the LES, i.e., E
 ≈ 8.3%, where

E
 � 1 − K


K
= ENm . (10)

0.0 0.5 1.0 1.5 2.0
n/|Ω′| ×106
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0.3

0.4
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0.6

E n

(a)

100 102 104 106

n/|Ω′|

10−1

100

(b)

FIG. 5. Fraction of unresolved energy En as a function of the amount of modes normalized by the volume
n/|�′|. Solid blue line: POD data; dashed blue line: fitting the data to En ∝ (n/|�′|)−2/9.
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FIG. 6. Variance of the streamwise velocity component. : 〈̃u′
1ũ′

1〉; : a correction for the unresolved
energy 〈u′

1u′
1〉; : neutral ABL measurement data from Ref. [54]. The error bars indicate the 10% uncertainty

intervals on the friction velocity u∗.

This is higher than, e.g., reported in [45,52] at similar simulation resolutions and therefore we
further verify this number based on an alternative method.

We start by introducing the spectral energy tensor for isotropic turbulence,

�i j (k, x) = E (k, x3)

4πk2

(
δi j − kik j

k2

)
, (11)

where k = [k1, k2, k3] is the wave vector and k its magnitude. For the energy E (k, x3), the
height-dependent Kolmogorov energy spectrum E (k, x3) = CKε2/3k−5/3 is used, with CK ≈ 1.6 the
Kolmogorov constant and ε the local dissipation of turbulent kinetic energy. For the dissipation ε, we
use the usual hypothesis that local production equals dissipation such that ε ≈ κ−1u3

∗(1 − x3/H )/x3,
with κ ≈ 0.4 the von Kármán constant. An estimate of the unresolved kinetic energy K − K
 is
obtained by integrating the spectral energy tensor over the domain � and over the unresolved wave
numbers. The choice of the cutoff for the unresolved wave numbers is a bit arbitrary, and for conve-
nience we choose an isotropic equivalent cutoff wave number k
 = π/
, with 
 = (
1
2
3)1/3

the characteristic grid spacing. This leads to

K − K


u2∗
= 1

|�|u2∗

∫
�

∫
|k|�k


1

2
�ii(k, x) dkdx = 2π√

3
CK(κk
H )−2/3. (12)

Using k
 from our simulation, we find K − K
 = 0.237 u2
∗. Further using K
 = 2.29 u2

∗ from the
LES then leads to K = 2.52 u2

∗ and E
 = 9.3%, which is remarkably close to the values found by
the asymptotic behavior of the grid and the POD modes.

Finally, as a further validation, we compare in Fig. 6 the variance of the streamwise velocity
component in our simulations with experimental data. Here we compare with measurements at the
Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in the western salt
flats of Utah [53,54], using u∗ = 0.1884 m s−1, H = 60 m from Ref. [54]. It is observed that the
LES data are consistently lower than the measurement data. Corrected LES data for the unresolved
energy are also shown in the figure, based on

〈u′
1u′

1〉t − 〈̃u′
1ũ′

1〉t ≈
∫

|k|�k


�11(k, x) dk = CKε2/3k−2/3

 , (13)

and using the height-dependent dissipation estimate from above. These corrected LES data better fit
the experiments, but it should be noted that significant uncertainty exists on the measurement data,
related to the estimation of BL height and the friction velocity. Therefore, as suggested in Ref. [53],
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we have added uncertainty bars on the experimental data that correspond to an error of 10% on the
value of u∗.

In summary, we have found that the fraction of unresolved energy of the reference simulation
is estimated at E
 = 8.4%, and therefore the KL dimension d


KL obtained in Sec. III B is an
underestimation of the true value, dKL. A better estimate of the KL dimension is then obtained by
inverting Eq. (9), which leads to n/|�′| = (En/CKL)−9/2. This yields an expression for the number
of modes required to express a specified unresolved fraction of energy En. Using En = 0.1 gives a
KL dimension dKL = 2.41 × 105, which is more than a factor of 10 larger than the initial estimate
determined earlier in Sec. III A.

IV. CONCLUSIONS

We performed a Karhunen-Loève decomposition for a LES of a high-Reynolds-number pressure-
driven boundary layer. We conclude that to resolve 90% of the TKE on average—the so-called KL
dimension—2.4 × 105 |�|/H3 modes are needed, which is up to three orders of magnitude higher
than the values commonly reported in earlier studies. This indicates that more caution should be
exercised when considering the convergence of the POD basis in high-Reynolds-number boundary
layers such as the planetary boundary layer, and illustrates once more the challenges associated with
representing turbulence in a low-dimensional basis.

APPENDIX: ESTIMATION OF THE NEAR-WALL ENERGY

The unresolved energy close to the wall is estimated by making a rough estimate of the integral,

1

u2∗H

∫ 


0
〈u′

iu
′
i〉t dx3. (A1)

We proceed in two steps: first the energy below the logarithmic region is estimated (i.e., the
roughness sublayer), and second the contribution of the logarithmic region. The roughness sublayer
is very narrow compared to the BL height (z0/H  1), and although there is a peak of turbulent
kinetic energy, its total contribution is therefore negligible. Similar considerations hold for smooth
walls, for which, e.g., the peak of TKE scales with ∼u2

∗ ln Re for smooth walls (see, e.g., [55]) and
becomes lower with increasing wall roughness [56], while the width below the log region scales
with Re−1/2

τ H [54], such that the fraction of energy in this region scales at most with

1

H

∫ Re−1/2
τ H

0
ln Re dx3 = Re−1/2

τ ln Reτ , (A2)

which equals, e.g., 5 × 10−3 for Reτ = 107, a typical value in the atmospheric boundary layer. To
estimate the contribution of the unresolved energy in the logarithmic region, we employ Townsend’s
similarity hypothesis for the velocity fluctuation [57], i.e., 〈u′

iu
′
i〉t/u2

∗ = B − A ln(x3/H ), usually
expressed per velocity component, 〈u′2

i 〉/u2
∗ = Bi − Ai ln(x3/H ), with B = B1 + B2 + B3 and A =

A1 + A2. Integrating from 0 to 
 and normalizing by u2
∗H leads to an estimate of the energy in this

region,

1

H

∫ 


0
B − A ln(x3/H ) dx3 = 


H

[
A + B − B ln

(



H

)]
, (A3)

which is typically O(10−2) and, therefore, contributions to En are expected to be of similar magni-
tude and are therefore negligible.
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