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Heavy particles in turbulent flows have been shown to accumulate in regions of high
strain rate or low vorticity, a process otherwise known as preferential concentration. This
can be observed in geophysical flows and is inferred to occur in astrophysical environ-
ments, often resulting in rapid particle growth, which is critical to physical processes such
as rain or planet formation. Here we study the effects of preferential concentration in a
two-way coupled system in the context of the particle-driven convective instability. To do
so, we use direct numerical simulations and adopt the two-fluid approximation. We focus
on a particle size range for which the latter is valid, namely, when the Stokes number is
�O(0.1). For Stokes number above ∼0.01, we find that the maximum particle concen-
tration enhancement over the mean scales with the rms fluid velocity urms, the particle
stopping time τp, and the assumed particle diffusivity κp from the two-fluid equations, as
u2

rmsτp/κp. We show that this scaling can be understood from simple arguments of dominant
balance. We also show that the typical particle concentration enhancement over the mean
scales as (u2

rmsτp/κp)1/2. We finally find that the probability distribution function of the
particle concentration enhancement over the mean has an exponential tail whose slope
scales as (u2

rmsτp/κp)−1/2. We apply our model to geophysical and astrophysical examples,
and discuss its limitations.

DOI: 10.1103/PhysRevFluids.5.114308

I. INTRODUCTION

Preferential concentration is the tendency for heavy particles to accumulate in regions of high
strain rate and low vorticity due to their inertia [1–3]. Investigations of the process date back to the
1980s and were performed using numerical experiments [4–6] and laboratory experiments [7,8].
For comprehensive reviews of the topic, see, for instance, Refs. [9–12] and references therein.

Today, thanks to progress in high-performance computing, direct numerical simulations (DNSs)
are a particularly convenient tool for quantifying preferential concentration in particle-laden flows.
A variety of techniques can be used, which can be loosely classified into two distinct approaches: the
Lagrangian-Eulerian and Eulerian-Eulerian approaches (see Secs. II A and II B for more detail). The
Lagrangian-Eulerian (LE) approach is named for the fact that the particles are evolved individually
by integrating their equations of motion, while the carrier fluid is evolved on an Eulerian mesh.
Various degrees of sophistication exist, depending on whether the particles are modeled realistically
using, for instance, immersed boundary techniques [13], or in a simplified way, as point particles
[14]. In the latter case, particles can either be passively advected, or can react back on the
fluid through drag. When particles are modeled exactly, the LE approach is capable of modeling
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particle-particle interactions, such as collisions. Otherwise, these interactions must be accounted
for using simplified parametrizations instead. However, as the number of particles increases, the
computational cost can be expensive. In the Eulerian-Eulerian (EE) approach by contrast, the
particles are treated as a continuum field with its own momentum and mass conservation laws,
which are evolved on an Eulerian mesh [10,15,16]. Within the EE framework, various levels of
approximation exist depending on the size of the particles, ranging from the so-called equilibrium
Eulerian limit [17,18] in which particle inertia is neglected, to the two fluid limit [19,20], which
remains valid for somewhat larger particles.

In regions of the fluid that experience strong local enhancement in the particle number density,
increased collision rates can result in rapid particle growth [21]. As such, preferential concentration
is thought to play an important role in controlling the size distribution function of particles sus-
pended in turbulent fluids. Prior works have focused on certain aspects of preferential concentration
such as the enhancement of the particle settling velocity [3,22–26], the resulting geometry of the
dense particle clusters [21,27,28], and the underlying mechanisms responsible for inertial clustering
of particles [29–32]. Preferential concentration likely plays a key role in the warm rain formation in
clouds [33–35], protoplanetary disks [36–38], estuaries [39,40], and industrial applications such as
sprays [41,42]. In all of these examples, some of the key questions that remain to be answered are
the following: (1) What is the maximum particle concentration enhancement that can be achieved
anywhere in the fluid? (2) What is the typical probability distribution of the volume density of
particles? and (3) How do these quantities depend on the turbulent properties of the carrier flow?

While these questions have been primarily investigated in forced turbulent flows so far [5,9,26],
they have not been studied extensively to our knowledge in the context of particle-induced buoyancy
instabilities (e.g., convective or Rayleigh-Taylor). Such instabilities are particularly relevant in
particle-laden turbidity currents, which play an important role in sediment transport [43]. Although
most research to date on particle-laden buoyancy-driven flows has been performed using in-situ or
laboratory experiments [44–47], numerical experiments have only recently begun to be used in this
context. The focus of these numerical studies can be categorized into two groups: (1) numerical
tests, in which various formalisms (i.e., LE versus EE) are compared to one another [48,49],
and (2) application-driven studies, that investigate, for instance, how the rate of sedimentation is
influenced by particle properties. It was shown that both particle size and particle volume fraction
can control the resulting modes of instability (i.e., leaking, fingering, stable settling modes) from the
initial RT instability configuration, affecting the subsequent evolution of the sedimentation process
[50–52]. However, numerical investigations whose primary focus is on preferential concentration in
the particle-driven convective instability, specifically for two-way coupled systems, have not been
performed.

In this paper, we therefore study preferential concentration in the two-way coupled two-fluid
formalism using DNSs of particle-driven convective instabilities. Section II B describes the two-
fluid formalism. In Sec. III we introduce our model setup and its governing equations. In Sec. IV
we present the results of the DNSs and investigate how certain parameters influence preferential
concentration and the underlying turbulence. In Sec. V we present a predictive model that captures
maximum particle concentration enhancement as a function of time and space. In Sec. VI we look at
the probability distribution function (PDF) of the relative particle concentration. Section VII A sum-
marizes our results and discusses them in the context of geophysical and astrophysical applications
of particle-laden flows.

II. TWO-FLUID FORMALISM

The two-fluid formalism for particle-laden flows can be derived starting from the Lagrangian-
Eulerian formalism by locally averaging the particle properties to obtain the continuum density and
momentum conservation equations. This essentially follows the derivation of Ishii and Mishima [53]
(see also Refs. [54,55]). The formalism has been widely used within the astrophysics community
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for studying protoplanetary disks [56,57], as well as in studies related to sediment transport in rivers
and oceans [58–60], for instance.

For simplicity in this work, we focus on particulate flows in which the particle solid density ρs

is much larger than the mean density of the fluid ρ f , such as droplets or aerosols in the atmosphere
or dust in accretion disks. We also assume that the particles are spherical, monodisperse, and dilute
(ensuring that particle-particle collisions do not dominate the particle evolution equations).

A. Lagrangian formalism

Under the above assumptions, we can model the motion of a single particle interacting with the
fluid through Stokes drag by solving the coupled ordinary differential equations

dxp

dt
= up and

dup

dt
= u(xp) − up

τp
+ g, (1)

where xp is the position of the particle, up is its velocity, u(xp) is the fluid velocity at xp, g = −gêz

is gravity, and τp is the particle stopping time. In Eq. (1) we have assumed that the reduced mass
(which would normally multiply g) is approximately 1 since ρs � ρ f . We have also neglected other
effects such as the Basset history and Saffman lift terms for the same reason [61].

To model a collection of Np monodisperse particles using the LE approach, (1) is integrated
separately for each particle in the fluid:

dxp,i

dt
= up,i and

dup,i

dt
= u(xp,i ) − up,i

τp
+ g for i = 1, . . . , Np, (2)

where xp,i and up,i are the position and velocity of the ith particle, respectively. The back reaction of
the particles on the fluid is accounted for by adding a mean local drag force Fp in the Navier-Stokes
equation (shown here in the limit of the Boussinesq approximation [62,63]):

ρ f

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + ρ f ν∇2u + Fp, (3)

where ρ is the density deviation away from the mean fluid density ρ f , p is the pressure, ν is the
kinematic velocity of the fluid, and Fp is explicitly defined as

Fp(x) = −
Np∑
i=1

mp

vε

u(xp,i ) − up,i

τp
H (ε − |xp,i − x|), (4)

where H is the Heaviside function, mp is the particle mass, and vε is the volume of a sphere of radius
ε. The averaging radius ε is typically chosen to be one grid cell in numerical computations using the
LE formalism, but does not need to be specified here, other than satisfying the requirement that ε

be small. Equations (2)–(4), together with the fluid incompressibility condition ∇ · u = 0, form the
Lagrangian-Eulerian equations. These can now be statistically averaged using methods motivated
from kinetic theory to derive the two-fluid formalism.

B. Two-fluid formalism

We first define the local mass density of particles ρp and corresponding velocity up, averaged in
a small volume centered around the position x as

ρp = mp

vε

Np∑
i=1

H (ε − |xp,i − x|), up(x) = 1

vε

Np∑
i=1

up,iH (ε − |xp,i − x|). (5)
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Applying this average to the particle evolution equations in Eq. (2) (as done in Ref. [53], for
instance), we approximately get

Dpup

Dpt
= u − up

τp
+ g + · · · , (6)

where Dp/Dpt = ∂/∂t + up · ∇ is the derivative following the mean particle velocity. The evolution
equation for the particle density can be obtained by mass conservation to be

∂ρp

∂t
+ ∇ · (ρpup) = · · · . (7)

In both equations, dots on the right-hand side result from three possible sources: (1) dispersion in
both mass and momentum conservation equations due to the fact that up,i �= up; (2) unaccounted for
interactions of the particles with the fluid, which include Brownian motions for very small particles,
and self-interaction of the particle with its own wake if the latter is not perfectly modeled by the
Stokes solution; and (3) long-range interactions of particles with one another due to each other’s
wakes. Aside from Brownian motions, these terms are generally very difficult to model, leading
to strong anisotropic dispersion, and likely to depend nonlinearly on the mean particle density and
velocity.

In what follows, we will model these terms for simplicity as νp∇2up in the momentum equation
and κp∇2ρp in the density equation, so

∂up

∂t
+ up · ∇up + up − u

τp
− g = νp∇2up, (8)

∂ρp

∂t
+ ∇ · (ρpup) = κp∇2ρp. (9)

These terms are included to stabilize the numerical scheme in the DNSs, although they are also
physically motivated in the limit where Brownian motion is the dominant source of dispersion.
Note that we anticipate the two-fluid approach to break down when the Stokes number (the ratio of
the stopping time to the eddy turnover time) approaches unity, in which case the particles become
uncorrelated with the fluid and therefore also with one another [64]. When this happens, the mean
particle velocity up is no longer a good approximation for each individual particle velocity, and the
averaging procedure becomes meaningless.

To couple the particle and fluid evolution equations, note that the drag term in the continuum
limit in Eq. (3) becomes

Fp(x) = ρp(x)
up(x) − u(x)

τp
, (10)

so the two-way coupled equations are

ρ f

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + ρp
up − u

τp
+ ρ f ν∇2u, (11)

∂up

∂t
+ up · ∇up + up − u

τp
− g = νp∇2up, (12)

∂ρp

∂t
+ ∇·(ρpup) = κp∇2ρp, (13)

∇·u = 0. (14)

It is worth noting that in this limit, we are able to account for the inertial clustering of particles since
the particle velocity field up is not required to be divergence-free [i.e., ρp∇·up is not necessarily
zero in Eq. (13)]. Moreover, for smaller particles that are well coupled to the fluid, the two-fluid
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formalism recovers the equilibrium Eulerian formalism in which particle inertia is negligible. We
can demonstrate this by taking the formal limit τp → 0 to obtain

up = u − wsêz, (15)

ρ f

(
∂u
∂t

+ u · ∇u
)

= −∇p + (ρ + ρp)g + ρ f ν∇2u, (16)

∂ρp

∂t
+ (u − wsêz ) · ∇ρp = κp∇2ρp, (17)

∇·u = 0, (18)

where the settling velocity ws is related to the stopping time and gravity via ws = τpg. The particle
velocity up is now determined by the carrier fluid velocity and the particle settling velocity.
Compared to the two-fluid formalism, we see that ∇·up ≡ 0; thus, the particle concentration is
solely advected by the carrier flow. As a result, preferential concentration cannot be captured by the
equilibrium Eulerian approach [61].

III. THE MODEL

A. Model setup

We investigate particle-driven convective instabilities in a dilute suspension using the two-fluid
equations. For convenience, we rescale the particle density with the mean density of the fluid, which
defines r = ρp/ρ f . Having assumed that ρs � ρ f , it is still possible to have r of order unity even
though the volume fraction of particles is assumed to be very small. We assume that the carrier
fluid has a constant stable background temperature gradient T0z > 0 in the vertical direction, with
the background temperature profile given by T0(z) = Tm + zT0z. This assumption was originally
motivated by applications in which the carrier fluid is typically stratified, such as in warm clouds or
rivers, but does not directly impact the results presented in this paper. Perturbations in the density
of the carrier fluid ρ are caused by temperature fluctuations T around that background profile, and
are related via ρ/ρ f = −αT , where α = −ρ−1

f (∂ρ/∂T ).
In the limit of the Boussinesq approximation, the governing dimensional equations are then

∂u
∂t

+ u · ∇u = −∇p

ρ f
+ αgT êz + r

up − u
τp

+ ν∇2u, (19)

∂up

∂t
+ up · ∇up = u − up

τp
+ g + νp∇2up, (20)

∂r

∂t
+ ∇ · (upr) = κp∇2r, (21)

∂T

∂t
+ u · ∇T + wT0z = κT ∇2T, (22)

∇·u = 0, (23)

where u = (u, v,w) and up = (up, vp,wp).
Using this system of equations, we shall study the evolution of the relative particle density r. To

do so in the context of the convective instability, we start with initial conditions that take the form
of a Gaussian profile of amplitude r0 and width σ :

r(x, y, z, 0) = r0 exp

[
(z − Lz/2)2

2σ 2

]
, (24)

to which low amplitude random fluctuations are added, and where Lz is the height of the compu-
tational domain. The initial particle velocity is set to be the particle settling velocity ws, while the
carrier fluid is initialized with zero velocity.
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B. Nondimensionalization

We define the units of length [l], relative particle concentration [r], and temperature [T ] as

[l] = σ, [r] = r0, [T ] = σT0z. (25)

We can define a characteristic velocity for the fluid by identifying its kinetic energy with an estimate
of the potential energy of the unstable particle density distribution:

[u] = √
r0gσ . (26)

The characteristic distance and velocity can finally be used to construct a typical convective eddy
turnover time

[t] =
(

σ

r0g

)1/2

. (27)

Thus, the nondimensional equations are

∂u
∂t

+ u · ∇u = −∇p + RρT êz + 1

Re
∇2u + r0

(
r

up − u
Tp

)
, (28)

∂up

∂t
+ up · ∇up = u − up

Tp
− 1

r0
êz + 1

Rep
∇2up, (29)

∂r

∂t
+ ∇ · (upr) = 1

Pep
∇2r, (30)

∂T

∂t
+ u · ∇T + w = 1

PeT
∇2T, (31)

∇ · u = 0, (32)

where all the variables (u, up, p, r, T ) are from here on implicitly nondimensional, and where the
dimensionless parameters are defined as

Rρ = ασT0z

r0
, Re = (r0g)1/2σ 3/2

ν
, PeT = (r0g)1/2σ 3/2

κT
,

Tp = τp

(
r0g

σ

)1/2

, Rep = (r0g)1/2σ 3/2

νp
, Pep = (r0g)1/2σ 3/2

κp
, Ws = Tp

r0
.

Four of these parameters describe diffusive effects: a Reynolds number for the fluid Re, a
Reynolds number for the particles Rep, the particle Péclet number Pep, and the temperature Péclet
number PeT . In the fluid momentum equation, Rρ is the density ratio, defined by analogy with
double-diffusive systems to be the ratio of the density gradient due to temperature stratification αT0z

to the density gradient due to particle stratification, here estimated as r0/σ . In addition, Tp is the
nondimensional stopping time, and Ws is the nondimensional settling velocity of the particles. Note
that our nondimensionalization defines Tp as the ratio of the particle stopping time to the estimated
turnover time of the layer-scale eddies. Thus, by construction, Tp is an estimate of the Stokes number
St of the convectively turbulent flow.

We define the nondimensional total density (i.e., consisting of the fluid and the particles) in the
system as

ρtot =
(

1

ασT0z
− z − T

)
+ r

Rρ

, (33)

so the nondimensional total background density gradient is

dρtot

dz
= −

(
1 + dT

dz

)
+ 1

Rρ

dr

dz
. (34)
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The total density gradient controls the development of the convective instability and, as shown
above, is the sum of the density gradient due to the temperature stratification and the density gradient
due to the particle stratification. At time t = 0, the nondimensional initial condition for the particle
concentration is

r(x, z, 0) = e−(z−Lz/2)2/2. (35)

The particle density gradient is the most unstable at the lower inflection point of the Gaussian
(z = zi) when dr/dz reaches its maximum value, given by

dr

dz

∣∣∣∣∣
z=zi

= e−1/2. (36)

Thus, the total density gradient at the lower inflection point z = zi at t = 0 is

dρtot

dz

∣∣∣∣∣
z=zi,t=0

= −1 + e−1/2

Rρ

. (37)

Using this information, we define a Rayleigh number as

Ra =
(

1

ρ f

dρtot

dz

∣∣∣
z=zi

)
gσ 4

κpν
, (38)

where all the quantities on the right-hand side are dimensional. We can then express (38) in terms
of the previously defined dimensionless parameters as

Ra =
(

e−1/2

Rρ

− 1

)
RePep. (39)

To ensure that overturning convection (rather than double-diffusive instabilities) takes place in all
that follows, we set Rρ = 0.5 < e−1/2. We shall then vary Ra by varying either Re or Pep, ensuring
in all cases that Ra is sufficiently large for turbulent convection to take place. Finally, the Prandtl
number will be fixed and equal to one for the flow to be fairly turbulent for all simulations. This
choice fixes the relationship between Re and PeT :

Pr = PeT

Re
≡ 1. (40)

IV. NUMERICAL SIMULATIONS

Since our goal is to characterize preferential concentration of the particles by the fluid, which is
an inherently nonlinear phenomenon, we must use DNSs. In order to do so, we use the triply periodic
pseudospectral PADDI code [65,66] which has been extensively used to study fingering as well as a
number of astrophysical instabilities such as semiconvection and shear [67,68]. A slightly modified
version of the code was also used to study fingering convection in the equilibrium Eulerian regime
[69]. We have modified the PADDI code further by adding a particle field which evolves according
to the two fluid equations (19)–(23), and we refer to the new version of this code as PADDI-2F.
Salient properties of PADDI, as well as the modifications made to include the two-fluid formalism,
are briefly described in Appendix A.

In what follows, we present two dimensional (2D) and three dimensional (3D) simulations with
specifications listed in Table I. We limit the exploration of parameter space to Tp � 0.3 since
the two-fluid equations are not representative of the full dynamics for larger Tp (as discussed in
Ref. [70]). As described in Sec. II B, Rep (or νp) accounts for the intrinsic dissipation in particle mo-
mentum due to Brownian motion and long-range interactions among particles. Since we are focusing
our investigation to inertial particles, we can fix Rep = 1000 to be sufficiently large to neglect these
dissipative effects for all simulations. The size of the computational domain is selected based on the
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TABLE I. Summary of salient parameters for the numerical simulations. In all cases, Rρ = 0.5 and Rep =
1000. The first four columns show Ws, Tp, Pep, and Re. The last column shows the effective number of mesh
points used in each direction. All 2D simulations in this table were run with Lx = 10 and Lz = 20, and all 3D
simulations were run with Lx = 10, Ly = 2, and Lz = 10.

(a) 2D simulations
Ws Tp Pep Re Nx × Nz

0.1 0.005 1000 1000 768 × 1536
0.1 0.005 10 000 1000 768 × 1536
0.1 0.005 100 000 1000 3072 × 6144
0.1 0.01 1000 1000 768 × 1536
0.1 0.05 1000 1000 768 × 1536
0.1 0.1 1000 1000 768 × 1536
0.1 0.1 3000 1000 1536 × 3072
0.1 0.1 10 000 1000 3072 × 6144
0.1 0.1 1000 3000 1536 × 3072
0.1 0.1 1000 10 000 3072 × 6144
0.1 0.2 1000 1000 1536 × 3072
0.1 0.3 1000 1000 1536 × 3072
0.3 0.005 1000 1000 768 × 1536
0.3 0.01 1000 1000 768 × 1536
0.3 0.05 1000 1000 768 × 1536
0.3 0.1 1000 1000 1152 × 2304
0.3 0.2 1000 1000 1536 × 3072
0.3 0.3 1000 1000 1536 × 3072

(b) 3D simulations
Ws Tp Pep Re Nx × Ny × Nz

0.1 0.005 1000 1000 384 × 72 × 384
0.1 0.1 1000 1000 768 × 144 × 768
0.1 0.2 1000 1000 768 × 144 × 768

following considerations: (1) since the code is triply periodic, the domain height must be sufficiently
large to avoid unphysical interactions between the particles that leave the domain at the bottom and
reenter it at the top. With that in mind, we present simulations with height ranging from Lz = 10 to
Lz = 20. (2) The domain width must be chosen to be large enough to ensure that there are enough
convective eddies in the horizontal direction to have meaningful statistics. In all the simulations
presented below Lx = 10, and for 3D simulations, we further choose Ly = 2. At this point, we bring
attention to the fact that since most simulations will be in 2D, the term “turbulence” is used in a loose
sense, to describe the inherent nonlinear and chaotic properties of the flow, rather than in the strict
sense.

A. Two-fluid code validation against Eulerian simulations

To validate the PADDI-2F code, we begin by comparing a two-fluid simulation with low Tp

solving Eqs. (28)–(32) with that of an equilibrium Eulerian simulation solving (15)–(18) (used
in Ref. [69]). In both codes, we set Ws = 0.1, Rρ = 0.5, Re = 1000, Pr = 1, PeT = PrRe, Rep =
1000, and Pep = 1000 (corresponding to Ra ≈ 106); for the two-fluid simulation, we additionally
set the particle stopping time to be Tp = 0.005, which should be sufficiently small to be in the
limit where the equilibrium Eulerian formalism is valid. We first compare the two codes using 2D
simulations (see Sec. IV D for a comparison of 2D versus 3D simulations). We set the resolution of
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FIG. 1. Snapshots of the particle concentration r (top row) and the horizontal component of the fluid veloc-
ity u (bottom row) at various times in a two-fluid simulation with Tp = 0.005, Ws = 0.1, Rρ = 0.5, Re = 1000,
Rep = 1000, Pep = 1000, and Pr = 1.

the 2D runs to be 768 × 1536 equivalent grid points in the x and z directions, respectively, and set
the domain width and height as Lx = 10 and Lz = 20.

In the snapshots presented in Fig. 1, we see the evolution of the particle concentration and the
horizontal component of the fluid velocity u in the two-fluid simulation. Snapshots of the Eulerian
simulation (not shown) taken at the same times look very similar to the two-fluid simulation (bearing
in mind the chaotic nature of the system). The initially unstable total density stratification ρtot (z, 0)
drives the growth of convective eddies, which become visible in the second snapshot (t = 27). The
particle layer then rapidly spreads vertically under the effect of turbulent mixing in the third snapshot
(t = 40), reducing the unstable particle gradient. Although there are horizontal inhomogeneities in
the particle concentration, these remain small compared with the horizontal mean. In particular,
r never exceeds the initial maximum value of one, consistent with the expected properties of an
advection-diffusion equation when ∇·up 
 0. This shows qualitatively that for sufficiently small
Tp, the two-fluid simulation recovers behavior expected in the absence of particle inertia.

We now compare these simulations more quantitatively by examining the behavior of both the
particle concentration and the fluid velocity. In order to do so, we define a number of diagnostic
quantities (for convenience listed in Table II). We first define the maximum particle concentration
and maximum horizontal fluid velocity in the domain at any point in time as

rsup(t ) = max
x,z

r(x, z, t ) and usup(t ) = max
x,z

u(x, z, t ). (41)

We have selected to look at the behavior of the horizontal component of the velocity, rather than its
vertical component or total amplitude, because it is not directly influenced by the particle settling
motion.

114308-9



SARA NASAB AND PASCALE GARAUD

TABLE II. Defined terms.

Definition Description

r̄(z, t ) = r(x, z, t ) = 1
Lx

∫
r(x, z, t ) Horizontal average of the particle concentration

at a given height at time t .
rmax(z, t ) = maxx r(x, z, t ) Maximum value of the particle concentration

at a given height at time t .

rrms(z, t ) = {[r(x, z, t ) − r̄(z, t )]2}
1/2

Typical enhancement over r̄ at a given height at time t .

urms(z, t ) = [u(x, z, t )2]
1/2

Root mean square of the x component of the fluid
velocity at a given height at time t .

rrel (x, z, t ) = r(x,z,t )
r̄(z,t ) Relative particle concentration at time t .

Extracted in the bulk of the particle layer:
zmax(t ) Height corresponding to the maximum value of r̄ at time t .
r̄∗(t ) = r̄(zmax, t ) Maximum value of r̄ at time t .
u∗

rms(t ) = urms(zmax, t ) Value of urms measured at zmax at time t .
rsup(t ) = maxx,z r(x, z, t ) Maximum particle concentration in the domain at time t .
usup(t ) = maxx,z u(x, z, t ) Maximum value of the horizontal velocity of the fluid at time t .

In order to study the evolution of the bulk of the particle layer, we next define the horizontally
averaged particle concentration profile r(z, t ), where the overbar denotes a horizontal average, as in
q(z, t ) = 1

Lx

∫
q(x, z, t ) dx for any quantity q. The quantity r̄ can be compared to the corresponding

analytical expression obtained when the particles evolve purely diffusively, namely, when

∂rdiff

∂t
− Ws

∂rdiff

∂z
= 1

Pep
∇2rdiff . (42)

The solution of (42) in an infinite domain with initial condition given by (35) is

rdiff (z, t ) = 1√
2

Pep
t + 1

exp

{
− [z − (Lz/2 − Wst )]2

2[(2/Pep)t + 1]

}
. (43)

As long as 2t/Pep � Lz, this solution is also a good approximation to the diffusive solution in the
periodic domain.

We also extract the maximum value of r̄ at time t , which occurs at the height z = zmax(t ),

r̄∗(t ) = r̄(zmax, t ) = max
z

r̄(z, t ). (44)

In what follows, the asterisk will always indicate a quantity measured at the position zmax(t ). We
can compare rsup and r̄∗ to the maximum value of the diffusive solution, namely,

rdiff,sup(t ) = max
z

rdiff (z, t ) = 1√
2

Pep
t + 1

. (45)

Finally, we define the root mean square of the x component of the fluid velocity at a particular
height z and time t , expressed as

urms(z, t ) = [u(x, z, t )2 ]1/2. (46)

We can study turbulence in the bulk of the particle layer over time by extracting the corresponding
value of urms at the position z = zmax, defined by

u∗
rms(t ) = urms(zmax, t ). (47)
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FIG. 2. Low Tp = 0.005 two-fluid simulation versus an equilibrium Eulerian simulation with Ws =
0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1, comparing various diagnostics of the particle
concentration (a) and of the horizontal component of fluid velocity (b).

Figure 2 shows a comparison of r̄∗ and rsup for the particle concentration [Fig. 2(a)] and u∗
rms and

usup for the fluid velocity [Fig. 2(b)] for both the two-fluid and equilibrium Eulerian simulations.
Notably, we see that all the measured quantities are statistically consistent with one another in the
two cases, verifying that the two-fluid formalism recovers the equilibrium Eulerian formalism for
small Tp. At early times (t = 0–25) prior to the development of the convective instability, r̄∗ and
rsup follow the purely diffusive solution rdiff,sup, shown as the black dotted line given by (45). Later,
we see that r̄∗ and rsup decrease rapidly (at times t = 30–50), then more slowly again after t = 60.
During that time r̄∗ and rsup roughly decay at the same rate.

Looking at the eddy velocities, we see that the intermediate phase (t = 30–60) corresponds to
the peak of the mixing event. The corresponding usup reaches a maximum value of usup ≈ 0.8 with
the rms velocity reaching u∗

rms ≈ 0.25. The fact that usup and u∗
rms are both of order unity actually

holds for all runs (see later), and proves that the nondimensionalization selected is appropriate. By
t = 80, the main mixing event is over and the turbulence (as measured both by u∗

rms or usup) now
gradually decays on a much longer timescale.

We can also look at how the particles and the fluid velocity evolve spatially over time. Figure 3
shows the profiles of r̄ and urms at three instants in time for both simulations, with the black dotted
curve representing rdiff (43). Recall that the domain is periodic in both directions so the particle layer
reemerges at the top after leaving from the bottom. The dotted vertical line zmax marks the position
of the maximum of r̄. We clearly see that the two-fluid and equilibrium Eulerian simulations behave
in a quantitatively similar way. In both cases, the particle layer settles roughly at the expected rate
set by the value of Ws, but its vertical density profile r̄ becomes asymmetric and wider than in
the purely diffusive case (black dotted line). The extended tail of r̄ below the bulk of the layer is
associated with more rapidly moving particle-rich plumes that can clearly be seen penetrating into
the lower particle-free fluid in Fig. 1. Focusing on the evolution of the urms profile, we see that at
early times the turbulence develops in the bulk of the particle layer as expected. However, the fluid
remains turbulent even after the particles have settled through a region, which explains why the size
of the turbulent region is much larger than that of the particle layer at late times (e.g., t = 135). This
can be understood by noting that the time it takes for turbulent motions to decay viscously is much
larger than the time it takes for the particles to settle across the bottom of the box.

This section has illustrated the interplay between the turbulence and the particle field for short
stopping times. Both the qualitative and quantitative evidence confirm that the two-fluid model for
very low Tp and the equilibrium Eulerian model have similar dynamics, conclusively validating our
two-fluid code.
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FIG. 3. Evolution of the mean particle concentration r̄ and of the rms fluid velocity urms (defined in the
main text) profiles for the two-fluid Tp = 0.005 (red) and equilibrium Eulerian simulations (green) with Ws =
0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1. The black dotted Gaussian curve (first row)
represents the purely diffusive solution (43) for comparison.

B. Comparison between low and high Tp simulations

We now look at the effect of larger stopping time on the evolution of the particle layer. We
continue to work in 2D and choose Tp = 0.1 with the same resolution (i.e., 768 × 1536 grid points)
keeping the remaining parameters and domain size the same as in the simulation from Sec. IV A
(i.e., Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, Pr = 1 and Lx = 10, Lz = 20).
Snapshots of the particle concentration field as well as the evolution of rsup and r̄∗ with time are
shown in Fig. 4. We clearly see the emergence of regions of much higher particle concentration than
at low Tp, located in narrow, wisplike structures (see for instance the snapshot at t = 54) with rsup

reaching values of as high as 5. The fact that this is much larger than the initial maximum value of r
in the domain is a distinct signature of preferential concentration, since this occurs only when ∇·up
is nonzero. This also shows that regions of strongly enhanced particle concentration can develop
even when the mean particle concentration in the bulk of the layer is decreasing. After the main
mixing event (around t = 80), rsup drops again to values that are lower than one, though remains
substantially higher than r̄∗. This raises the interesting question of what determines the maximum
possible value of the particle concentration field at any given time in the simulation (which will be
further discussed in Sec. V).

Turning our attention to the evolution of usup and u∗
rms, we see that for larger Tp at the peak of the

mixing event, usup ≈ 1.1 and u∗
rms ≈ 0.3, whereas in the lower Tp case the corresponding values were

usup ≈ 0.8 and u∗
rms ≈ 0.25. This suggests that Tp does not have a major effect on the turbulence of

the system (at least for the parameters explored).
We can measure the maximum particle concentration at a given height in the domain using

rmax(z, t ) = max
x

r(x, z, t ). (48)

In addition, we can also measure the typical (rather than the maximum) enhancement over the
mean r̄ as a function of height using

rrms(z, t ) = {[r(x, z, t ) − r̄(z, t )]2}1/2. (49)
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FIG. 4. Top: Snapshots of the particle concentration r at various times in a simulation with Tp = 0.1,Ws =
0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1. Bottom: Diagnostic properties of the particle
concentration and fluid velocity as a function of time for the same simulation.

FIG. 5. Measures of particle concentration at t = 54 of two-fluid simulations for Tp = 0.005 and Tp = 0.1
with otherwise identical parameters Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1.

114308-13



SARA NASAB AND PASCALE GARAUD

FIG. 6. Comparison of rsup for 2D simulations with varying Tp. Remaining parameters: Ws = 0.1, Rρ =
0.5, Re = 1000, Rep = 1000, Pep = 1000, Pr = 1. An equilibrium Eulerian simulation marked “Eulerian” is
shown for comparison.

Figure 5 compares the maximum particle concentration rmax with both the mean particle con-
centration r̄ and one standard deviation above the mean, r̄ + rrms, as a function of height, for two
simulations with Tp = 0.005 and Tp = 0.1. We see that for both cases, r̄ and r̄ + rrms have similar
profiles. For the low Tp case, r̄ + rrms typically remains below one. In addition, the profile of rmax

also follows that of r̄, and lies about two standard deviations above it. As such, it is largest in
the bulk of the particle layer. For high Tp, rmax is also largest in the bulk of the particle layer, with
values peaking at rsup ≈ 2.25 at this particular instant in time. However, rmax is now several standard
deviations above r̄, implying that the probability density distribution of the particle concentration
has a longer tail (see Sec. VI for more on this point).

Figure 6 more generally compares the maximum particle concentration rsup obtained in several
simulations with increasing particle stopping time Tp. The simulations continue to be in 2D with
768 × 1536 grid points, and all other parameters remain unchanged (i.e., Ws = 0.1, Rρ = 0.5, Re =
1000, Rep = 1000, Pep = 1000, Pr = 1). The black dotted line represents r = 1. As expected, we
find that rsup increases with Tp as a result of preferential concentration. Furthermore, we see that
rsup remains above unity for longer times, signifying that dense particle regions persist in the
simulations. On the other hand, we find that preferential concentration is negligible for Tp � 0.01,
and rsup is almost indistinguishable from that obtained in the equilibrium Eulerian limit.

C. Impact of Pep and Re

We next look at the impact of the fluid Reynolds number Re and the particle Péclet number Pep

on the evolution of the particle concentration. We continue to focus on 2D simulations, choosing
a relatively large stopping time to ensure that inertial effects are important. We use Tp = 0.1 with
the remaining parameters and domain size set as Ws = 0.1, Rρ = 0.5, Pr = 1, Lx = 10, and Lz = 20.
The resolution selected for these simulations increases with both Re and Pep, and is listed in Table I.
Figure 7 presents snapshots of the particle concentration at t = 54 for simulations with Pep and Re
both varying between 1000 and 10 000. When we fix Pep = 1000 and increase Re, the particle
concentration snapshots appear qualitatively similar, consisting of narrow structures comparable in
size and density. The maximum particle concentration enhancement appears relatively unaffected
by the fluid viscosity (at least, for this range of Re, and within the context of the two-fluid
equations). In contrast, if we fix Re = 1000 and increase Pep, we see a striking difference in both
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FIG. 7. Snapshots of the particle concentration field for varying Re and Pep with fixed Tp = 0.1 taken at
t ≈ 54. Only the vicinity of the particle layer is shown. Remaining parameters: Ws = 0.1, Rρ = 0.5, Rep =
1000, Pr = 1.

the geometry of the wisps, as well as the maximum concentration achieved in the wisps. That is, as
Pep increases, these structures become more numerous and narrower, with a corresponding increase
in the maximum particle concentration.

These qualitative trends are confirmed more quantitatively in Fig. 8, which shows the maximum
particle concentration rsup as a function of time for each of these five simulations. We see that the
evolution of rsup is more or less independent of the Reynolds number but increases with Péclet
number. This trend will be explained by the theory presented in Sec. V.

In order to gain a more quantitative insight into the two-way coupling between the particles and
the turbulence at all scales, we look at the power spectra of the particle concentration field and of the

FIG. 8. Comparison of rsup for 2D simulations with varying Pep and Re for Tp = 0.1. Remaining parame-
ters: Ws = 0.1, Rρ = 0.5, Rep = 1000, Pr = 1.
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FIG. 9. Power spectra of the particle concentration field (a) and the fluid velocity field (b) as a function of
the horizontal wave number kx for varying Re and Pep. Remaining parameters are Tp = 0.1, Ws = 0.1, Rρ =
0.5, Rep = 1000, and Pr = 1. The error bars indicate the rms temporal variability of the spectrum.

fluid velocity field. This time we restrict our analysis to an interval [t0, t f ] where t f − t0 = 20, during
the peak of the mixing event when the particle concentration is largest. We define the time-averaged
horizontal power spectrum for any state variable ξ as

Pξ (kx ) = 1

t f − t0

∫ t f

t0

∑
kz

ξ̂ (kx, kz, t )ξ̂ ∗(kx, kz, t ) dt, (50)

where the ξ̂ (kx, kz, t ) is the discrete Fourier transform of ξ and ξ̂ ∗(kx, kz, t ) is the complex conjugate
of ξ̂ (kx, kz, t ). Figure 9(a) shows the mean horizontal power spectrum of the particle concentration
field Pr (kx ) with corresponding error bars representing one standard deviation around the mean.
When Pep is fixed and Re increases, we observe a slight increase of power in the range kx = 10–100,
but the effect of Re is small. On the other hand, for fixed Re and large values of Pep, there is
substantially more power in the higher wave numbers, consistent with the predominance of smaller
scales seen in the snapshots.

In Fig. 9(b) we plot the power spectrum of the total fluid velocity field Pu(kx ) + Pw(kx ) as
function of kx with corresponding error bars. Unlike the particle concentration field, the spectrum
here is affected by both Pep and Re. That is, the amount of energy at small scales increases when
either Pep or Re increases. This can be explained by the fact that the strength of convection in our
system is directly related to the Rayleigh number, which is proportional to the product of Pep and
Re (39). It is therefore not surprising to find that the energy spectrum depends on the product PepRe
rather than Pep and Re individually.

We also look at how the particle stopping time Tp affects the horizontal power spectra of the parti-
cle concentration and velocity fields. Figure 10 shows these power spectra (taken, as before, during
the peak of the mixing event), for five simulations at varying Tp and otherwise fixed parameters
(i.e., Ws = 0.1, Rρ = 0.5, Re = 1000, Pep = 1000, Pr = 1; and Lx = 10, Lz = 20 with resolution
for simulations found in Table I). In Fig. 10(a) we see more power at large kx as Tp increases.
We see this as further evidence that the particles increasingly concentrate in narrower wisps as Tp

increases. In Fig. 10(b) profiles of the total velocity power spectrum, i.e., Pu(kx ) + Pw(kx ), are
strikingly similar to one another. Thus, Tp does not appear to affect the turbulence in the system
which is somewhat unexpected given the two-way coupling; instead, the velocity power spectrum
is primarily dependent on Ra, at least for the range of parameters explored here.
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FIG. 10. Power spectra of the particle concentration field (left) and the fluid velocity field (right) as
a function of the horizontal wave number kx for varying Tp. Remaining parameters are Ws = 0.1, Rρ =
0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1. The error bars indicate the rms temporal variability
of the spectrum (as in Fig. 9).

D. Comparison between 2D and 3D simulations

Owing to the high resolution needed for the two-fluid simulations, especially for higher Tp, Re,
and Pep, 3D simulations are typically prohibitive. However, we have run several 3D simulations
at moderate Re = 1000, Rep = 1000, and Pep = 1000 in order to compare the 3D results with the
2D ones. In this manner, we can determine whether 2D results can at least qualitatively capture
the properties of the particle layer evolution. For all 3D simulations, we set the nondimensional
length, width, and height as Lx = 10, Ly = 2, and Lz = 10, respectively. In this section, we focus
on two simulations with Tp = 0.005 and Tp = 0.1, respectively. The resolution of the low Tp case is
384 × 72 × 384 grid points, while the high Tp case has a resolution of 768 × 144 × 768 grid points.
The remaining parameters are fixed to be Ws = 0.1 and Rρ = 0.5.

Figure 11 shows that the values of usup achieved in the 2D simulation are consistently larger
than the 3D simulation by 30%–50% (for both low and high Tp cases). This result is consistent with
those of Ref. [71] for Rayleigh-Bénard convection (where the rms velocities in 2D are systematically
larger than in 3D by a factor of about 2). As a result, turbulent mixing and preferential concentration

FIG. 11. Comparison of the fluid velocity usup and particle concentration rsup (defined in the text) between
2D and 3D simulations with settling velocity Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and
Pr = 1. Left figure: Tp = 0.005. Right figure: Tp = 0.1.
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are both more energetic in 2D than in 3D at otherwise similar parameters. For low Tp where
preferential concentration is not present, enhanced turbulent mixing results in rsup being slightly
smaller in 2D than in 3D. By contrast at high Tp, rsup is slightly larger in 2D than in 3D due to the
enhanced preferential concentration. Generally speaking, however, the dimensionality of the model
does not appear to affect preferential concentration by more than a constant factor of a few (see
more on this below), suggesting that 2D simulations are appropriate, at least as far as extracting
scaling laws is concerned.

V. PREDICTING MAXIMUM PARTICLE CONCENTRATION

We now present a simple model to quantify the effects of preferential concentration in convective
particle-driven instabilities. We begin with the particle concentration equation (30), substituting
r = r̄(z, t ) + r′(x, t ) (where x is the position vector):

∂ (r̄ + r′)
∂t

+ (r̄ + r′)∇·up + up · ∇(r̄ + r′) = 1

Pep
∇2(r̄ + r′). (51)

By expanding the divergence term, we note that only the second term on the left-hand side con-
tributes to preferential concentration (when ∇·up �= 0). We next assume that in the fully turbulent
high Tp flow, the formation of regions of particularly strong particle concentration enhancement
results from a dominant balance between the preferential concentration of the mean particle density
and diffusion terms of the perturbations so that

r̄∇·up ∼ 1

Pep
∇2r′. (52)

We then express the particle velocity up in terms of Tp and u, using a standard asymptotic expansion
in Tp [3]:

up = u − Wsêz − Tp

(
u · ∇u + ∂u

∂t

)
+ O

(
T 2

p

)
, (53)

and thus,

∇ · up = −Tp∇ · (u · ∇u) + O
(
T 2

p

)
. (54)

Substituting (54) in Eq. (52) results in

r̄∇·(u · ∇u)Tp ∼ 1

Pep
∇2r′. (55)

Assuming that the length scales of the inertial concentration and diffusion terms are the same, we
finally get

r′

r̄
∼ |u|2TpPep ∼ u2

rmsτp

κp
, (56)

where the third part of this equation is expressed dimensionally. In this model, we therefore predict
that strong particle concentration enhancements above the mean depend only on the magnitude of
the fluid velocity u, the particle stopping time Tp, and the assumed particle diffusion coefficient Pep.
The prediction (56) made for r′/r̄ should hold in a large-scale sense (i.e., a scale greater than several
eddy scales), and can help quantify the expected spatiotemporal evolution of r′ as long as that of r̄
and |u| is known.

In order to test our model, we have run a large number of 2D simulations (with a few 3D ones)
at different values of Ws, Tp, and Pep, listed in Table I. Since the particle layer is not much wider
than the size of an eddy, we investigate the validity of the model here only as a function of time,
focusing on the behavior within the bulk of the particle layer (i.e., near z = zmax). To estimate the
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FIG. 12. Maximum particle concentration enhancement over the mean as function of U 2
rmsTpPep for a

simulation with parameters Tp = 0.3,Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1.
Each dot represents an instant in time, with points moving from the bottom-left corner to the top-right corner
over time. The black solid line shows (r′/r̄)max = (1/4)U 2

rmsTpPep.

maximum particle concentration enhancement in the bulk of the particle layer, we let r′(z, t ) =
rmax(z, t ) − r̄(z, t ) and find the maximum value of r′/r̄ at each instant in time to obtain(

r′

r̄

)
max


 max
z∈[zmax−1,zmax+1]

rmax(z, t ) − r̄(z, t )

r̄(z, t )
. (57)

To estimate the corresponding typical fluid velocity, we define the rms total fluid velocity found
within the particle layer, defined as

Urms(t ) =
{

1

2LxLy

∫ zmax+1

zmax−1

∫ Ly

0

∫ Lx

0
[u2(x, t ) + v2(x, t ) + w2(x, t )] dx dy dz

}1/2

, (58)

where Ly = 1 and v(x, t ) = 0 for 2D simulations.
In Fig. 12 we plot (r′/r̄)max versus U 2

rmsTpPep for one simulation (Tp = 0.3,Ws = 0.1, Rρ =
0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1). Note that each data point represents an
instant in time for which the full velocity and particle fields are available. Points start from the
lower left corner and move up to the right as Urms increases with time during the development of the
convective instability. During the most turbulent stage of the simulation when particle concentration
enhancement occurs, the points are clustered on the upper right-hand side of the plot. The dashed
line represents the scaling relationship (r′/r̄)max ∝ U 2

rmsTpPep, shown here for ease of comparison
with later figures.

Comparisons between (r′/r̄)max and U 2
rmsTpPep are next shown in Fig. 13 for all available simu-

lations that have Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1. Here the color of the
points represents Tp, the shape of the points represents Ws, and the size of the points corresponds to
the dimensionality (2D vs 3D); see legend for detail. For a given simulation, each point corresponds
to a particular instant in time selected after the onset of the convective instability, but before the
bulk of the particle layer has traveled more than one domain height (to avoid it interacting with
itself). The solid line shows the relationship (r′/r̄)max = (1/4)U 2

rmsTpPep, where the proportionality
constant 1/4 was selected to fit (approximately) the 2D data in the higher Tp runs.
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FIG. 13. Maximum particle concentration enhancement over the mean as function of U 2
rmsTpPep, for varying

Ws and Tp (with fixed Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, Pr = 1). The black solid line represents
(r′/r̄)max = (1/4)U 2

rmsTpPep. Details of simulations can be found in Table I.

Focusing our attention first on the low Tp 2D simulations (shown in red and orange), we see
that they do not fit the model, regardless of the values of Ws. This is as expected, since we have
found that preferential concentration is negligible for Tp � 0.01 (e.g., Fig. 8), and so the dominant
balance assumed in deriving the model in Eq. (56) does not apply. Turning to the remaining 2D
simulations, we see the data fits the predicted model well albeit with a significant scatter that is
expected given the method we are using to extract r′ and Urms. We also see that even for cases with
larger Tp, there appears to be a threshold (namely, U 2

rmsTpPep ≈ 1) below which the model is not
valid. Above that threshold, the scaling law proposed correctly predicts how (r′/r̄)max evolves in a
simulation as a function of time, or how the same quantity depends on input parameters. Finally, we
have run several 3D simulations represented by the larger filled circles, and see that they also fit the
model. We therefore conclude that Eq. (56) provides a reliable method for estimating the maximum
possible particle concentration enhancement over the mean in a turbulent fluid (within the two-fluid
formalism).

Figure 14 explores the dependence of the model on Re, Pep, and temperature stratification. As
before, the low Tp simulations (in red) do not fit the model while those at higher Tp (all other colors)

FIG. 14. Maximum particle concentration enhancement over the mean as function of U 2
rmsTpPep, for varying

Tp, Re, and Pep (with Ws = 0.1, Rρ = 0.5, Pr = 1, Rep = 1000). The black solid line represents (r′/r̄)max =
(1/4)U 2

rmsTpPep. Details of simulations can be found in Table I.
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3D: 0.005 1000 1000
0.01 1000 1000
0.05 1000 1000
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0.1 3000 1000
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0.3 1000 1000

FIG. 15. Typical particle concentration enhancement for varying Ws and Tp with Rρ = 0.5, Pr = 1, Re =
1000, Rep = 1000, Pep = 1000, unless otherwise denoted. The black solid line represents (r′/r̄)rms =
(1/4)U 2

rmsTpPep, and the blue line represents (r′/r̄)rms = (1/5)(U 2
rmsTpPep)1/2. Details of simulations can be

found in Table I.

do. We also see that, as discussed in Sec. IV C, (r′/r̄)max is more or less independent of Re, but
increases with Pep. Finally, simulations run in the same model setup but without a background
temperature gradient (black stars) continue to satisfy the same scaling law.

VI. TYPICAL PARTICLE CONCENTRATION AND PDFS OF THE RELATIVE PARTICLE
CONCENTRATION FIELD

Having constructed a simple analytical model for the maximum particle concentration enhance-
ment allowable in the system, we may wonder whether this model might also provide insight into
the typical concentration enhancement. To do so, we define the typical concentration enhancement
within the particle layer as

(
r′

r̄

)
rms

= 1

2

∫ zmax+1

zmax−1

rrms(z, t )

r̄(z, t )
dz, (59)

where rrms was defined in Eq. (49). Results are shown in Fig. 15, with the same black line as in
Fig. 13 also plotted to ease the comparison. Here we see the data points do not fit this model and
seem to scale as (r′/r̄)rms ∼ (U 2

rmsTpPep)1/2 instead (shown by the blue line). It is interesting to
note that although we are capturing the typical enhancement, this model still depends on the same
combination of parameters (i.e., the product of Urms, Tp, and Pep) arising from the model discussed
in Sec. VI. This strongly suggests that the typical particle concentration enhancement is related to
the maximum particle concentration enhancement, though exactly how remains to be determined.
We also see here that the low Tp simulations (in red and orange) do not follow the same scaling law
as the high Tp cases.
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FIG. 16. Probability distribution functions for the function rrel (60) at various times during two sim-
ulations with Ws = 0.1, Rρ = 0.5, Pr = 1, Re = 1000, Rep = 1000, and Pep = 1000 for Tp = 0.005 (a) and
Tp = 0.1 (b).

More insight into the problem can be gained by looking at the probability distribution function
(PDF) of the relative particle concentration:

rrel(x, z, t ) = r(x, z, t )

r̄(z, t )
= 1 + r′(x, z, t )

r̄(z, t )
. (60)

We focus on values of rrel within the bulk of the particle layer in the range z ∈ [zmax(t ) − 1, zmax(t ) +
1]. Figure 16 shows PDFs of rrel for the low and high Tp cases presented in Sec. IV D at various times
during the respective simulations. Prior to the onset of turbulence the PDF of rrel is a δ function
centered at rrel = 1 since r = r̄. The distribution then widens once the instability develops, and the
maximum value achievable by rrel is equal to the value (r′/r̄)max + 1 discussed in Sec. VI.

For the low Tp case, we see from Fig. 16(a) that the PDF is more or less symmetric about
rrel = 1 at all times, and remains relatively narrow around this mean value (at least, compared
with the high Tp case described below). As the simulation proceeds, the width of the PDF first
increases and then decreases with time, as a result of the concurrent increase and decrease of the
turbulent fluid velocity u∗

rms (47) in the bulk of the layer during the convective mixing event. In

FIG. 17. Time-averaged PDFs of rrel (see Eq. 60) during the peak of the mixing event. (a) At fixed Ws =
0.1, Rρ = 0.5, Re = 1000, Rep = 1000, Pep = 1000, and Pr = 1 and varying Tp. (b) At fixed Tp = 0.1,Ws =
0.1, Rρ = 0.5, Rep = 1000, and Pr = 1 and varying Re and Pep.
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b

U2
rmsTpPep

Tp = 0.05, Pep = 1000, Re = 1000
Tp = 0.1, Pep = 1000, Re = 1000
Tp = 0.1, Pep = 3000, Re = 1000
Tp = 0.1, Pep = 10, 000, Re = 1000
Tp = 0.1, Pep = 1000, Re = 3000
Tp = 0.1, Pep = 1000, Re = 10, 000
Tp = 0.2, Pep = 1000, Re = 1000
Tp = 0.3, Pep = 1000, Re = 1000

FIG. 18. The slope b of the exponential tail of the PDF of rrel as a function of U 2
rmsTpPep for simulations

at various Tp, Re, and Pep with Ws = 0.1, Rρ = 0.5, Rep = 1000, and Pr = 1. In all cases, the the PDF is
computed during the peak of the mixing event. The red solid line shows b = 7(U 2

rmsTpPep)−1/2.

contrast, for the high Tp simulation shown by Fig. 16(b), the PDF widens considerably during
the convective mixing event and becomes asymmetric. A long tail of rare events associated with
preferential concentration appears. The shape of the tail appears to be exponential, consistent
with what is commonly found in Eulerian-Lagrangian simulations of preferential concentration
(e.g., Refs. [64,72]).

To explore the properties of this exponential tail, we present PDFs of rrel taken during the peak
of the mixing event for different simulations at fixed Re = 1000 and Pep = 1000 for varying Tp in
Fig. 17(a). We observe that as Tp increases, the slope of the exponential tail becomes shallower as
the maximum value of rrel achieved in the simulation increases. In Fig. 17(b), we present PDFs of
rrel for varying Re and Pep at fixed Tp = 0.1, taken again at the maximum of the mixing event. We
see that the tail widens with increasing Pep but not with Re, which is consistent with our finding that
Re does not directly influence the maximum particle concentration achievable (at these parameter
values and in this model), but Pep on the other hand does.

We have fitted an exponential function f (x) ∝ e−bx to the tail of the PDF for each of the cases
described above. Figure 18 shows b as a function of U 2

rmsTpPep (where Urms and b are computed at
the same times). We find that the data points follow the red solid line b ∼ (U 2

rmsTpPep)−1/2, which
is the same scaling as (r′/r̄)−1

rms. This is perhaps not a coincidence, since the rms of rrel = 1 + r′/r̄
would be equal to 1/b if the distribution was exactly exponential with slope b.

VII. SUMMARY, APPLICATIONS, AND DISCUSSION

A. Summary

In this work, we studied preferential concentration in a two-way coupled particle-laden flow
subject to the particle-driven convective instability, using DNSs of the two-fluid equations. We
constructed an estimate of the typical turbulent eddy velocity in the mixing event as urms = √

r0gσ
(written here dimensionally), where r0 is the ratio of the typical particle mass density excess
in the layer to the fluid density, g is gravity, and σ is the unstable layer height. Using this,
we then constructed an estimate of the particle Stokes number as Tp = τp(r0g/σ )1/2, where τp

is the dimensional particle stopping time. We found that for Tp � 0.01, the system properties
are indistinguishable from those obtained using the equilibrium Eulerian formalism, while for
Tp � 0.01, preferential concentration can cause an increase in the particle density in regions of low
vorticity or high strain rate, as predicted by [3]. The maximum particle concentration enhancement
over the local mean, max(ρ ′

p/ρ̄p), can be predicted from simple arguments of dominant balance
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to scale as max(ρ ′
p/ρ̄p) ∼ u2

rmsτp/κp, where κp is the dimensional particle diffusivity used in
the two-fluid model. We verified that this scaling holds for a range of simulations with varying
input parameters, as long as Tp > 0.01, and u2

rmsτp/κp > 1. In this regime, we also found that the
probability distribution function of the quantity ρ ′

p/ρ̄p has a root-mean-square value that scales as
(u2

rmsτp/κp)1/2 and an exponential tail whose slope scales as (u2
rmsτp/κp)−1/2.

B. Applications

We can use the model proposed in Sec. V to predict the maximum particle concentration
enhancement over the mean for several applications, where the main source of turbulence is
the particle-driven convective instability. It is important to note that our model can be applied
only to inertial particles that follow the conditions used for the two-fluid formalism, namely, that
(1) particles follow Stokes’ law and (2) the Stokes number is less than about 0.3.

We first look at ash created by volcanic eruptions, droplets in stratus clouds, and sediments
suspended in turbidity currents. In all these cases, the particle stopping time is given by

τp = mp

6πspρ f ν
, (61)

where sp is the particle radius, and so, the terminal settling velocity is given by

ws = τp

(
ρs − ρ f

ρs

)
g = 2

9

(
ρs − ρ f

ρ f

)
g

ν
s2

p. (62)

Ash particles are generated by volcanic eruptions and have widespread environmental and health
implications. Ash particles are transported upwards in the volcanic plume and eventually spread
laterally to form an umbrella cloud in the stratosphere [73,74]. In recent years, there has been
renewed interest in predicting the rate of sedimentation of the ash, which is known to depend
on preferential concentration [75–77]. Suspended ash particles vary widely in radius, especially
between the volcanic plume (where sp ranges from 0.1 mm to 1 mm [78]) and the umbrella cloud
(where sp ranges from 0.1 to 10 μm, since the larger particles have settled out [76,77]). Similarly, the
typical particle concentration ρp ranges from 0.1 μg/m3 to 1 mg/m3 (see Ref. [76] and references
therein) within the umbrella cloud with larger concentration values closer to the eruption site
(observed to be 50 mg/m3 from [78], for instance). We therefore estimate the Stokes number from
(61) as Tp given by

Tp ≈ (2 × 10−7)

(
ρp

1 mg/m3

)1/2(
σ

1 km

)−1/2( sp

10 μm

)2

. (63)

To arrive at this formula, we have used commonly accepted values for certain parameters, i.e.,
(ρs − ρ f )/ρ f ≈ 1000, ν ≈ 10−5 m2/s, and g ≈ 10 m/s2. We see that for values characteristic of
the umbrella cloud, namely, ρp of order 1 mg/m3, σ of order 1 km and sp of order 10 μm,
Tp ∼ O(10−7) � O(0.1). Such a small value of Tp does not fall in the inertial regime of our model,
and thus the effects of preferential concentration due to particle-driven convective instability are
negligible. Closer to the volcanic plume, sp ∼ 0.25 mm and ρp ∼ 50 mg/m3. Keeping the remaining
parameters as before, we find that Tp ≈ 0.01, which lies at the boundary of the inertial regime,
suggesting that preferential concentration is possible in this case. To determine the maximum
particle concentration enhancement, we then use

(
ρ ′

p

ρ̄p

)
max

= 1

4

|u|2τp

κp
= 25

(
ρp

1 mg/m3

)(
σ

1 km

)(
sp

10 μm

)−1

, (64)

where |u| is calculated from (26) and κp ∼ wssp (see Refs. [79–81]). Thus, from Eq. (64) for
conditions closer to the volcano with ∼0.25 mm ash particle and ρp ∼ 50 mg/m3, we obtain
(ρ ′

p/ρ̄p)max ≈ O(100), and so the inertial concentration mechanism may be important in this case.
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We also considered other geophysical applications in which particle-driven convection could be
relevant, such as stratus clouds and turbidity currents. Using commonly accepted values for these
systems, we found that the estimated Stokes number Tp is always very small, and therefore does
not fall under the inertial regime where preferential concentration takes place (see Appendix B for
details).

A more interesting application of our model can be found in the astrophysical context of a col-
lapsing protostar, i.e., a contracting cloud composed of a mixture of gas and dust particles that will
eventually lead to the formation of a star. The contraction is usually slow and quasi-hydrostatic, and
the gas is generally stably stratified. However, we expect that waves or shocks propagating through it
would create inhomogeneities in the dust concentration, that are conceivably gravitationally unstable
to particle-driven convective instabilities. With this in mind, we consider typical interstellar dust
particles to have a radius of size sp ∼ 10 μm and solid density ρs ∼ O(103) kg/m3. The gas density
within a cloud of radius R astronomical units (AU, where 1 AU = 1011 m) is typically of order
ρ f ∼ O(10−12) kg/m3. The dust-to-gas mass ratio in these clouds is of order r0∼0.01, and we
anticipate large-scale perturbations above this mean value driven by waves or shocks to be of the
same order of magnitude.

Given that the size of the dust particles in this case is much smaller than the mean-free path of
the gas, the stopping time is now given by

τp = spρs

cρ f
, (65)

where c is the sound speed (i.e., c ≈ kBT/mH , where kB = 1.38 × 10−23 m2 kg s−2 K−1 is the
Boltzmann constant, mH ≈ 10−27 kg is the mass of a hydrogen molecule, and T is the local
temperature, which is of the order 10 K in clouds [82]). Using g = GM/R2 in Eq. (65), where
G = 6.7 × 10−11 m3 kg−1 s−2 is the gravitational constant and M is the mass of the core of the
protostar, we then find that the nondimensional stopping time is given by

Tp = (10−1)

(
sp

10 μm

)(
ρs

103 kg/m3

)(
ρ f

10−12 kg/m3

)−1

×
(

T

10 K

)−1/2( r0

0.01

)1/2( M

M�

)1/2( R

100 AU

)−1(
σ

0.01 AU

)−1/2

,

where M� = 2 × 1030 kg is the mass of the Sun. Here we see that by using typical values for a
protostar and assuming that the particle density inhomogeneities are initially of size 0.01 AU, then
Tp lies within the inertial regime. The relative maximum particle concentration can be then written
as(

r′

r̄

)
max

= (1011)

(
sp

10 μm

)3(
ρs

103 kg/m3

)(
r0

0.01

)(
T

10 K

)−1( M∗
M�

)(
R

100 AU

)−2(
σ

0.01 AU

)
.

While this relative enhancement is huge, it is not sufficient to bring particles in contact with one an-
other. Indeed, the associated volume fraction of particles would be �′ = r0(ρ f /ρs)(r′/r̄)max ≈ 10−6.
Nevertheless, this does imply that the particle collision rate within these enhanced regions would
dramatically increase, suggesting that preferential concentration due to particle-driven convective
instabilities could play a role in star and planet formation.

C. Discussion

Assuming that the model described in Sec. V and summarized in Sec. VII A is generally valid in
particle-laden turbulent flows, it provides a very simple way of estimating the expected enhancement
in the local particle density due to preferential concentration, which could be very useful for pre-
dicting its impact on other processes, such as particle growth or enhanced settling, as demonstrated
in Sec. VII B. However, several caveats of the model need to be kept in mind before doing so. First
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and foremost is the fact that the maximum particle concentration enhancement over the local mean
depends explicitly on the particle diffusivity κp, which is derived from a simplistic model of the
interaction between the particles and the fluid, as well as among the particles themselves. In the
limit where Brownian motion is the dominant contribution to the particle diffusivity, then the model
is likely to be valid. This is the case for instance in astrophysical applications. However, when
the interaction of the particle with its own wake or with the wakes of other particles dominates,
then the simple diffusion model κp∇2ρp presumably fails to capture some of their more subtle
consequences and should be used only with considerable caution. Comparisons of the model with
particle-resolving simulations will help elucidate whether any of our results still holds for more
realistic situations.

Another caveat of the model is the fact that it has been validated so far only in moderately
turbulent flows, for which the inertial range is fairly limited. In more turbulent systems, where the
inertial range spans many orders of magnitude in scales, the Stokes number at the injection scale
could be quite different from the Stokes number at the Kolmogorov scale. Assuming a Kolmogorov
power spectrum for the kinetic energy, for instance, it is easy to show that the Stokes number
increases weakly with wavenumber, and can be substantially larger at the Kolmogorov scale than
at the injection scale when the Reynolds number is very large. This raises the question of whether
the model remains applicable when this is the case. Finally, we note that the model has so far been
tested only in the context of particle-driven convection, where the two-way coupling between the
particles and the fluid likely influence the turbulent cascade. It remains to be determined whether the
same scalings are found in flows where the source of the turbulence is independent of the particles
(such as mechanically driven turbulence, or thermal convection, for instance). If this is the case, our
findings may have further implications for engineering or geophysical flows. Both of these questions
will be the subject of future work.

There are also several other questions that remain to be answered. The simulations presented in
Sec. IV C, for instance, clearly show that the particle Péclet number influences the typical width
and separation of the regions of high particle density, but this effect remains to be explained and
modeled. This will require a better understanding of the influence of the two-way coupling between
the particles and the fluid on the turbulent energy cascade from the injection scale to the dissipation
scale. In particular, it is clear from a cursory inspection of the kinetic energy spectrum (see Fig. 9)
that the extent of the inertial range depends on the Reynolds number and, as expected, but also on the
particle Péclet number, suggesting that this two-way coupling dominates the flow dynamics at small
scales. Although this is perhaps not surprising, it deserves to be investigated further. Moreover, it
would be interesting to see whether the same effect occurs in a system in which the turbulence is
not driven by the particles themselves.
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APPENDIX A: PROPERTIES OF PADDI

The governing equations are solved in spectral space using a third-order semi-implicit Adams-
Bashforth backward-differencing scheme. Diffusive terms are treated implicitly. Nonlinear terms
and drag terms are first computed in real space, then transformed into spectral space using FFTW
libraries, and advanced explicitly. Drag terms are tracked and computed in a way that ensures the
total momentum is conserved (other than the dissipation terms) throughout the simulations.

114308-26



PREFERENTIAL CONCENTRATION IN THE …

We encountered various numerical obstacles during the implementation of the two-fluid equa-
tions in PADDI-2F that are worth mentioning here. Due to the fact that particle inertia tends to
increase particle concentration in certain regions for large enough Tp, one must use a very high
spatial resolution to avoid numerical instability. Even when the resolution is large enough to ensure
numerical stability, a slight under-resolution can result in the particle concentration being slightly
over- or underestimated, resulting in the total mass not being exactly conserved. Indeed, in a spectral
code, low resolution can induce the Gibbs phenomenon which can create regions of unphysical
negative particle density near the edges of a particle front. In the code, we zero out the negative
particle density regions and rescale the particle concentration r at every point in space to ensure that
the total particle mass is equal to its initial value at each time step. Note that this “fix” is generally
not necessary as long as the simulations are well resolved but is introduced to reduce errors in the
rare occasions where the system does become slightly under-resolved.

APPENDIX B: OTHER GEOPHYSICAL APPLICATIONS

We looked at the applicability of our model for the preferential concentration of water droplets
found in stratus clouds. These clouds are a more relevant application of our model than convective
clouds (i.e., cumulus and cumulonimbus) in which turbulence is primarily driven by thermal
convection rather than particle-driven convection. We estimate r0 and Tp as

r0 = (2.5 × 10−4)

(
ρp

0.25 g/m3

)
, (B1)

Tp ≈ (3.5 × 10−6)

(
ρp

0.25 g/m3

)1/2(1 km

σ

)1/2( sp

10 μm

)2

, (B2)

where ρp here is otherwise known as the liquid water content which is typically of the order of
0.25 g/m3 for stratus clouds [83]. We have also applied commonly accepted values for certain
parameters for these formulas (i.e., ρs/ρ f ≈ 1000, ν ≈ 10−5 m2/s, g ≈ 10 m/s2). According to
(B2), we see that for any reasonable droplet size, Tp is in the regime where preferential concentration
would not occur due to the particle-driven convective instability.

We now look at particle concentration in the context of turbidity currents which play a vital role
in the global sediment cycle. We consider sediments consisting of clay, silt, or sand that vary in
radius from O(10−4) − O(10−1) cm (where clay is found at the lower end of this range, while sand
particles are found at the larger end) with solid density typically around ρs ≈ 2000 kg/m3. For a
particle volume fraction � in the dilute regime, � � 0.01 and so, r0 � 0.02, and

Tp ≈ (2 × 10−4)

(
10 m

σ

)1/2( sp

0.1 mm

)2(
�

0.01

)1/2

, (B3)

in which we have assumed that (ρs − ρ f )/ρ f ∼ O(1). We therefore see that even for the largest
particle size and for the maximum volume fraction allowable, for any reasonable value of σ , Tp �
0.1 so preferential concentration due to particle-driven convective instabilities is again negligible.
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