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Deep learning for in situ data compression of large turbulent flow simulations
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As the size of turbulent flow simulations continues to grow, in situ data compression
is becoming increasingly important for visualization, analysis, and restart checkpointing.
For these applications, single-pass compression techniques with low computational and
communication overhead are crucial. In this paper we present a deep-learning approach
to in situ compression using an autoencoder architecture that is customized for three-
dimensional turbulent flows and is well suited for contemporary heterogeneous computing
resources. The autoencoder is compared against a recently introduced randomized single-
pass singular value decomposition (SVD) for three different canonical turbulent flows:
decaying homogeneous isotropic turbulence, a Taylor-Green vortex, and turbulent channel
flow. Our proposed fully convolutional autoencoder architecture compresses turbulent flow
snapshots by a factor of 64 with a single pass, allows for arbitrarily sized input fields, is
cheaper to compute than the randomized single-pass SVD for typical simulation sizes,
performs well on unseen flow configurations, and has been made publicly available. The
results reported here show that the autoencoder dramatically outperforms a randomized
single-pass SVD with similar compression ratio and yields comparable performance to
a higher-rank decomposition with an order of magnitude less compression in regard to
preserving a number of important statistical quantities such as turbulent kinetic energy,
enstrophy, and Reynolds stresses.
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I. INTRODUCTION

The ever increasing capabilities of high performance computing (HPC) systems have enabled
large computational fluid dynamics (CFD) simulations with unprecedented size and fidelity. Re-
cent advances in computing power, achieved through the use of heterogeneous architectures that
couple traditional processors with graphical processing units (GPUs), have led to new paradigms
in computational science. In particular, processing power is expected to outpace memory and
storage accessibility, leading to new communication bottlenecks due to bandwidth constraints,
memory-access times, and high latency for input/output operations. Furthermore, the analysis and
visualization of large data sets are becoming increasingly burdensome, and resiliency to faults grows
more challenging as the number of processing units increases.

Many recent reports have echoed these concerns [1–5], with a common thread being the
close coupling between future processing power and ability to efficiently store and analyze the
generated data. Data reduction has been identified as a fundamental cross-cutting challenge for
large centralized HPC facilities [1]. Rapid in situ data compression for restart checkpointing of
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simulations is also a key enabler for system resiliency as the mean time to failure is expected to
shrink as more processing units become involved in exascale systems [2]. A report [3] from the
U.S. Department of Energy (DOE) Advance Scientific Computing Research Office recognized that
analysis and visualization of petascale and exascale simulation results are a high-priority challenge
across all DOE Office of Science application areas and called out machine learning approaches to
data reduction as a promising path forward. A widening gap between the generation and storage
of exascale data has also been identified as a central issue for next-generation systems [6]. A focus
on application-specific compression techniques that leverage knowledge about the data has been
suggested to mitigate this obstacle.

Machine learning and deep-learning methods have recently become popular areas of research
[7,8]. While early work focuses on computer-human interactions such as image processing and
speech parsing, interest has grown in exploring the application of these data-driven techniques
to scientific research. Within the field of turbulence modeling, deep-learning methods have been
used to perform a wide array of tasks such as near-wall flow reconstruction [9], turbulent inflow
generation [10], and data superresolution [11,12]. In this paper we employ a deep convolutional
autoencoder [13] to perform in situ data compression of large CFD simulations. In particular, we
are interested in compressing and saving snapshots of data rapidly to enhance simulation resiliency
and enable in situ analysis. The proposed network architecture leverages the physical characteristics
of the flow problems considered to improve the overall compression and accuracy of the method.
Additionally, our deep-learning approach is well suited to making effective use of GPUs and also
provides alternative pathways to reduced-order modeling.

II. BACKGROUND

A. Checkpointing data for lossy restarts

Compression methods for scientific data have typically been focused on time-dependent data
[9,14–19], the goal being to compress and store data from an entire simulation efficiently. In these
scenarios, any single snapshot of the data is sufficiently small enough to work with in full. However,
this will not be the case as simulation sizes continue to grow. Compressing a single snapshot of
data differs from saving multiple time-dependent snapshots. Temporal data will typically exhibit a
relatively high degree of correlation from one snapshot to the next. This correlation can be leveraged
to obtain high compression ratios while incurring little error as a consistent reduced basis can be
used for all time steps. Such structure in the individual snapshots may not be present, complicating
the data compression problem.

The interest in compressing and saving single snapshots of data comes from the need to check-
point data during large simulations as well as to perform in situ analyses. Large-scale turbulent CFD
simulations require significant runtimes to obtain statistically converged solutions, even on next-
generation supercomputing clusters. During these long runtimes, computational nodes can fail or
queue limits may be exceeded. In situ checkpointing increases the resiliency of these simulations by
minimizing data loss. However, checkpointing a full snapshot of the data may consume significant
computational resources that would be better dedicated to progressing the simulation or may even
be impossible.

When a compressed checkpoint of the data must be reconstructed and used to restart a simulation,
we refer to this as a lossy restart. In this paper we compare traditional compression techniques to
deep-learning-based approaches in the context of these lossy restarts. The goals of an effective
compression algorithm for lossy restarts, for a given amount of compression, are to (i) minimize
error incurred by the compression and reconstruction process and (ii) ensure the error minimally
impacts the long-term trajectory of simulation. The second point is of particular importance for
the use cases of this algorithm in large CFD simulations. Such simulations are inherently chaotic so
that minor variations in initial conditions can result in significant differences in instantaneous values
after some time. However, the analysis of turbulent CFD data focuses more on statistical quantities
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and broad characteristics of the simulation. Thus, we favor compression algorithms that preserve
the overall trajectory of the simulation.

B. Data compression

Data compression attempts to reduce the overall memory burden of handling data. Compression
techniques can broadly be classified into four major categories [20]: (i) lossless, in which the data
are compressed in manner such that no errors are incurred in the reconstructed data (or the errors
are on the order of machine precision, in which case the compression is typically considered to
be nearly lossless); (ii) lossy, in which the data are compressed while incurring some controllable
level of error in the reconstructed results; (iii) mesh reduction, in which the data are mapped to a
coarser spatial or temporal mesh; and (iv) derived representation, in which the data are replaced
by an alternative representation (e.g., an image or video) that can be used to reconstruct results
that are similar the original data. While lossless compression methods, such as FPZIP [21] or ACE

[22], have clear advantages for scientific data, they can be memory intensive and have limited com-
pressive capabilities. Both of these issues make such techniques undesirable for large-simulation
checkpointing. We instead focus on lossy compression methods since they are able to significantly
reduce the data size while maintaining a reasonable level of accuracy.

A general lossy data compression method can be partitioned into two steps: the compression
mapping φ : X → Y and the reconstruction mapping ψ : Y → X , where X and Y represent the
full and compressed data spaces, respectively. Techniques for lossy compression strike a balance
between the degree of compression and the error incurred by the compression and reconstruction
process. The degree of compression for a given method is measured by the compression ratio (CR),
defined as

CR = uncompressed data size

compressed data size
, (1)

with larger values of CR corresponding to a higher degree of data compression. The incurred error
can be measured in a variety of ways. One common approach is to compute the mean square error
(MSE)

MSE(x, x̂) = 1

N

N∑
i=1

(xi − x̂i )
2, (2)

where x ∈ X denotes the original data field and x̂ = ψ (φ(x)) ∈ X is the compressed and recon-
structed data field. Note that, while we use MSE to train the autoencoder, we explore in Sec. IV
how a similar MSE for two different methods does not imply similar characteristics in terms of the
physical problem under investigation.

Lossy data compression methods cover a wide range of techniques. Truncation-based approaches
reduce the floating point precision of the data. This can be implemented naively by simply con-
verting double floating point precision to single. However, a more sophisticated approach used by
Gong et al. [23] performs a multiprecision truncation. This method partitions the original 8-byte
double-precision representation of each value into a leading 2-byte term that provides a coarse
representation of the original values and six trailing 1-byte terms. The trailing terms provide varying
levels of detail of the data and can be adaptively retained or discarded for enhanced precision or
compression, as needed.

Another class of lossy compression techniques is transformation-based methods, which encode
data into a given representation that can then be recovered. The representation typically organizes
the data according to some notion of importance, enabling lossy data compression by retaining
the important components and discarding the unimportant ones. For example, ZFP operates on
data blocks of size 4d (where d is the data dimension) and performs custom orthogonal block
transforms [24]. SZ encodes data using a predictive best-fit curve-fitting model to represent nearby
data points [25]. Wavelet transforms [26,27] and Karhunen-Loéve transforms [28] generate a basis
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FIG. 1. Singular value decomposition and its low-rank approximation.

expansion of the data and store the coefficients of the transform to enable data compression. Matrix
decomposition techniques are a type of transform-based compression algorithm that uncover and
exploit linear structures within the data [29]. In these approaches a given data matrix A ∈ Rm×n is
decomposed into several component matrices that capture distinct features of the original matrix.
The QR decomposition factors the matrix A = QR, where Q ∈ Rm×n has orthonormal columns and
R ∈ Rn×n is upper triangular. Although it can be used for data compression, the QR decomposition
is more often used for solving linear systems without needing to compute the inverse of a dense
matrix. Another matrix decomposition technique that can be used for data compression is the
interpolated decomposition (ID) [19]. The ID computes A = AX , where A ∈ Rm×r contains a subset
of the original columns of A and X ∈ Rr×n contains an r × r identity matrix in its leading columns.
Thus, this method provides a compressed representation of A by interpolating the original columns
of the matrix. The ID of a matrix can be computed using a column-pivoted QR decomposition.
The singular value decomposition (SVD) is perhaps the most fundamental matrix decomposition
technique and is a popular choice for lossy data compression. This work focuses on the SVD-based
data compression as recent developments in single-pass matrix sketching methods enable the
decomposition of large data matrices with minimal memory impact [30]. We cover the SVD and
its single-pass implementation for data compression in detail in Sec. II C.

C. Singular value decomposition

The SVD is a classic matrix decomposition technique that factors a given matrix into constituent
singular vectors and singular values. These components provide useful information about the matrix
such as its rank, column space, or null space, and pseudoinverse. An additional benefit of the SVD
is that it exists for all matrices and has many robust implementations. Because of all this, the SVD
forms the basis of many data-driven analyses such as the principal component analysis [31], proper
orthogonal decomposition [32], and active subspaces [33]. For this paper we use the SVD as the
baseline for comparison with the proposed deep-learning-based compression methods.

Assume that A ∈ Rm×n is a square or tall matrix, i.e., m � n. The SVD computes A = USV �,
where the orthonormal columns of U ∈ Rm×n and V ∈ Rn×n are referred to as the left and right
singular vectors of A, respectively. The diagonal matrix S ∈ Rn×n contains the non-negative singular
values of A, denoted by σi for i = 1, . . . , n. Without loss of generality, the singular values are
assumed to be in descending order, i.e., σ1 � σ2 � · · · � σn � 0. The singular values provide useful
insights into the behavior of A. For example, the number of nonzero singular values corresponds to
the rank of the matrix. Additionally, the relative magnitude of the singular values corresponds to
the importance of the associated left and right singular vectors. This provides a natural method for
producing low-rank reconstructions of the original matrix by truncating the SVD components after
the first r singular values and vectors (see Fig. 1). In fact, this is the optimal rank r approximation
of the matrix A with

‖A − Û ŜV̂
�‖2 � σr+1, (3)

where Û = U [:,1:r] and V̂ = V [:,1:r] denote the first r columns of U and V , and Ŝ = S[1:r,1:r] denotes
the r × r upper left submatrix of S. Thus, the singular values provide insight into the ability of A
to be approximated by a few singular values and vectors. If a sufficiently low rank approximation
is feasible, keeping the truncated singular values and vectors may require less storage than keeping
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Algorithm 1 Single-pass SVD

Given: A ∈ Rm×n, rank r, and oversampling factor s
1. Generate random matrices �c ∈ Rn×(r+s) and �r ∈ Rm×(r+s)

2. Compute Y c = A�c and Y r = A��r in a single pass through A
3. Compute the QR factorizations Y c = QcRc and Y r = QcRr

4. Solve ��
r QcB = Y �

r Qr for B ∈ R(r+s)×(r+s)

5. Compute the SVD B = USV �

6. Define Û = QcU [:,1:r], Ŝ = S[1:r,1:r], and V̂ = QrV [:,1:r]

Output: Û , Ŝ, and V̂ such that A ≈ Û ŜV̂
�

the full data matrix. In this case, the compression ratio is

CR = r(m + n + 1)

mn
. (4)

Computing the SVD of a large matrix can be very expensive. Traditional approaches to comput-
ing the SVD of a matrix are iterative in nature, requiring repeated access to A [34]. In this case, the
full matrix must either be held in memory or repeatedly accessed from the disk. For very large A,
such an approach may not be feasible. Recently, progress has been made on a variety of double- and
single-pass algorithms that can approximate the SVD of a large matrix while only needing to access
the matrix once or twice during the computation. This critical development has made the SVD a
plausible approach to data compression in extreme cases.

These double- and single-pass algorithms are motivated by a randomized matrix sketching
approach [30]. The idea is to approximate a basis for the column and row spaces of the A ∈ Rm×n

by left and right multiplying by random matrices. If we want to produce a rank r approximation
of A, then we can choose some oversampling factor s and draw random matrices (typically from a
standard multivariate Gaussian) �c ∈ Rn×(r+s) and �r ∈ Rm×(r+s). The column and row spaces of
A are approximated by the span of A�c and A��r , respectively. This matrix multiplication step can
be computed in a single pass through the matrix A. Having obtained these approximations, the SVD
can be computed in the reduced space. The specific algorithm used in this work is from Halko et al.
[35] and is reproduced in Algorithm 1 for completeness.

D. Deep learning and convolutional autoencoders

Deep learning has experienced a recent boom in popularity spurred on by growing amounts of
data and the need to process it efficiently. The term deep learning typically refers to data-driven
modeling techniques using some version of an artificial neural network (ANN) [8]. An ANN is a
function comprised of layers of interconnected nodes (or “neurons”). The nodes are defined by a
composition of a linear combination of the nodes from the previous layer with a nonlinear activation
function

xout = f (W �xin + b). (5)

A myriad of standard options exist for the activation function; the proposed network in this work
uses the parametric rectified linear unit (ReLU) activation function

f (z) =
{

z if z � 0

αz if z < 0, α ∈ (0, 1).
(6)

Traditional ReLU activations effectively set α = 0. Choosing α ∈ (0, 1) creates a small positive
slope in the negative regime of the domain and prevents nodes from “dying,” i.e., always outputting
zero regardless of the input with no mechanism to update the node since the gradient is also always
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zero [36]. Training an ANN refers to the iterative process of updating the weights W and biases b
throughout the network to minimize some loss function over a given training data set.

The “deep” in deep learning refers to networks that combine multiple layers of nodes to
increase the expressive capability of the network. It can be shown that deep neural networks are
universal function approximators [37,38]. That is, neural networks are capable of approximating any
continuous functions on a compact subset of Rm in the limit of infinite nodes. This work proposes
a specific network architecture known as a deep convolutional autoencoder to perform in situ data
compression. The remainder of this section reviews the basic concepts behind this deep-learning
architecture.

Spatially dependent data can be processed by a traditional ANN by simply vectorizing the data;
however, this can lead to the network overfitting to specific orientations, locations, and sizes of
features in the data. Convolutional neural networks address this issue by using convolutional kernels
or filters that scan the spatial dimensions of the data. This makes the networks more robust to
translations and rotations of features in the data. The convolutional kernel is comprised of the
trainable parameters (i.e., the weights and biases) that define the network. Convolutional neural
networks have been used for processing CFD data in various ways [39–41]. An additional benefit of
this convolutional structure is that it relies on a moving “field of vision” defined by the convolutional
kernel, making these layers agnostic to the size of the data. We exploit this feature in our proposed
network by implementing a fully convolutional architecture that allows the network to compress
data of any size [42]. In particular, we can train the network using smaller simulation data and
deploy it to compress much larger data sets.

Generally, deep-learning techniques are used in a supervised framework where the input data
have an associated output or label. In this scenario, the network attempts to model the relationship
between the various input and output quantities. An autoencoder is a specific network architecture
that attempts to learn meaningful structures within data in an unsupervised manner, i.e., without
labels. An autoencoder network contains two components: the encoder φ and the decoder ψ . The
encoder maps the input data from the physical space X to a latent space Y and the decoder attempts
to reconstruct the original data from its latent space representation

φ : X → Y, ψ : Y → X . (7)

The goal is to parametrize the autoencoder to minimize the reconstruction error

�φ,�ψ = argmin
�φ,�ψ

‖x − ψ (φ(x; �φ ); �ψ )‖2
2, (8)

where x ∈ X is the original data field and �φ and �ψ denote the trainable network parameters, i.e.,
the weights and biases, for the encoder and decoder, respectively. For convolutional autoencoders,
these parameters form the convolutional kernels that scan over the data field. Note that different
norms or error functions may be used in Eq. (8) depending on the problem at hand; the network
proposed in this work is trained to minimize the squared 2-norm.

Generative adversarial networks (GANs) represent another class of deep-learning techniques that
are commonly applied to turbulence data [43]. Generative adversarial networks employ two com-
peting neural networks, typically referred to as the generator and the discriminator. The generator
is seeded with a random vector and attempts to produce data that resembles some training data set.
The discriminator attempts to distinguish between real and generated data. When properly trained,
the generator will effectively sample from a high-dimensional probability distribution represented
by the training data. This technique have been used for the generation [10] and enhancement
[11,12] of turbulent flow data. While GANs may leverage some of the architectural features
used here (e.g., convolutional layers), the fundamental goals of the approaches differ. Generative
adversarial networks draw (or generate) physically consistent realizations of turbulent flow fields,
while autoencoders learn a compressed representation of the data through unsupervised training (for
the purpose of compressed simulation checkpointing in this particular work).
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FIG. 2. Architecture of the proposed deep convolutional autoencoder.

In the next section we examine the specifics of the network architecture, which determine
the details of the latent space Y . We can use the network for data compression by choosing an
architecture that ensures that dim(Y ) < dim(X ). In this case, the encoder φ corresponds to the
compression mapping and the decoder ψ corresponds to the reconstruction mapping. For the lossy
restarts discussed in Sec. II A, the data can be checkpointed by running them through the encoder to
obtain φ(x), which can be written to disk more cheaply than the full data field x. This compressed
checkpoint can then be loaded at the beginning of the restarted simulation and decoded ψ (φ(x))
prior to running the model.

III. METHODS AND DATA

A. Network architecture

In this work we use a deep fully convolutional autoencoder as described in the preceding section.
Figure 2 shows the proposed network architecture, which is modified from traditional autoencoder
architectures to incorporate some techniques from image processing [44] and to accommodate
three-dimensional vector-valued data. Our network and trained weights have been made publicly
available [45]. Both the network encoder and decoder can be partitioned into a compression and
decompression section and a residual processing section. Overall, the network is comprised of three
fundamental building blocks: convolutional transformations, parametric ReLU activation functions,
and skip connections. Skip connections define sections of the network referred to as residual blocks
[46]. At a skip connection, the current state of the data is copied and added back into the network
further down the line. The use of skip connections reduces the amount of information that the
intermediate processing layers must encode, enabling the effective training of deeper networks with
increased capacity to learn complex turbulent flow features [44,47,48]. In both the encoder and
decoder, we use 12 residual blocks to process the data before compression and after decompression,
respectively. We also encompass the smaller residual blocks with a long skip connection. The
parametric ReLU activation functions used throughout the network are given by Eq. (6) with
α = 0.2.

The final building blocks of the proposed network are the convolutional layers. The convolutional
layers, as described in the preceding section, use five-dimensional convolutional kernels. These
correspond to the three spatial dimensions in the data as well as the input and output channels of
each convolutional layer. These channels allow the network to separate out various features and
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improve the network’s ability to encode the data into the reduced latent space. The stride length of
the kernel controls the dimensions of the output. Through the residual blocks, a stride length of one
is used to maintain the size of the data. The three compression layers of the encoder uses a stride
length of two along each dimension to compress the data. The decompression layers in the decoder
use a variation of the traditional convolutional layer known as a transposed convolutional layer or
a deconvolutional layers. These layers are effectively a backward pass through a traditional convo-
lutional layer, making them useful for expanding the compressed data from the latent space back
into physical space. An alternative view of these transposed convolutional layers is as fractionally
strided convolutions. All of the convolutional and transposed convolutional layers use 5 × 5 × 5
convolutional kernels along the three spatial dimensions with the number of channels along the
fourth and fifth dimensions varying across the layers.

In the context of data compression, the proposed network has two important characteristics. First,
the network architecture is fully convolutional in that it does not contain any fully connected layers
(i.e., the layers that comprise traditional feedforward ANNs). This makes the network agnostic to
the size of the input data (provided it is three dimensional) so that the network can be trained on
smaller data fields. In production, the network can be used for compressing data fields of any size,
making it a broadly applicable tool for in situ compression. The second key feature of this network
is that it produces a fixed compression ratio regardless of the data size. This is in contrast to the
SVD from Sec. II C where the compression ratio is a function of the data size and the chosen
rank. The proposed autoencoder architecture has a fixed compression ratio of CR = 64, making the
compressed data approximately 1.5% of the original data size.

B. Training data

The training data for the network is comprised of snapshots of fluid velocities from incompress-
ible decaying isotropic flow simulations. We denote the fluid velocity field by

u =
[u

v

w

]
, (9)

with component velocities corresponding to the x, y, and z directions, respectively. The fluctuating
velocities are

u′ =
[u′

v′
w′

]
, (10)

with u = 〈u〉 + u′, where the 〈·〉 denotes the mean value.
To increase robustness of the network, randomly chosen values of the Taylor-scale Reynolds

number Reλ ∈ (65, 105) are used for the various simulations, where

Reλ = urmsλ

ν
, (11)

where urms = 〈u′2 + v′2 + w′2〉1/2 is the root mean square fluctuating velocity magnitude, λ =√
15ν(u′2 + v′2 + w′2)/ε is the Taylor microscale, ε is the dissipation rate, and ν is the kinematic

viscosity. The simulations are run on a 128 × 128 × 128 mesh using the spectralDNS package [49].
The simulations are nondimensionalized such that the physical quantities are unitless. Approxi-
mately 3000 snapshots are collected from the simulations to form the training data set.

The network is trained for 150 epochs with a minibatch size of ten samples using the Adam
optimizer [50] with gradients computed using backpropagation and a learning rate of η = 0.0001.
The network is trained against the MSE loss [see Eq. (2)] of the reconstructed data for the first 125
epochs. For the remainder of the training the loss function is a weighted combination of the MSE
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for the pointwise velocity and its derivatives,

L(x, x̂) = MSE(x, x̂) + λ

3∑
i=1

MSE

(
∂

∂xi
x,

∂

∂xi
x̂
)

, (12)

where MSE(·, ·) is given in Eq. (2) and λ = 0.1. This is referred to as dynamic or adaptive loss
training and has been shown to improve network performance by guiding the training process along
dominate gradient directions [51–53]. In this work the inclusion of gradients into the loss function
helps the network learn to generate sharper flow fields after it has been “pretrained” to minimize
the smoother pointwise MSE. The effective recovery of these velocity gradients help preserve the
trajectory of restarted simulations. The training process was performed on the GPU-accelerated
nodes on the Eagle system at the National Renewable Energy Laboratory, for which each node
has 2 Intel Skylake CPUs and 2 NVIDIA Volta V100 GPUs. The proposed convolutional encoder is
implemented using the TENSORFLOW GPU-supported software package [54] to significantly enhance
computational efficiency.

In the next section we explore the compression capabilities of the autoencoder network on three
canonical flow problems: (i) decaying isotropic-turbulence flow, (ii) decaying Taylor-Green vortex,
and (iii) pressure-driven channel flow. By testing the network on the latter two problems, we show
how well the network is able to extrapolate to unseen physical characteristics in the data. This is an
important aspect to understand for any deep-learning-based methodology, including the one studied
here. In production, the network will be expected to effectively compress and reconstruct data from
large-scale complex CFD simulations for a wide variety of problem scenarios. The details for the
various test problems are discussed in the next section.

IV. RESULTS

In this section we compare the performance of the proposed convolutional autoencoder to the
performance of the single-pass SVD in lossy restart studies. We evaluate the performance of the
compression processes by considering both the immediate reconstruction of the velocity fields as
well as the impact of the compression procedure on the continued flow simulation trajectory. As
noted in Sec. II A, this second consideration is of particular interest for lossy restarts of large CFD
simulations. Reconstruction quality is measured using traditional error metrics such as the MSE [see
Eq. (2)] and the mean absolute error (MAE)

MAE(x, y) = max
1�i�N

|xi − yi|. (13)

We also employ similarity metrics from the image processing community, namely, the peak signal-
to-noise ratio (PSNR) and the mean structural similarity index measure (MSSIM) [55]. The PSNR
is given by

PSNR(x, y) = 10 log10

(
max(x, y)2

MSE(x, y)

)
, (14)

where max(x, y) is the range of the values taken by the data. From Eq. (14), the PSNR is expressed
in terms of decibels with larger values indicating a higher degree of similarity between two fields.
The MSSIM is computed by averaging localized structural similarity index measures (SSIMs) from
smaller subregions of the domain. For this work we partitioned each computational domain into
8 × 8 × 8 pixel cubes to compute the localized SSIM. The SSIM is given by

SSIM(x, y) = �(x, y)c(x, y)s(x, y), (15)

where the luminance �, contrast c, and structure s are

�(x, y) = 2μxμy + c1

μ2
x + μ2

y + c1
, c(x, y) = 2σxσy + c2

σ 2
x + σ 2

y + c2
, s(x, y) = σxy + c3

σxσy + c3
, (16)
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with μx and σx denoting the mean and standard deviation of x, respectively (similarly for y), and
the σxy denoting the covariance of x and y. The constants are given by c1 = [0.01 max(x, y)]2,
c2 = [0.03 max(x, y)]2, and c3 = [0.021 max(x, y)]2. The MSSIM assumes values between 0 and
1, with 0 indicating no structural similarity and 1 indicating perfect structural similarity.

This section is divided into three subsections that focus on three different canonical flow prob-
lems: (i) decaying isotropic-turbulence flow, which is the same flow problem for which the network
is trained; (ii) the decaying Taylor-Green vortex; and (iii) channel flow. The decaying isotropic-
turbulence flow aligns with the type of data present in the training data for the autoencoder. The
Taylor-Green and channel flow problems allow us to explore how the trained network generalizes
to unseen flow scenarios.

Recall that the compression ratio for the SVD can be chosen adaptively by varying the number
of singular values retained r. This differs from the autoencoder where the compression ratio is fixed
prior to training by the network architecture (CR = 64 in this work). We use two values of r here
to compare these two algorithms. The first value is chosen to match the compression ratio of the
autoencoder and the second value is chosen to match the pointwise mean square error incurred
by the compression process. We refer to these as CR-matching SVD and error-matching SVD,
respectively. The actual value of r in each case depends on the input data size and the flow problem
under consideration. Additionally, the SVDs are computed using the single-pass algorithm from
Algorithm 1 with an oversampling factor of s = 5.

A. Decaying isotropic-turbulence flow

The first flow problem we consider is decaying isotropic turbulence. Isotropic-turbulence flow
exhibits rotation- and translation-invariant statistical properties, making it a classic flow scenario. By
using decaying (rather than forced) turbulence, we avoid washing out the impact of the compression
algorithms on the simulation trajectory. Recall that the network training data are comprised of
snapshots from decaying isotropic-turbulence simulations with randomly chosen Reλ ∈ (65, 105),
where Reλ is the Taylor-scale Reynolds number from Eq. (11). The test simulation in this section is
run using Reλ = 89, which falls within the range of Reynolds numbers used to generate the training
data set but is not a value used to produce any of the training data. Thus, this test case was not seen
during training, but the characteristics in the data should be highly similar to those in the training
set. This allows us to examine the performance of the network under idealized conditions. The
simulation is run on a 128 × 128 × 128 grid. A full simulation is run from time t = 0 to t = 10
with energy-preserving forcing applied until t = 7 when the flow is sufficiently developed for the
lossy restart study. At this point, the flow becomes decaying turbulence and a snapshot of the field
is saved. A lossless restart is performed to verify that the original flow of the simulation is fully
preserved. The lossless restart behaves as expected and results from that study are not shown here
for brevity. Three lossy restarts are performed using the three compression techniques described
above: (i) the autoencoder (AE) compression, (ii) a CR-matching SVD with rank r = 2, and (iii) an
error-matching SVD with rank r = 32. Note that the compression ratio of the error-matching SVD
is CR ≈ 4.

Table I contains the MSE, MAE, PSNR, and MSSIM (see the beginning of this section for
descriptions of these metrics) as well the volume mean divergence of the velocity field. Note that
the SVD with CR ≈ 4 was selected such that its MSE was approximately equal to that of the
autoencoder. Recall that while small values for MSE and MAE indicate smaller reconstruction
errors, large values of PSNR and MSSIM indicate high similarity to the original data (with the
MSSIM maxing out at 1). Thus, we see that the autoencoder was able to reconstruct a field
with comparatively lower errors and higher similarity than the SVD-based methods. Regarding
the divergence, we notice that the autoencoder performs slightly worse with respect to preserving
the divergence-free condition in the reconstructed fields than either SVD reconstruction. Note that
we are using a spectral solver for this work so that the divergence-free condition is immediately
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TABLE I. Velocity field reconstruction errors (measured by four different error or image quality metrics)
and field divergence for the autoencoder, the CR-matching SVD with rank r = 2 and CR ≈ 64, and the error-
matching SVD with rank r = 32 and CR ≈ 4.

Technique MSE MAE PSNR MSSIM Divergence

AE (CR = 64) 0.0865 0.3744 31.10 0.9463 6.31 × 10−3

SVD (CR ≈ 64) 2.8043 2.2944 14.52 0.1983 3.99 × 10−4

SVD (CR ≈ 4) 0.0948 0.3982 30.48 0.9339 3.73 × 10−4

recovered. However, this results in a loss of energy in the reconstructed field, which we examine
later in this section.

Figure 3 contains the slices of the flow velocity magnitudes for the full simulation and the lossy
restarts. Figure 3(a) shows the full and the compressed or reconstructed data at the beginning of the
restart (t = 7). Figure 3(b) shows how the various flow fields have evolved at the end of the sim-
ulation (t = 10). The autoencoder and the error-matching SVD compression methods qualitatively
appear to reproduce the true flow field reasonably well. Visually, the autoencoder seems to smooth
out the flow field slightly, while the error-matching SVD reconstructed is comparatively noisy. The
low-rank reconstruction of the velocity field in the CR-matching SVD does not accurately reflect
the uncompressed data at all. After the restarted simulations are allowed to evolve, we can see that
the overall energy in the systems has decayed as the overall velocity magnitude has dropped. The
autoencoder and error-matching SVD have deviated from the full simulation in a pointwise sense,
but both simulations appear to contain the appropriate scale of features. The evolution CR-matching
SVD has completely departed from the original simulation trajectory due to the significant amount
of energy lost in the compression and reconstruction process.

While a qualitative assessment can provide useful insights, we also examine more descriptive
flow statistics for the various restarted simulations. Recall that we are less interested in matching
the exact pointwise features of the full velocity field than preserving the general path and statistical
characteristics of the simulation. Figure 4 examines two classic statistics of isotropic turbulence: the

FIG. 3. Velocity magnitudes for the full simulation and lossy restarts of decaying isotropic turbulence with
Reτ = 89. Snapshots are shown of (a) the flow field at the beginning of the restart (t = 7) and (b) the various
cases at the end of the simulation (t = 10).
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FIG. 4. Investigation of the statistical properties of the various lossy restarts: (a) kinetic energy spectra for
the various simulations at the beginning and end of the restart as well as the integral length scale [see Eq. (18)]
for the lossy restarts compared to the full simulation as a function of time and (b) PDF of longitudinal velocity
gradients for the various simulations at the beginning and end of the restart as well as the KL divergence of the
PDFs for the lossy restarts from the full simulation as a function of time. In both (a) and (b) the left and middle
plots depict the kinetic energy spectra and the PDFs of the longitudinal velocity gradients at the beginning and
end of the restarted simulations. The rightmost plots depict a measure of the errors in these statistical quantities
as a function of time.

kinetic energy spectra and the probability density function (PDF) of longitudinal velocity gradients,

Z = ∂u

∂x

/〈(
∂u

∂x

)2〉1/2

. (17)

The energy spectra for the various restarted simulations are in Fig. 4(a), which shows the total
energy in the system as a function of the wave number κ . The left and middle plots show the kinetic
energy spectra at t = 7 and 10, respectively. The rightmost plot in Fig. 4(a) shows the integral length
scale L as a function of time. The integral length scale is related to the energy spectrum by

L = π

2〈u�u〉
∫

E (κ )

κ
dκ. (18)

The plots of the energy spectra include the theoretical − 5
3 decay rate as a dashed gray line

for reference. This highlights some of the differences between the autoencoder compression and
the error-matching SVD, despite exhibiting similar pointwise MSE in their reconstructed fields.
Specifically, the autoencoder filters out the small-scale features while doing a better job of capturing
the large-scale features. Both compression techniques are able to rejoin the original simulation
trajectory as seen by the rapid decay in the relative error. The CR-matching SVD loses a significant
amount of energy immediately and is unable to preserve the original flow of the full simulation. We
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TABLE II. Skewness of the longitudinal velocity gradient PDFs for the various restart methods.

Technique t = 7 t = 10 Mean

No reconstruction −0.430 −0.446 −0.433
AE (CR = 64) −0.435 −0.458 −0.436
SVD (CR ≈ 64) −0.0742 −0.803 −0.731
SVD (CR ≈ 4) −0.342 −0.443 −0.439

see the flow is not able to propagate energy down to smaller scales and actually ends the simulation
with more overall energy than expected.

Figure 4(b) contains plots of the PDFs of the longitudinal velocity gradient for each compression
case as well as a plot of the Kullback-Leibler (KL) divergence [56]

DKL( p̃||p) =
∫

p̃(Z ) ln

(
p̃(Z )

p(Z )

)
dZ, (19)

where p(Z ) and p̃(Z ) are the PDFs of the longitudinal velocity gradients from Eq. (17) for the
full simulation and the lossy restart, respectively. The KL divergence measures how much the
PDF p̃ deviates from the baseline PDF p. The velocity gradient PDF for isotropic turbulence
exhibits several identifiable characteristics including heavy tails and left skewness. The PDF plots
show a standard Gaussian distribution as the dashed gray line for reference. At t = 7, all of the
compression techniques appear to reasonably match the PDF of the full data. However, at t = 10,
the CR-matching SVD flow fields exhibits a velocity gradient profile that has deviated from the
expected trajectory while the other two lossy restarts have rejoined the full simulation. The skewness
values (i.e., the third central moments) of the PDFs for the various simulations shown in Fig. 4(b)
are provided in Table II. Isotropic turbulence should exhibit a skewness of γ ≈ −0.4 [57]. This
theoretical value is produced by the full simulation data as well as the autoencoder and error-
matching SVD restarted simulations. The skewness of the CR-matching SVD is too symmetric (i.e.,
nearly zero) at the instance of the restart and overshoots the left skewness as the simulation evolves.
This further reinforces that the SVD does not perform as well as the autoencoder at maintaining the
simulation trajectory after the lossy restart while producing a high degree of compression.

Compression timing

Before examining other flow problems, we consider the computational costs of the various com-
pression and reconstruction algorithms. Large-scale CFD codes require significant computational
resources to evaluate the model, and in situ analysis and compression methods should not be so
expensive as to crowd out the main simulation computations. Figure 5 shows the computational costs
in core seconds to compress and reconstruct the data for the various algorithms considered as well
as to perform a single step of the decaying isotropic turbulence simulation studied in this section.
The data size on the horizontal axis is the number of nodes in the three-dimensional mesh. For this
study, all code was run on the same CPU for consistency: a single Intel Xeon Gold Skylake 6154
(3.0-GHz, 18-core) processor. We note that the autoencoder network is written using TENSORFLOW,
which is capable of leveraging GPU speedups. In this work we found these speedups to be most
significant during the network training process (achieving up to 50× speedups). Forward passes
through the network experienced speedups of around 2×.

From Fig. 5 we see that autoencoder is more expensive than both SVD-based compression
methods for smaller data sizes; however, as the size of the data grows the autoencoder becomes
the cheaper approach. The crossover point at which the autoencoder becomes cheaper than the
SVD methods approximately corresponds to data meshes of 192 × 192 × 192. This crossover is
particularly interesting in regard to the use of this method on large-scale CFD simulations.
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FIG. 5. Comparison of the computational costs for the three compression methods as a function of the input
data size.

Additionally, we examine the computational costs for a single time step of the decaying isotropic
turbulence simulation on meshes of various size. A single time step executes slightly faster than any
of the compression methods; however, the costs appear to scale similarly to the autoencoder with
data size. In applications, data compression for simulation checkpointing will not need to occur at
each time step. For reference, the CFD simulations run for this work saved data every 1000 time
steps.

B. Taylor-Green vortex

The next flow problem we consider is the decaying Taylor-Green vortex. In this scenario, the
flow field is initialized with velocities

u =
⎡
⎣u

v

w

⎤
⎦ =

⎡
⎣ sin(x) cos(y) cos(z)

− cos(x) sin(y) cos(z)

0

⎤
⎦ (20)

and allowed to decay and become turbulent. The Taylor-Green flow problem was first introduced by
Taylor and Green [58] and is perhaps the best understood problem that exhibits three-dimensional
vortex stretching and the production of turbulence. Additionally, it has become a popular choice
for verifying CFD codes as it exhibits an analytic solution. For this work we run the full Taylor-
Green simulation on a 192 × 192 × 192 mesh with a Reynolds number of Re = 1600 achieved by
setting ν = 1/1600. We compress the data at t = 14 using the various methods and run the restarted
simulations to t = 20. By waiting until t = 14 to checkpoint the simulation, we ensure that the flow
field has developed enough that it is sufficiently complex as to make data compression a difficult
endeavor.

Table III examines the reconstruction performance for the various methods by considering
pointwise errors (MSE and MAE) as well as similarity measures (PSNR and MSSIM). Recall that
we consider a CR-matching SVD (with r = 3) and an error-matching SVD (with CR ≈ 5.2 and
r = 37). Note that while the SVD is able to match the error of the autoencoder it does so with a
compression ratio of only CR ≈ 5.2, an order of magnitude worse than the CR = 64 autoencoder.

Figure 6 contains snapshots of the three-dimensional velocity magnitudes at t = 14 and 20 for
the full simulation and the three lossy restarts. Immediately, we can see that the CR-matching SVD
has retained some large-scale structures of the flow field but the smaller vortices have been lost.
The impact of this error can be seen in the flow field at t = 20 where the restarted simulation has
significantly deviated from the original. The autoencoder and error-matching SVD both reproduce
the overall flow field with reasonable accuracy. Once again, the autoencoder has effectively filtered
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TABLE III. Velocity-field reconstruction errors for the autoencoder, the CR-matching SVD with rank r = 3
and CR ≈ 64, and the error-matching SVD with rank r = 37 and CR ≈ 5.2 measured by four different error
or image quality metrics.

Technique MSE MAE PSNR MSSIM

AE (CR = 64) 0.0017 0.0483 29.57 0.9525
SVD (CR ≈ 64) 0.0253 0.2112 18.92 0.3981
SVD (CR ≈ 5.2) 0.0018 0.0536 29.93 0.9299

out the smallest scales while the SVD adds some noise into the reconstructed field. At t = 20, both
compression techniques visually appear to have preserved the overall simulation trajectory.

We further investigate the quality of the restarted simulations by examining the mean total and
turbulent kinetic energies as well as the mean enstrophy for each case. For a volume of fluid V , the
mean total and turbulent kinetic energies are

E = 1

V

∫
u�u dV, k = 1

V

∫
u′�u′dV. (21)

The mean enstrophy is

E = 1

V

∫
ω�ω dV, (22)

where ω = ∇ × u is the vorticity of fluid. Figure 7 depicts these quantities as a function of time for
the various simulations. These plots show that the overall trajectory of the Taylor-Green vortex
simulation has been disrupted by the CR-matching SVD compression. Both of the other lossy
restarts only lose about 2% of the total energy in the field and manage to follow the expected general
energy profile. The autoencoder appears to lose more vorticity in the compression and reconstruction
process than the error-matching SVD. This is likely due to the filtering out of small-scale features
by the autoencoder. However, it is able to recover to the trajectory of the original simulation faster

FIG. 6. Velocity magnitudes for the full simulation and lossy restarts of decaying Taylor-Green vortex.
Snapshots are shown of (a) the flow field at the beginning of the restart (t = 14) and (b) the various cases at
the end of the simulation (t = 20).

114602-15



GLAWS, KING, AND SPRAGUE

FIG. 7. (a) Total and (b) turbulent kinetic energies and (c) total enstrophy for the full and restarted Taylor-
Green vortex simulations as a function of time.

because the lost information minimally impacts the overall trend of simulation. This is in contrast
to the SVD-based compression that injects noise into its reconstruction of the data.

C. Channel flow

The final flow problem we consider is turbulent channel flow between two parallel plates. For
this problem, x represents the streamwise direction, y represents wall normal direction, and z is
the cross-stream direction, with the corresponding [u, v,w] flow velocities. Channel flow is of
particular interest for the data compression techniques under consideration here because it exhibits
unique qualities that differ significantly from those in the training data. The flow displays a strong
directionality, particularly in comparison to the decaying isotropic turbulence and Taylor-Green
vortex. The flow is dominated by the streamwise velocity component and also admits a boundary
layer. Viscous stresses dominate in this boundary layer region near the wall, whereas these forces
are negligible for the isotropic-turbulence flow for which the network is trained. This provides us
with the opportunity to explore how well the network can extrapolate to unseen physics in the data.

For the lossy restart study, we use a friction Reynolds number Reτ = uτ H/ν of 180, where H = 1
is the channel half-height and uτ is the friction velocity

uτ =
√

ν
d〈u〉
dy

, (23)
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TABLE IV. Velocity field reconstruction errors for the autoencoder, the CR-matching SVD with rank r = 4
and CR ≈ 64, and the error-matching SVD with rank r = 24 and CR ≈ 10.5 measured by four different error
or image quality metrics.

Technique MSE MAE PSNR MSSIM

AE (CR = 64) 0.5700 0.7952 32.12 0.9236
SVD (CR ≈ 64) 3.7882 2.3533 22.86 0.4233
SVD (CR ≈ 10.5) 0.5079 0.8165 32.29 0.8426

where 〈·〉 denotes the streamwise mean and the kinematic viscosity is ν = 1/180. The data are
checkpointed using the various compression algorithms at t = 8, ensuring that the flow has become
fully developed, and the simulations are restarted and run to t = 10.

Table IV shows the MSE, MAE, PSNR, and MSSIM of the reconstructed data. Based on
these measures, the CR-matching SVD (with r = 4) performed significantly worse than the other
compression methods. The error-matching SVD is a rank r = 24 approximation of the data, which
corresponds to a compression ratio of CR ≈ 10.5. Notice that while error-matched SVD had a
slightly better MSE, it did not perform as well as the autoencoder with respect to the MAE or the
MSSIM. We can qualitatively examine this reconstructed data in Fig. 8, which shows streamwise
slices of the flow velocity magnitude for the full and compressed or reconstructed data fields. In
particular, we see that the CR-matching SVD captures the large-scale flow trends but misses the
smaller turbulent structures that are preserved by the other compression methods.

FIG. 8. Velocity magnitudes for the full simulation and lossy restarts of the channel flow problem at the
beginning of the restart.

114602-17



GLAWS, KING, AND SPRAGUE

FIG. 9. Time-averaged normalized streamwise velocity as a function of the normalized wall distance for
the full and restarted simulations.

Figure 9 depicts the so-called law of the wall for the channel flow problem. This graph plots the
normalized mean streamwise velocity

u+ = 〈u〉
uτ

(24)

against the normalized distance from the wall

y+ = uτ y

ν
. (25)

This figure shows the transition from the viscous wall region (y+ < 50) to the outer layer (y+ > 50)
where the viscosity is negligible. In this transitional region, the time-averaged normalized flow
velocity becomes proportional to the logarithm of the wall distance [59]. All three compression
methods appear to exhibit this behavior; however, the CR-matching SVD deviates slightly from
the others. The relationship becomes linear a little earlier for the CR-matching SVD than for
the full simulation (at y+ ≈ 20 compared to y+ ≈ 50). Additionally, this compression technique
does not reproduce the expected relationship between u+ and y+ in the near-wall region. Both the
autoencoder and the error-matching SVD match the law of the wall trends of the full simulation
reasonably well.

Figures 10 and 11 examine the Reynolds stresses and the production and dissipation of turbulence
as a function of the normalized wall distance. The Reynolds stresses as well as the squared turbulent
kinetic energy in Fig. 10 are normalized by the squared friction velocity. Each plot contains

FIG. 10. Reynolds stresses and turbulent kinetic energy normalized by the squared friction velocity as a
function of the normalized wall distance for the various lossy restart cases. The corresponding values of the
full simulation are shown by the faded lines in each plot.
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FIG. 11. Production P and dissipation ε of turbulent kinetic energy for the full and restarted simulations
as a function of the normalized wall distance.

comparable values from the full simulation as faded lines for reference. In this case, we can see
that, despite similar pointwise MSEs, the error-matching SVD has preserved the trajectory of the
simulation better than the autoencoder. In particular, the autoencoder struggles to reproduce the
flow field near the boundary where the physics deviate the most from the training data. This is
further emphasized by Fig. 11, which depicts the production and dissipation of turbulent kinetic
energy for the various restarts. The error-matching SVD most closely matches the full simulation
data, especially near the wall. However, the autoencoder compression method performs reasonably
well at preserving the simulation trajectories in a lossy restart, even for a problem exhibiting new
physical characteristics. In all cases, the CR-matching SVD performs the worst at reconstructing
the data and maintaining the simulation.

V. DISCUSSION

The results in the preceding section demonstrate the effectiveness of the proposed convolutional
autoencoder for in situ data compression. We focus on the use of the data compression for
checkpointing simulations and performing lossy restarts that can enable in situ analysis. In these
studies, the autoencoder is able to compress and reconstruct data from various CFD simulations
better than comparable single-pass SVD approaches.

We compare the compressed data and lossy restarts for the autoencoder to two SVD compressed
cases defined by the number of singular values r retained to perform the compression and recon-
struction. By choosing r to be larger, we reduce the error incurred by compression, but we also
reduce the degree of the compression. The two values of r are chosen to match the compression
ratio of the autoencoder and the error incurred by the autoencoder. In general, the small r required
for the SVD to match the CR = 64 of the autoencoder causes the reconstructed field to lose most
of its physical properties and change the overall path of the simulation. Alternatively, the large r
required to match the MSE of the autoencoder resulted in the compressed data size being 10–25%
of the original, compared to 1.5% for the autoencoder.

The in situ selection of r is complicated by the use of the single-pass algorithm from Algorithm 1
to approximate the SVD. Given the full SVD, one can choose r according to the relative magnitude
of the ordered singular values. The single-pass algorithm constructs small matrices that sketch
the column and row spaces of the original data matrix and approximates the SVD using these
smaller matrices. This enables the algorithms to be used for data compression on very large
matrices; however, the technique requires us to choose r (plus an oversampling factor) prior to
the computation. Thus, if r is chosen too small then the single-pass SVD must be performed again
with a new value of r. Furthermore, this selection of r (and its resulting compression ratio) depends
heavily on the size of the input data matrix. This issue does not exist for the autoencoder which
produces the same compression ratio independent of the data size.
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VI. CONCLUSION

In this work we have presented a deep-learning-based approach to in situ data compression
of large CFD simulations. The method uses a deep convolutional autoencoder network that is
capable of reducing the data size by over 98%. We studied the performance of this network in
checkpointed lossy restart scenarios and compared the results to a single-pass SVD compression
technique. Lossy restarts are critical to enhancing the resiliency of large-scale CFD simulations
by minimizing the computational costs of checkpointing the data while preserving the overall
simulation characteristics.

We performed lossy restart studies for three flow problems: (i) decaying isotropic-turbulence
flow, (ii) a decaying Taylor-Green vortex, and (iii) channel flow. The first problem matched the
training data for the network and represents the ideal compression and reconstruction scenario. The
second and third problems contained unseen physical characteristics and showed that the network
can generalize to new flow situations. In all cases, the autoencoder outperformed SVD-based com-
pression techniques with similar compression ratios, performed similarly to SVD decompositions
with an order of magnitude less compression, and was cheaper to compute for CFD runs larger
than approximately 1923. We also found that SVD-based reconstruction introduced small-scale
noise, while the autoencoder filtered out the smallest scales. In all cases considered, the autoencoder
lossy restart quickly returned simulation statistics to the correct trajectory, while the compression-
matched SVD was unable to recover.

Future research directions for this work include the application to reduced-order modeling. The
SVD produces linear modes that can be used to build reduced-order models using techniques such
as dynamic mode decomposition. Analogous techniques exist in deep learning based on recurrent
neural networks using long short-term memory processing of the compressed data. Additionally,
the convolutional autoencoder works well on gridded data but further work is required to apply it
to the unstructured and adaptive meshes that are common in large CFD simulations. Techniques
for graph-based convolutional neural networks could be applied to extend our approach to such
meshes.
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