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Coupled population balance and large eddy simulation model
for polydisperse droplet evolution in a turbulent round jet
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A population balance model coupled with large eddy simulations (LES) is adapted and
applied to study the evolution of oil droplets in an axisymmetric turbulent jet including the
effects of droplet breakup. A key unknown in simulating secondary breakup in turbulent
multiphase jets is the inflow size distribution generated within the primary breakup zone
near the nozzle exit. A monodisperse injection inflow condition is commonly used for
simplicity, but this choice is often unrealistic. In order to provide more realistic inlet
conditions for LES, we develop a one-dimensional (1D) parcel model to predict the
evolution of the dispersed phase along the jet centerline due to the combined effects of
advection, radial turbulent transport, and droplet breakup due to turbulence in the regions
closer to the jet nozzle that cannot be resolved using coarse LES. The model is validated
with experimental data measured far from the nozzle. The 1D model is also used to
generate an initial size distribution for use in a coarse-resolution LES of a turbulent jet.
Number density fields for each bin of the discretized droplet size distribution are modeled
using an Eulerian LES approach and scalar transport equations are solved for each bin.
LES results are compared to published experimental data, with good agreement, and we
examine the statistics of the velocity field and the concentration of the polydisperse oil
droplet plumes for two droplet Weber numbers. We find that the centerline decay rate of the
concentration for different droplet sizes is modified in the breakup dominated zone. Unlike
Reynolds averaged approaches, LES also allows us to quantify size distribution variability
due to turbulence. We quantify the radial and axial distributions and the variability of
key quantities such as the Sauter mean diameter, total surface area, and droplet breakup
timescale and explore their sensitivity to the Weber number.
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I. INTRODUCTION

Accurate characterization of the dispersed phase size distribution is crucial in the context
of numerous natural and engineering multiphase flow processes. In liquid atomization, detailed
information of the droplet size is of great importance in the design and application of spray systems
[1]. Of much interest during the Covid-19 epidemic, the size distribution of drops generated by
coughing affects their residence time in the air as well as the ability of masks to prevent their
transmission [2]. Conversely, for drug delivery [3] one needs small drops that can be easily inhaled.
In the context of underwater oil spills [4], the size distribution of oil droplets formed in the jet at the
well strongly influences the fate and transport of oil in the aquatic environment [5]. Large droplets
tend to rise more quickly to the surface, while the smaller ones may remain submerged for longer
periods and are more dispersed due to turbulent mixing [6]. Typically, many important systems can
be idealized to the case of droplet formation and breakup processes in turbulent jets and plumes.

*aaiyer@princeton.edu

2469-990X/2020/5(11)/114305(23) 114305-1 ©2020 American Physical Society

https://orcid.org/0000-0001-8163-8564
https://orcid.org/0000-0001-6947-3605
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.114305&domain=pdf&date_stamp=2020-11-18
https://doi.org/10.1103/PhysRevFluids.5.114305


ADITYA AIYER AND CHARLES MENEVEAU

There are numerous studies modeling droplet size distributions in turbulent systems due to the
effects of breakup and coalescence. In the case of liquid atomization and spray systems, focus has
been on modeling the characteristic droplet diameter. Lee and Robinson [7] developed a model for
the mean diameter in a spray system using the integral form of the conservation equation. In the case
of oil droplet breakup, most previous studies focus on the steady state distribution in stirred tank
reactors [8–10]. There are few studies that model oil droplet breakup and formation in turbulent jets.
Bandara et al. [11] coupled a population dynamics model with a plume model CDOG [12] to predict
droplet size distributions from the DeepSpill experiments [13]. Johansen et al. [14] established
correlations for the characteristic diameter at steady state based on the Weber number and Reynolds
number. They used analytical functions to fit the droplets size distribution at steady state. Zhao et al.
[15] developed a fluid parcel model VDROP-J to predict size distributions along the centerline of
a turbulent jet by parametrizing the velocity and dissipation field of the jet. Their model neglected
the effects of radial turbulent transport of the centerline concentration and was therefore limited to
predicting the relative droplet size distribution at the centerline but not the actual number density.

Modeling developments and testing must be informed by experimental data. Experimental
studies of breakup of liquid jets primarily focus on the distribution of droplets far downstream
of the nozzle. For instance, Eastwood et al. [16] injected droplets of varying density, viscosity, and
interfacial tension into a fully developed water jet and tracked particle size distributions using digital
image processing techniques. Brandvik et al. [17] performed a series of oil jet experiments with
varying injection conditions and measured the steady droplet size distributions. The concentration
was measured using an in situ laser diffractometer. The apparatus had a maximum detection size
of 460 μm which could be insufficient for some of the cases simulated. Experimental data for
multiphase jets in crossflow have also been collected [18] downstream of the nozzle. In all these
experiments the droplet size distribution in the near nozzle region is difficult to characterize due to
the high turbulence intensity and high opacity. Recently there have been advances in using ultrasmall
angle x-ray scattering [19] and refractive index matching with planar laser-induced fluorescence [20]
in order to probe the near nozzle region of the jet.

There has been significant progress in simulating two-phase flows using high resolution grids
that can describe detailed deforming interfaces and thus capture the formation of droplets from
instabilities of liquid sheets [21–24]. The aim is to, for example, simulate primary atomization
and determine the resulting droplet size distributions. The focus of these simulations has been to
determine the liquid core length and the resultant characteristic droplet diameter. However, in most
applications, two-phase jet flows are characterized by a large separation of scales ranging from a
few hundred microns (droplet scale), to the order of millimeters (nozzle scale), and up to meters
(jet far field or plume). In environmental applications this separation of scales can be even larger.
Direct numerical simulations of such systems becomes intractable due to the high computational
cost involved in attempting to capture all relevant scales. Modeling approaches are needed, and
focus on providing averaged or “coarse-grained” solutions. Such approaches must make judicious
choices weighing computational cost with accuracy and considering how much details about the
simulated phenomena are needed. In the present work we consider levels of description typical of
coarse-scale large eddy simulations (LES) and we follow the approach of Ref. [25] that couples
population dynamics equations with Eulerian LES for both the continuous and dispersed phases
(population densities of droplets of various sizes).

Even though limited to applications with relatively low volume fractions, Eulerian approaches
can be advantageous since they are not constrained by the number of droplets, as the distribution of
droplets in each size range is described by a continuous concentration field [26,27]. The approach
used in Ref. [25] focused on the secondary breakup and transport of droplets in a turbulent jet subject
to a uniform crossflow. The model was validated by comparisons of the relative size distribution
from their coarse mesh LES with laboratory experimental data [18], showing reasonably good
agreement. Such coarse LES have a significantly lower computational cost than DNS but do not
resolve phenomena associated with the primary breakup zone near the nozzle and the resulting
near-nozzle size distributions. Instead, a monodisperse size distribution is commonly used as inflow
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FIG. 1. Schematic diagram of the hybrid ODE-LES modeling approach: Between the nozzle and the end of
the 1D ODE model region, the size distribution is obtained by integrating a 1D ordinary differential equation
for the centerline concentrations. The results are used as inflow concentrations for the Eulerian-Eulerian LES
further downstream.

in such cases, but this is not sufficiently realistic. In the present paper we develop a hybrid modeling
approach that allows us to specify more realistic inlet size distributions for use in a coarse LES
of a turbulent jet. As shown schematically in Fig. 1 the LES starts some distance downstream of
the experimental nozzle, where the initial jet has spread sufficiently so that it can be resolved by
the coarse LES mesh. We do not model the primary breakup processes via fine-grid LES or DNS,
but rather model droplet breakup due to turbulence at smaller scales than what we can resolve
initially in our simulation using a one-dimensional version of the population dynamics approach
(denoted as 1D ODE model) as a reduced order parcel model for these processes. Moreover, using a
simplified (eddy-viscosity based) theory of turbulent jet evolution to account for the radial turbulent
transport of centerline concentrations, the approach predicts the actual rather than the relative
concentration distribution at the centerline. The 1D ODE population dynamics model is validated
with experimental data available downstream, and is then used to provide the inflow size distribution
(inlet condition) for the proposed hybrid ODE-LES approach, as shown in Fig. 4.

The paper begins in Sec. II presenting the formulation and validation of a one-dimensional
reduced turbulent breakup model used to generate an inlet condition for LES. We present a LES
of a turbulent jet with oil droplets injected at the centerline in Sec. III and present results for two
droplet Weber numbers in Sec. IV. Conclusions are presented in Sec. V.

II. ONE-DIMENSIONAL ODE MODEL

Following the approach of Ref. [25], the size distribution of drops is assumed to be governed
by a population dynamics equation including the effects of advection, radial diffusion, and droplet
breakup due to turbulence. In general, one can include other source terms for coalescence, evapo-
ration, or aggregation into the framework but here we focus on dilute turbulent jets and limit the
discussion to droplet breakup.

A. Model development

We begin using a 2D polar coordinate system to develop the model with z as the axial and r the
radial coordinate. The origin is at z = 0 corresponding to the nozzle exit shown in Fig. 1. We use a
Reynolds-averaged Navier-Stokes (RANS) formulation (unlike the eddy-resolving LES case treated
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in Ref. [25]) coupled with a simple eddy-viscosity approach. The 2D approach is then cast as a 1D
problem by only considering the centerline evolution (r = 0).

The total concentration field of oil droplets is discretized into a finite number of bins based on
the droplet diameter. The total concentration is related to the concentration in each bin through the
equation

c(z, r) =
N∑

i=1

Vini(z, r), (1)

where N is the total number of bins used to discretize the droplet size range, ni is the number of
droplets of size di per m3 of fluid, and Vi = (π/6)d3

i is the volume of a droplet of diameter di. The
overbar denotes RANS averaging. The population dynamics equation for the droplet concentration
including the effects of advection, radial diffusion, and droplet breakup can be written for each
droplet size as

w
∂niVi

∂z
+ v̄r

∂niVi

∂r
= Sb,i Vi + DT

r

∂

∂r

(
r

∂

∂r
niVi

)
, (2)

where v̄r and w are the mean radial and axial velocities, respectively, and Sb,i Vi is the droplet
breakup source term to model the change of the concentration due to droplet breakup, to be
described later. The eddy diffusivity DT is assumed to be independent of radial position and only
depend on z. The rise velocity of the individual droplets has been neglected as it would be small
compared to the jet centerline velocity in the near nozzle region. The molecular diffusivity is also
neglected since typically D � DT .

The mean velocity is modeled following the classic eddy-viscosity approach. The conservation
of mass and momentum in a round turbulent jet, expressed in polar coordinates using the boundary-
layer approximation, read

∂w

∂z
+ 1

r

∂ (rv̄r )

∂r
= 0, (3)

w
∂w

∂z
+ v̄r

∂w

∂r
= νT

1

r

∂

∂r

(
r
∂w

∂r

)
. (4)

Above, νT is the z-dependent eddy viscosity. Again, the molecular viscous diffusion term is
neglected in the high Reynolds number cases considered.

The mean velocity profile using the assumption of a similarity variable can be written as [28]

w(z, r) = w0(z) f (η), (5)

where η = r/(z − z0) is the similarity variable. For the case of r-independent eddy viscosity, the
resulting self-similar velocity profile f (η) reads [28,29]

f (η) = 1

(1 + α2η2)2 , (6)

where the coefficient α is related to the spreading rate S of the jet α2 = (
√

2 − 1)/S2. The
downstream centerline velocity, jet width, and dissipation can thus be deduced:

w0

w(z)
= 1

Cu

( z

DJ
− z0

DJ

)
, r1/2 = S(z − z0),

εDJ

w3
0

= C
( z

DJ
− z0

DJ

)−4
, (7)

where Cu = 6, S = 0.1, and C = 65 [30–32] are empirically determined constants, z0 is the virtual
origin of the jet, and DJ is the nozzle diameter.

Next, we consider the droplet concentration Eq. (2). Similar to Eq. (7), we aim for a formulation
that describes the centerline concentration evolution as function of z only, and must therefore replace
the radial derivatives term with a suitable approximation. To this end we assume that that the relative
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radial dependence of the solution is unaffected by the source term. Setting Sb,i = 0 in Eq. (2), the
concentration in each bin obeys the same evolution equation of the total mean concentration c given
by

w
∂c

∂z
+ v̄r

∂c

∂r
= DT

r

∂

∂r

(
r

∂

∂r
c

)
(8)

that is amenable to solution using a similarity variable. To complete the similarity solution, one must
express it in terms of the total scalar flux injected at the source Q0, defined as

Q0 = 2π

∫ ∞

0
w(z, r) c(z, r) r dr, (9)

which remains constant independent of z.
We can introduce a nondimensional scalar profile similar to Eq. (5) for Eq. (8) according to

ci(z, r)

c0,i(z)
= φ(η) = c(z, r)

c0(z)
. (10)

In order to find φ(η) we can substitute Eq. (10) into Eq. (8). Using the expressions for the self-similar
velocity profile and the evolution of the mean centerline velocity field described in Eqs. (6) and (7),
we obtain an ordinary differential equation (ODE) for φ(η),

D−1
T η(1 + α2η2)2φ′′ +

(
D−1

T (1 + α2η2)2 + Cuw0DJη
2

2
(1 + α2η2)

)
φ′ + Cuw0DJηφ = 0. (11)

In order to write Eq. (11) in terms of α and the turbulent Schmidt number ScT = νT /DT , we note that
for the constant eddy-viscosity solution CuDJw0 = 8α2νT [28]. Equation (11) can then be rewritten
as

Sc−1
T η(1 + α2η2)2φ′′ + [

Sc−1
T (1 + α2η2)2 + 4α2η2(1 + α2η2)

]
φ′ + 8α2ηφ = 0. (12)

The solution to the above equation that monotonically decreases away from the centerline is
given by [29]

φ(η) = 1

(1 + α2η2)2ScT
. (13)

Equation (13) is an exact solution to (8) but only approximately valid for the individual bin
concentration fields as we had neglected the breakup source term in its derivation (for which
no similarity solution exists in general). Note however that we only make this approximation in
evaluating the radial derivative term, and then set η = 0. Substituting Eqs. (6) and (10) into Eq. (2)
we obtain

w0(z) f (η)
∂

∂z
[n0,i(z)φ(η)] = Sb,i + 1

r

∂

∂r

(
rDT

∂

∂r
[n0,i(z)φ(η)]

)
. (14)

Substituting the similarity solution given by Eq. (13), evaluating the derivatives with respect to r,
and setting r = η = 0 we obtain the centerline evolution of each bin’s number concentration,

d

dz
n0,i(z) = Sb,i(z, 0)

z

w0CuDJ
− n0,i(z)

z
. (15)

Equation (15) describes a system of ODEs that needs to be solved numerically to obtain the
evolution of the individual droplet concentrations, accounting for droplet breakup and turbulent
transport at the centerline. Note that the breakup source term Sb,i does not alter the decay rate
of the overall concentration c(z) defined through Eq. (9). This can be verified by multiplying
Eq. (15) by the corresponding droplet volume Vi and summing over all droplet sizes and noting
that

∑
i Sb,iVi = 0.
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TABLE I. Summary of experimental conditions for the different cases.

No. DJ (mm) Q (l/min) UJ (m/s) σ (N m−1) μd (Pa s)

Expt. 1 3 5 11.8 15.5 × 10−3 5 × 10−3

Expt. 2 1.5 1.5 14.1 15.5 × 10−3 5 × 10−3

To complete the model description, we summarize how the droplet breakup source term Sb,i is
modeled. Following [25] we write

Sb,i(z, 0) =
N∑
j>i

P(di, d j )g(z, 0, d j )n j (z, 0, d j ) − g(z, 0, di )ni(z, 0, di ). (16)

The first term on the right-hand side of Eq. (16) represents the birth of droplets of size di due to the
total contribution from breakup events of larger droplets of diameter dj . The second term accounts
for the death of droplets of size di due to breakup. P(di, d j ) is the probability of formation of a
droplet of size di due to the breakup of a parent droplet of size dj . The breakup is considered to
be binary, and P(di, d j ) is formulated based on the formation energy required to form the daughter
droplets of size di and a complementary droplet to ensure volume conservation [10,25].

The breakup frequency g(z, 0, di ) is formulated based on the popular method of modeling
breakup based on encounter rates of turbulent eddies and their characteristic fluctuations with
droplets of a certain size [10,33]. These models were limited to droplet-eddy collisions in the inertial
range of turbulence. Aiyer et al. [25] extended these models by using a second order structure
function to characterize the eddy fluctuation velocity including the viscous range. The breakup
frequency is expressed as a function of the Reynolds number (Rei) based on droplet diameter and
a velocity scale defined as u(di ) = (εdi )1/3, the Ohnesorge number (Ohi) of the dispersed phase
controlling the relative importance of viscosity to surface tension of the droplet, and the density
and viscosity ratio (
i) of droplet to carrier flow fluid. These nondimensional numbers are defined
below:

Rei = ε1/3d4/3
i

ν
, Ohi = μd√

ρdσdi
, 
 = μd

μc

(
ρc

ρd

)1/2

. (17)

The breakup frequency for a given value of 
 = 5.45 then takes the form

gi(Rei, Ohi; 
) = K∗

τb,i
10G(Rei,Ohi ), G(Rei, Ohi ) = a [log10(Rei )]

b + c [log10(Rei )]
d − e, (18)

where K∗ = 0.2 is a empirically determined [25] dimensionless constant and τb,i = ε−1/3d2/3 is the
breakup timescale for an eddy of size equal to that of the droplet. The fits for parameters a–e as
functions of Oh are provided in Ref. [25].

B. Model validation

We validate the 1D ODE model in Eq. (15) with data from turbulent oil jet experiments performed
by Ref. [17]. The experimental setup consists of a cylindrical tank with a diameter of 3 m and a
height of 6 m with crude oil being injected at a controlled temperature at various flow rates. The
details of the cases used in this work are provided in Table I. The droplet size distribution for each
case was measured 2 m above the nozzle exit using a LIST-100X laser diffractometer. For each
experiment oil volume fractions (i.e., oil concentration of a particular bin, normalized by the total
concentration of all bins) were provided for 29 logarithmically spaced droplet size classes ranging
from 4.5 to 460 μm. Droplets larger than 460 μm could not be recorded by the instrument. The
experimental data are reported as a relative volume fraction of oil for each size at the measurement
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FIG. 2. (a) Relative number density distribution of Expt. 1 (blue square) and Expt. 2 (red circle) at z = 2 m.
The y axis is scaled differently for visualization purposes. The right axis depicts the size distribution from
Expt. 1 while the left axis depicts the size distribution from Expt. 2. The dashed line denotes the fit of the
tail of the distribution with F1(d ) = A2d−4 and F2(d ) = A1d−6. The fitted constants are A1 = 1.28 × 10−6 and
A2 = 6.76 × 10−14. (b) Comparison of number density distribution from the 1D ODE model for Expt. 1 ( )
and Expt. 2 ( ) and corresponding experimental data (blue square, red circle) at measurement location.

location. In order to make comparisons with the 1D ODE model, we first need to determine the total
oil concentration of the reported distribution.

The overall centerline concentration can be determined as a function of downstream distance
Schmidt number ScT and the inflow rate Q0 using Eq. (9). Substituting the similarity profiles for
w(z, r) and φ(z, r) into the equation we obtain

Q0 = 2πz2
∫ ∞

0

w0(z)

(1 + α2η2)2

c0(z)

(1 + α2η2)2ScT
η dη. (19)

The integral in Eq. (19) can be evaluated and yields c0(z)w0(z)(2α2)(2ScT + 1)−1. We can therefore
evaluate the centerline concentration as a function of downstream distance z and the centerline mean
velocity w0(z) as

c0(z) = Q0α
2(2ScT + 1)

πw0(z) z2
. (20)

Given the known total oil injection rate Q0 in the experiments, the total (all sizes) centerline oil
concentration as a function of downstream distance c0(z) can be obtained using Eq. (20). This
result would be expected to include both the concentration measured by the instrument and the
unmeasured concentration of larger drops. The limitation on the maximum measurable drop size is
expected to lead to an underestimation of the total oil volume at the measurement location, since we
expect at least some of the drops to be larger than 460 μm. An extrapolation approach will be used
to augment the measurement data.

We define the number density, as the number concentration ni normalized by the bin width, as
the width of the bins used in the experiments is not necessarily the same as that used in the model,
i.e.,

n∗
i = ni

δdi
, (21)

where ni is the number of droplets per m3 fluid in bin i with a bin width δdi = (di+1 − di−1)/2
for i = 2 to N − 1, δd1 = d2 − d1 and δdN = dN − dN−1. The normalization ensures that the result
is independent of the discretization of the size range (bin width). The symbols in Fig. 2(a) show
the experimentally measured relative number density n∗

rel as a function of drop diameter at the
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measurement location z = 2 m, for both Expt. 1 and Expt. 2. The units for the relative number
density are number of droplets per m3 of fluid per bin width μm−1 normalized by the total
oil concentration of the measured distribution. We can see that the scaling of the relative size
distribution follows two distinct power-law regimes for the small and large droplets. In order to
quantify the unmeasured concentration, we smoothly extend the tail of the distribution to the nozzle
diameter DJ using a fitting function F (d ). This step will account for the contribution of droplets
of size d > dmax to the total concentration. The unmeasured volume fraction can then be calculated
by integrating the fitted particle size distribution F (d ) from dmax = 460 μm to the largest possible
droplet size, here assumed to be the nozzle diameter DJ ,

φun =
∫ Dj

dmax

v(d ) F (d ) dd, (22)

where v(d ) = π/6 d3 is the volume of the particle with diameter d (internal coordinate for the size
range discretization). The concentration in the experimental distribution can be calculated as

cdist = c0(z = 2m)

1 + φun
. (23)

Using Eqs. (20), (22), and (23) we can determine the fraction of the concentration measured
by limiting the maximum diameter to dmax = 460 μm. For the case with d = 1.5 mm and Q =
1.5 l/min we find that the measured concentration accounts for 92.86% of the total, whereas for d =
3 mm and Q = 5 l/min the measured concentration describes only 44% of the total concentration.
Thus for the case with the larger nozzle diameter, restricting the maximum droplet size to 460 μm
would underestimate the total volume of oil measured. Therefore, for our validations and subsequent
simulations, we choose the maximum droplet size to be equal to that of the nozzle.

For the purpose of validation, we discretize the droplet size range into N = 20 bins, with the
maximum diameter d20 = DJ . We have tested the sensitivity of the results to the number of bins used
to discretize the droplet size range and find that 20 bins is sufficient to accurately capture the size
distribution. The initial droplet concentration is determined by Eq. (20) at a distance of z = 2 DJ

from the nozzle and a potential core region is assumed between 2–6 DJ after which the velocity
and dissipation decay according to Eq. (7). Experimental data [16, 32] suggest that self-similarity is
valid starting from z ≈ 15–20 DJ for the mean axial velocity and z ≈ 10 DJ for the mean dissipation
rate. As will be shown in the subsequent section on model validation, we find that assuming that the
self-similar solution is valid even in the near nozzle (from z = 6–10 DJ ) leads to accurate model
predictions for the far field (see Fig. 2).

The entire inflow number concentration was placed into the largest bin d20, i.e., assuming that
the injection begins at the nozzle with drops of diameter equal to the jet diameter. The number
concentration was obtained by dividing the concentration in a bin by the volume of a single drop
with diameter equal to that corresponding to the bin size. The concentration for all other bins were
initially set to zero. The physical properties of the oil and inflow conditions of the experiments are
summarized in Table I. The Schmidt number is set to ScT = 0.7 which is in the range of commonly
used values in literature for passive scalars in turbulent jets [34,35]. We then numerically solve the
set of ODE’s Eq. (15) for the number concentration (number of droplets per m3 of fluid) of each
droplet size, from z = 2 DJ to z = 666 DJ (corresponding to z = 2 m), also using Eqs. (7), (20),
and (16).

The total experimental distribution for each case was calculated by multiplying the relative
size distribution by the total concentration obtained from Eq. (23). This renormalization ensures
that the total oil flux at the measurement location in the experiment is equal to the source flux
Q0. The number density from the model is compared to the experimental results at z = 2 m for
Expt. 1 and Expt. 2 in Fig. 2(b). We see that the model not only predicts the size distribution in
the experimental size range, but also smoothly extends the distribution for larger sizes. The total
concentration distribution can then be reconstructed using Eq. (10).
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FIG. 3. (a) Parametrized jet centerline velocity (blue line) and dissipation (red line), used as an input to
the 1D ODE model. (b) Scaled centerline number concentration n2: d = 18.5 μm (magenta line), 5 × n7:
d = 76 μm (blue line), 10 × n9: d = 134 μm (black line), and 10 × n12: d = 313 μm (red line) as a function
of downstream distance. The initial conditions for LES are determined by the concentration values at z = 10 DJ

depicted by the dashed line.

C. Inlet condition for large eddy simulations

In the previous section it was shown that the 1D ODE model can predict the average size
distribution of oil droplets at the centerline, showing good agreement with experimental data sets.
This model can be considered as sufficient if the only aim is to predict the time-averaged size
distribution. If one also wishes to predict the variability of the size distribution and radial concen-
tration fluctuations in each size bin, taking into account the effect of the underlying turbulence, the
use of LES is required [25]. In this section we describe using the 1D ODE model to generate an
inlet condition for LES bridging the near nozzle region to further downstream, where LES begins
to resolve the flow. We explain the approach for the case with DJ = 3 mm and Q = 5 l/min and
assume that the LES grid is coarse such that only at z > 10 DJ can it begin to represent the eddying
motions inherent in the turbulent jet.

The 1D ODE model requires as input the centerline velocity and dissipation, for which we
utilize Eq. (7). These inputs are plotted in Fig. 3(a), where we plot the evolution of the centerline
velocity and dissipation as a function of downstream distance. The 1D ODE model [Eq. (15)] is
then integrated numerically and the results, i.e., the normalized centerline concentration evolution
of the different droplets sizes, are shown in Fig. 3(b). As can be seen, in the first part the breakup
process dominates the evolution (concentration of the smaller drop sizes increases downstream),
while downstream (after around z/DJ ∼ 30), all concentrations decrease monotonically, where
fluid transport (axial advection and radial turbulent transport) dominates the evolution of con-
centrations. In order to include some of the droplet breakup process in the LES domain, we
chose z = 10 DJ downstream of the nozzle exit as the location where the size distribution from
the 1D ODE model is used as the inlet condition for the LES. This location is depicted by the
dashed line in Fig. 3(b). The jet width at this location can be calculated using Eq. (7) to be
r1/2 = 0.1z = DJ (this width also sets the diameter of an equivalent “coarse jet for the LES” as
Dsim ≈ 2 DJ , see discussion in Aiyer et al. [25]). The corresponding centerline velocity shown in
Fig. 3(a) at z = 10 DJ is used as the jet injection velocity. It is important to note that there is no
special significance of choosing z = 10 DJ . If a different location, for example, for z = 13 DJ ,
we would use the corresponding size distribution from Fig. 3(b) and injection velocity from
Fig. 3(a).
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III. LES OF POLYDISPERSE DROPLETS IN A TURBULENT JET

Large eddy simulations (LES) are effective in resolving the large and intermediate scale struc-
tures of a turbulent flow, and only require modeling of the unresolved subgrid turbulent effects. The
particles are modeled using an Eulerian description as concentration fields for each droplet size.
This method has been successfully implemented to study monodisperse plumes [27,36–38] and
polydisperse oil plumes in [25]. In the following sections we review the numerical methods used
for the LES, briefly describing the simulation setup.

A. Eulerian-Eulerian LES equations

Let x = (x, y, z) with x and y be the horizontal coordinates and z the vertical direction, and let
w = (u, v,w) be the corresponding velocity components. The jet and surrounding fluid are gov-
erned by the three-dimensional incompressible filtered Navier-Stokes equations with a Boussinesq
approximation for buoyancy effects:

∇ · ũ = 0, (24)

ũ
∂t

+ ũ · ∇ũ = − 1

ρc
∇P̃ − ∇ · τd +

(
1 − ρd

ρc

)∑
i

(Vd,iñi )ge3 + F̃e3, (25)

∂ ñi

∂t
+ ∇ · (ṽiñi ) + ∇ · πi = S̃b,i + q̃i, i = 1, 2, . . . , N. (26)

A tilde denotes a variable resolved on the LES grid, ũ is the filtered fluid velocity, ρd is the density
of the droplet, ρc is the carrier fluid density, Vd,i = πd3

i /6 is the volume of a spherical droplet of
diameter di, τ = (ũu − ũũ) is the subgrid-scale stress tensor, ñi is the resolved number density of the
droplet of size di, F̃ is a locally acting upward body force to simulate the jet momentum injection,
and e3 is the unit vector in the vertical direction. The filtered version of the transport equation for
the number density ñi(x, t ; di ) is given by Eq. (26). The term πi = (ṽini − ṽiñi ) is the subgrid-scale
concentration flux of oil droplets of size di (no summation over i implied here) and q̃i denotes the
injection rate of droplets of diameter di. In order to capture a range of sizes the number density
is discretized into N = 20 logarithmically distributed bins for droplets between d1 = 14 μm up to
dNd = 3 mm. We then solve N separate transport equations for the number densities ñi(x, t ; di ) with
i = 1, 2, . . . , 20.

Closure for the SGS stress tensor τd is obtained from the Lilly-Smagorinsky eddy-viscosity
model with a Smagorinsky coefficient cs determined dynamically during the simulation using
the Lagrangian averaging scale-dependent dynamic (LASD) SGS model [39]. The SGS scalar
flux πi is modeled using an eddy-diffusion SGS model. We use the approach of prescribing a
turbulent Schmidt/Prandtl number Prτ = Scτ = 0.4 [27] (not to be confused with the RANS-level
diffusivity and Schmidt number used in the previous section for the 1D model). The SGS flux
can be parametrized as πn,i = −(ντ /Scτ )∇ñi. With the evolution of oil droplet concentrations being
simulated, their effects on the fluid velocity field are modeled and implemented in (25) as a buoyancy
force term (the last term on the right-hand side of the equation) using the Boussinesq approximation.
A basic assumption for treating the oil droplets as a Boussinesq active scalar field being dispersed
by the fluid motion is that the volume and mass fractions of the oil droplets are small within a
computational grid cell.

The droplet transport velocity ṽi is calculated by an expansion in the droplet timescale τd,i =
(ρd + ρc/2)d2

i /(18μ f ) [40]. The expansion is valid when τd,i is much smaller than the resolved
fluid timescales, which requires us to have a grid Stokes number St�,i = τd,i/τ� � 1, where τ� is
the turbulent eddy turnover time at scale �. The transport velocity of droplets of size di, ṽi is given
by [40]

ṽi = ũ + wr,ie3 + (R − 1)τd,i

(
Dũ
Dt

+ ∇ · τ

)
+ O

(
τ

3/2
d,i

)
, (27)
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FIG. 4. (a) Sketch of the simulation setup. Volume rendering of the instantaneous 14 μm diameter droplet
concentration with the 1000 μm droplets visualized as dots placed randomly with density proportional to its
concentration field. (b) Inlet distribution ni (number of droplets per m3 of fluid) for LES determined by the
one-dimensional model.

where wr,i is the droplet terminal (rise) velocity, e3 is the unit vector in the vertical direction, and
R = 3ρc/(2ρd + ρc) is the acceleration parameter. The droplet concentration transport velocity field
has been modeled using the fast Eulerian approximation which includes effects of drag, buoyancy,
added mass, and the divergence of the subgrid stress tensor. A more detailed discussion of the
droplet rise velocity in Eq. (27) can be found in Yang et al. [27].

The term S̃b,i in Eq. (26) represents the rate of change of droplet number density due to breakup.
The breakup rate gi is evaluated using the fits as in [25] that depend on the local Reynolds number
expressed in terms of the local rate of dissipation. From the SGS model, the local rate of dissipation
at the LES grid scale is given by

ε(x, t ) = 2(cs�)2|S̃|S̃i j S̃i j . (28)

Equations (24) and (25) are discretized using a pseudospectral method on a collocated grid in
the horizontal directions and a centered finite difference scheme on a staggered grid in the vertical
direction [41]. Periodic boundary conditions are applied in the horizontal directions for the velocity
and pressure field. The transport equations for the droplet number densities, Eq. (26), are discretized
as in Chamecki et al. [42], by a finite-volume algorithm with a bounded third-order upwind scheme
for the advection term. A fractional-step method with a second-order Adams–Bashforth scheme
is applied for the time integration, combined with a standard projection method to enforce the
incompressibility constraint.

B. Simulation setup

A sketch of the simulation domain is shown in Fig. 4. We simulate a turbulent jet aiming to
reproduce the experiments of Brandvik et al. [17], specifically the case with nozzle diameter DJ =
3 mm and flow rate Q0 = 5 l/min. This particular case, due to the larger nozzle diameter, allows us
to use a relatively coarse mesh for the LES, while at the same time resolving a significant portion of
the breakup. For instance, the case with DJ = 1.5 mm discussed in Sec. II B would require us to have
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double the resolution in the horizontal directions in order to simulate the breakup dominated zone
in LES. The experimental setup and measurement techniques have been described in Sec. II B. We
use a hybrid approach where a population balance model is used to provide the drop concentration
injection rates at each size (qi) as inlet condition [Fig. 4(b)], and the subsequent secondary breakup
and evolution of the oil droplets is simulated using LES. As shown in Fig. 4, the simulations are
carried in a rectangular box of size (Lx, Ly, Lz ) = (1, 1, 2.5) m. The horizontal domain size has been
chosen to be large enough so that boundary effects due to the periodic boundary conditions can be
neglected. For instance, the total horizontal extent of the top of the analysis domain (at z = 1.2 m) is
10 r1/2. As will be shown below, the axial velocity is negligible for r > 2.5 r1/2. The experimental
nozzle exit is chosen as the origin in the vertical direction. The simulated jet starts at a distance
of z = 10 DJ from the origin. The simulations use a grid with Nx × Ny × Nz = 288 × 288 × 384
points for spatial discretization, and a time step �t = 6 × 10−5 s for time integration. The resolution
in the horizontal directions �x = �y = 3.47 mm is set to ensure that at the location where the LES
begins to resolve the jet (the “simulated inlet,” see below), we have at least three points across the
jet. In the vertical direction we use a grid spacing of �z = 6.5 mm enabling us to capture a domain
height 2.5 times the horizontal domain size.

The injected jet is modeled in the LES using a locally applied vertically upward pointing body
force following the procedure outlined in Aiyer et al. [25], since at the LES resolution used in the
simulation it is not possible to resolve the small-scale features of the injection nozzle. Random
fluctuations are added to the horizontal components of the momentum equation to induce transition
to turbulence. The fluctuations have an amplitude with a root-mean-square value equal to 0.1% the
magnitude of the forcing F̃ and are applied only during an initial period of 0.5 s at the forcing source.
The forcing is only applied over a finite volume and smoothed using a super-Gaussian kernel. The
method has been validated and presented in greater detail in the Appendix of Aiyer et al. [25].
The resulting injection velocity is controlled by the strength of the imposed body force F̃ applied
such that the resulting centerline velocity in the LES matches the mean centerline velocity expected
for the experiment at a distance z = 10 DJ from the experimental nozzle as shown in Fig. 3(a). The
droplet number density fields are initialized to zero everywhere. In order to avoid additional transient
effects, the concentration equations are solved only after a time at which the jet in the velocity field
has reached near the top boundary to allow the flow to be established. Based on the inlet distribution
calculated in Sec. II oil droplets are injected as follows: The number density transport contains a
source term q̃i on the right-hand side of Eq. (26) that represents injection of droplets of a particular
size. The source term is calculated based on Eq. (19) for each bin size as

q̃i = γzγxy

�x�y�z

4πα2z2
inw0(zin)ni(zin)(2α2)

(2ScT + 1)
, (29)

where w0(zin) and ni(zin) are the inlet velocity and concentration determined in Sec. II C at
zin = 10 DJ . This ensures that the total injected concentration flux at the inlet

∑
i q̃iVi is equal to

the source flux Q0 = 5 l/min from Brandvik et al. [17]. The source is centered at (xc, yc, zc) =
(0.5 m, 0.5 m, 10 DJ ) and distributed over two grid points in the z direction with weights γz = 0.7
and γz = 0.3 at zc and zc + �z, respectively, and over three grid points in the horizontal directions
with weights γxy = 0.292 at (xc, yc) and γxy = 0.177 at (xc ± �x, yc ± �y).

In order to study the effects of changing Weber number on the concentration distribution, we
perform a second simulation halving the surface tension of the oil, and thus doubling the Weber
number. The physical properties of the oil and the simulation parameters are given in Tables I
and II.

IV. RESULTS

A. Jet velocity and total concentration field

Statistics of the velocity and concentration fields are shown using a cylindrical coordinate system
with z being the axial coordinate, and supplementing the time averaging with additional averaging
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TABLE II. Simulation parameters.

No. We = 2ρc〈ε〉2/3d5/3
20

σ
σ (mN m−1) win (m/s) Dsim (mm) DJ (mm)

SIM 1 410 15.5 7 6 3
SIM 2 820 7.75 7 6 3

over the angular θ direction. The LES averaged quantities will be denoted by angular brackets while
the averaged quantities from the 1D ODE model will be denoted by an overbar.

We first examine the centerline velocity 〈w̃0(z)〉 and the jet half-width r1/2 defined as usual
according to

〈w̃(z, r1/2(z), 0)〉 = 1
2 〈w̃0(z)〉, (30)

where z is the distance downstream of the experimental injection point. Figure 5 examines the
evolution of the centerline velocity 〈w̃0(z)〉 and half-width r1/2 as a function of downstream distance
scaled by the experimental nozzle diameter DJ . The injection velocity w0 = 11.8 m s−1 at z = 0 is
used to scale the data. The inverse centerline velocity growth shown in Fig. 5 follows the expected
hyperbolic law with a decay coefficient of Cu = 6.3 calculated from the slope of the curve. This is
reasonably close to the value used in the 1D ODE model defined in Eq. (7) and experimental data
[32,43]. The jet growth in the self-similar region between z = 50 DJ and z = 300 DJ is linear. The
slope of the curve S = 0.097 compares well with values obtained in the literature of S ≈ 0.1 [32,43]
[see also Eq. (7)].

We also document the radial distribution of velocity and concentration at different downstream
locations in Fig. 6. The velocity profiles shown in Fig. 6(a) show approximate collapse on self-
similar behavior when normalized by the centerline value and plotted as a function of r/r1/2,
the radial coordinate scaled by the jet half-width. Additionally, it shows good agreement with
the constant eddy-viscosity similarity solution defined in Eq. (6) in the central part of the jet,
whereas it falls below the constant eddy-viscosity solution at larger r values, a behavior typically
ascribed to the decreasing eddy viscosity in the outer parts of the jet [28]. The DNS result from
Lubbers et al. [35], shown as the black dashed lines, agrees well with LES data also in the outer
portions of the jet. The radial profiles of the total oil concentration normalized by the centerline

FIG. 5. Downstream variation of half-width of the jet (blue circle, right axis) and the evolution of the
inverse of the averaged centerline velocity (red square, left axis) from LES. The linear fit to the data is depicted
by the black dashed line.
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(a) Velocity (b) Concentration

FIG. 6. (a) Averaged axial velocity profiles as a function of normalized radial distance. (b) Averaged
concentration profiles at z/DJ = 135 (red triangle), z/DJ = 168 (green circle), z/DJ = 211 (blue square), and
z/DJ = 243 (magenta right triangle) as a function of self-similarity variable r/r1/2. The dashed line denotes
the DNS data [35] and the solid line represents the analytical constant eddy-viscosity solution.

value at various downstream locations is shown in Fig. 6(b). Similar to the velocity profiles, the
total concentration appears to be self-similar when plotted as a function of r/r1/2. Additionally,
we plot the concentration profile derived from the constant eddy-diffusivity hypothesis, defined in
Eq. (10) with a Schmidt number ScT = 0.7 as the solid black line. We see that the analytic solution
shows agreement with the simulation results near the centerline of the jet, with discrepancies at
r/r1/2 > 0.5. Conversely, the data is in excellent agreement with the DNS data [35] across the jet
width.

The radial distribution of the concentration fluctuations root-mean square (r.m.s.) normalized by
the mean centerline concentration is shown in Fig. 7. As observed in prior simulations [35], the
concentration fluctuation r.m.s. shows an off-axis peak and in general shows good agreement with
the DNS results of Lubbers et al. [35].

FIG. 7. Radial distributions of concentration fluctuation root-mean square at z/DJ = 135 (red triangle),
z/DJ = 168 (green circle), z/DJ = 211 (blue square), and z/DJ = 243 (magenta right triangle), normalized by
centerline mean concentration, as a function of r/r1/2.
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FIG. 8. Instantaneous snapshots of concentration fields at the midplane of the jet plotted in logarithmic
scale for different droplet sizes. The domain has been cropped at z/DJ = 500 for visualization purposes.

B. Droplet size distribution

Figure 8 shows contour plots of instantaneous number density in logarithmic scale [log10(ñi )] for
four representative droplet sizes on the mid y plane as a function of x and z. The concentration of
the largest droplet size is in Fig. 8(a) and the smallest in Fig. 8(d). We can see that far away from
the nozzle the concentration of the largest size has decreased significantly due to breakup into the
smaller droplet sizes. High concentrations for the smaller sizes can be seen to occur already in the
near nozzle region due to the high dissipation rate that causes rapid droplet breakup there.

The Sauter mean diameter (D32) is often used to quantify the size distribution by defining a
characteristic diameter for a polydisperse distribution. It is defined as the volume to surface area
ratio of the distribution and is calculated from LES results using

D32 =
〈∑

i ñid3
i∑

i ñid2
i

〉
. (31)

The Sauter mean diameter is calculated locally and at every time step using the instantaneous LES
concentration and then averaged in time and polar direction θ . We plot the average D32 for the two
simulations as a function of downstream distance in Fig. 9.

The solid lines depict the results from the 1D ODE model. We see good agreement between
the mean diameter calculated by the model and LES. Increasing the Weber number reduces the
overall mean diameter due to increased breakup frequency of the larger droplets in the near nozzle
region. This reduction in mean diameter is reproduced to similar degrees in the LES results and the
1D ODE model. We can see from Fig. 9 that there is no significant change in the centerline mean
diameter beyond z = 100 DJ . This suggests that beyond this downstream position, no significant
droplet breakup occurs. It is therefore sufficient to compare the results from the LES with that of the
ODE model at z/DJ = 333 corresponding to a distance of z = 1 m from the experimental nozzle.
This allows us to save computational cost in the LES by limiting the analysis region only up to
z/DJ = 333. We recall that the 1D ODE model has been validated with the experimental data at
z/DJ = 666 (z = 2 m) in Fig. 2(b) and showed very good agreement.

The LES number concentration fields are averaged in time and the droplet size distribution 〈n∗〉
is calculated using Eq. (21) by normalizing the number concentration by the bin width. Figure 10
compares the size distribution at the centerline at z/DJ = 333 to the size distribution obtained
from the 1D ODE model at the same location. We can see that the LES and the 1D ODE model
provide very consistent predictions of the size distribution at the centerline. The error bars provide
additional information regarding the turbulent fluctuations of 〈n∗〉: they are calculated using the
root-mean square (r.m.s.) of the concentration for each droplet size at the centerline. Beyond
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FIG. 9. Evolution of Sauter mean diameter D32 as a function of downstream distance from the nozzle for
SIM 1 (blue square) and SIM 2 (red circle). The D32 curves from the ODE model for both cases are depicted
by a solid line.

z/DJ = 333 the evolution of each of the bins concentration is affected only by transport and not by
breakup. This allows us to carry out an additional validation step by using Eq. (15) with Sb,i = 0 to
calculate the thus extrapolated LES size distribution at z/DJ = 666. The resulting distribution from
the extrapolated LES is compared with the experimental measurements in Fig. 10 (blue squares
compared to red dashed line), with excellent agreement.

The size distribution for the case with increased Weber number is shown in Fig. 10(b). We can see
that due to increased breakup of the larger sized droplets, the number density of the smaller-diameter
bins is larger, and the distribution has a higher slope throughout. This effect is also observed in
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FIG. 10. (a) Comparison of centerline droplet size distribution from experimental data (blue square, right
axis) at z/DJ = 666 with extended LES results (also right axis, red dashed line). The latter is obtained by
solving Eq. (15) using the LES data as inlet condition at z/DJ = 333 (left axis) as initial condition (these
LES data at z/DJ = 333 are shown by the top red dashed line). Error bars display the r.m.s. at z/DJ = 333
due to turbulence. The 1D ODE model applied between z/DJ = 2 and 333 is depicted by (circle, left axis).
(b) Comparison of droplet size distribution from SIM 2 (blue dotted line) with 1D ODE model (circle) and
SIM 1 size distribution (red dashed line) at z/DJ = 333.
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(a) SIM 1 (b) SIM 2

FIG. 11. Decay of centerline concentration of different droplet sizes as a function of downstream distance
from the nozzle. The symbols represent the LES evolution for (a) SIM 1 and (b) SIM 2. The symbols are
d = 14 μm (red triangle), d = 100 μm (green circle), d = 550 μm (blue square), and d = 3 mm (magenta
right triangle). The total concentration from SIM 1 and SIM 2 is represented by the black dashed line.

experiments when dispersant is premixed with oil [17,18,44,45]. This shift of the concentration
towards the smaller scales results in the lower Sauter mean diameter observed in Fig. 9 for SIM 2.

LES allows us to analyze the evolution of the droplet plumes for each droplet size. The effects of
breakup are clearly visible in Fig. 11. For the largest droplet size d = 3 mm we can see a rapid decay
in the breakup dominated zone, approximately z < 50 DJ after which the change in concentration is
primarily transport dominated. The change of initial slope and shape of the profiles among different
droplet sizes is nonmonotonic. The smallest droplets of size d = 14 μm do not break down further
and its bin acts as a sink for all the other sizes, resulting in a concentration profile that appears
smoother and more monotonic than the other bins’ mean concentration. The effect of increasing the
Weber number is to increase the rate of breakup of the larger droplets due to the reduction in surface
tension, leading to the increase in concentration of the smaller droplet sizes as can be seen from
Fig. 11(b). Intermediate sized droplets behave as both a source, breaking up into smaller droplets,
and a sink, where larger droplets break up into the intermediate ones. This trend can be observed
from the profile of the d = 550 μm droplet in Fig. 11(b) that shows a peak near the nozzle followed
by a decay of concentration. The profiles of the total concentration (summed over all bins) c̃0(z) for
both simulations are shown in Fig. 11 as dashed lines. As expected, we confirm that the evolution
of the total concentration is fairly insensitive to the Weber number.

Figure 12 depicts the downstream evolution of the inverse of the centerline concentration for
SIM 1 (open symbols) and SIM 2 (filled symbols) for different droplet sizes. The slope of the
growth of the inverse concentration is size dependent, with a maximum slope for the largest droplet
size, due to their rapid breakup. We can see that the change in slope for the different droplet sizes
is nonmonotonic, with the concentration of the d = 550 μm droplet decaying faster than the d =
100 μm droplet concentration. Increasing the Weber number results in a shallower slope for the
smaller sizes as can be seen from the solid symbols. Conversely, for the larger sizes (primarily
acting as sinks), the growth of the inverse concentration is more rapid due to the increased breakup
frequency.

C. Temporal variability of size distribution

As discussed earlier, LES allows us to calculate the variability of the droplet size distribution that
averaged integral models or RANS cannot obtain. We proceed to quantify the radial distributions of
the mean and standard deviations of practically relevant quantities such as the Sauter mean diameter,
the total surface area, and the inverse droplet breakup timescale.
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FIG. 12. Evolution of the inverse centerline concentration for SIM 1(open symbols) and SIM 2 (closed
symbols). The symbols are d = 14 μm (red triangle), d = 100 μm (green circle), d = 550 μm (blue square),
and d = 3 mm (magenta right triangle).

We begin by examining the radial distribution of the mean diameter defined in Eq. (31) normal-
ized by its centerline value at different downstream locations in Fig. 13. The mean diameter exhibits
a weak decay with radial distance, with the centerline value decreasing by 20% at r/r1/2 = 1.75. The
standard deviation of the Sauter mean diameter, normalized by the mean diameter at the centerline,
is relatively low near the center (around 10%) but increases with radial distance towards the edge
of the jet. We observe a maximum variability for the location farthest downstream from the nozzle.
The increased variability at the edge of the jet can be attributed to the entrainment of fluid at the
edges that results in increased dilution of concentration. Increased variability in D32 means that the
size distribution displays changes as function of time at a particular location. Increasing the Weber
number has minimal effect on the radial profiles of the normalized mean diameter. The variability
is unchanged near the centerline of the jet but is slightly reduced towards the edge downstream of
the nozzle.

(a) SIM 1 (b) SIM 2

FIG. 13. The top panel depicts the radial distribution of the averaged Sauter mean diameter D32 normalized
by its centerline value while the bottom panel depicts the normalized standard deviation at z/DJ = 135 (red
line), z/DJ = 168 (green dashed line), z/DJ = 211 (blue dotted line), and z/DJ = 243 (magenta dashed line)
for (a) SIM 1 and (b) SIM 2.
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(a) SIM 1 (b) SIM 2

FIG. 14. The top panel depicts the radial distribution of the averaged total surface area Ã normalized by
its centerline value while the bottom panel depicts the normalized standard deviation at z/DJ = 135 (red line),
z/DJ = 168 (green dashed line), z/DJ = 211 (blue dotted line), and z/DJ = 243 (magenta dashed line) for
(a) SIM 1 and (b) SIM 2.

Next, we examine the total surface area of the oil-water interface per unit volume of fluid, defined
as

Ã(x, t ) =
∑

i

ñi(x, t ) πd2
i . (32)

This quantity is critical in determining reaction rates for processes that occur at the surface of
the droplet. The radial profiles of the total area closely follow those of the mean concentration,
and exhibit a reasonable collapse when plotted against the self-similar coordinate. Interestingly,
the temporal variability as quantified by means of the r.m.s. of Ã (Fig. 14) exhibits the opposite
trend as compared to the Sauter mean diameter variability. There is maximum variation about the
mean total area at about r/r1/2 ∼ 0.6, which subsequently decays towards the edges. The shape of
the profiles is similar to the concentration variance shown in Fig. 7. We see that the normalized
profiles for the mean and standard deviation are relatively unchanged with changing Weber number.
Such information expands on that provided by reduced or RANS type models that are capable of
quantifying only the mean of these quantities.

The breakup source term S̃b,i normalized by the droplet concentration ñi provides quantification
of the inverse timescale for the breakup:

f̃i =
〈

S̃b,i

ñi

〉
. (33)

This ratio can be interpreted as an inverse timescale for droplet breakup to appreciably change the
concentration of a particular size. Figure 15 depicts the near nozzle evolution of five representative
droplet sizes as a function of distance from the nozzle. We can see that the values are high near
the nozzle exit where the breakup is rapid. The negative sign denotes that the d = 3 mm and d =
2261 μm droplets, on average, act as sources for the smaller ones. A value of f̃ = −60 at the
centerline means that it takes 1/60 of a second for the local breakup to appreciably change the
concentration of that droplet size. The values of the inverse timescale are also nonmonotonic with
respect to droplet size. For instance, the timescale for d = 100 μm droplet size is more rapid than
the d = 14 μm droplet size. We can see that the inverse timescale increases for SIM 2 indicating
that at larger Weber number the concentration changes more quickly, on a shorter timescale. The
radial profiles for the mean inverse timescale and its variability at z/DJ = 70 are shown in Fig. 16.
From the top panel of Fig. 16(a) we observe that the breakup is most rapid slightly off-center of the
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(a) SIM 1 (b) SIM 2

FIG. 15. Evolution of the inverse breakup timescale with downstream distance for (a) SIM 1 and (b) SIM
2. The lines are d = 14 μm (red line), d = 100 μm (green dashed line), d = 550 μm (blue dotted line), d =
2261 μm (magenta dashed line), and d = 3000 μm (black dashed line).

jet and then decays towards the edge of the jet. We can see that there is a high variability across
the jet width, reflecting the underlying intermittency of the turbulent flow. Although an increase in
Weber number results in a higher inverse breakup timescale, the normalized radial profiles of the
mean and variance appear relatively unchanged.

This variability analysis from LES can be used as a tool to determine inherent fluctuations due
to turbulence in measured quantities characterizing the droplet size distribution. Droplet Weber
number, although having a significant effect on the average distribution of various quantities, leaves
the normalized radial profiles of the mean and standard deviations relatively unchanged.

V. CONCLUSIONS

Accurate prediction of the droplet size distribution in a turbulent flow is paramount in understand-
ing the dynamics of numerous multiphase processes. We have applied a population balance model
coupled with LES to study the evolution of oil droplets in an axisymmetric turbulent jet. In order
to provide more realistic injection conditions for coarse-grid LES, we develop a 1D ODE model

(a) SIM 1 (b) SIM 2

FIG. 16. The top panel depicts the radial distribution of the averaged inverse breakup timescale t̃i = S̃b,i/ñi

normalized by its centerline value while the bottom panel depicts the normalized standard deviation for (a) SIM
1 and (b) SIM 2. The lines are d = 14 μm (red line), d = 100 μm (green dashed line), d = 550 μm (blue
dotted line), and d = 3000 μm (magenta dashed line) at z/DJ = 70.
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that predicts the evolution of the dispersed phase at the centerline turbulent jet by incorporating
effects of droplet breakup and turbulent transport. The model is based on classical turbulent jet
theory and is validated with experiments of Brandvik et al. [17], obtaining good agreement. The 1D
ODE model is then used to provide an injection condition for a coarse-grid LES of a turbulent jet.
We perform two simulations with distinct Weber numbers to study surface tension effects on the
evolution of the droplet size distributions. The axial profiles of the individual droplet fields show
interesting differences in the breakup dominated zone, exhibiting a size dependent decay rate. The
radial profiles for the velocity and total concentration are, to a good approximation, self-similar and
show good agreement with DNS results. We observe an off-axis peak for the total variance, similar
to that observed in the evolution of a passive scalar. The droplet size distribution from the LES
showed excellent agreement with both experimental data and the 1D ODE model. Additionally, LES
is able to quantify new properties of the size distribution generated due to the inherent variability of
turbulence. We quantify the radial profiles of the mean and variance of the characteristic diameter,
total area available for surface reactions, and the normalized breakup source terms. In accordance
with numerous experiments, we observe that the Sauter mean diameter, defined as the volume to
surface area ratio of the distribution, decreases with increasing Weber number. This can be attributed
to increased breakup of larger droplets resulting in a steeper slope in the small-scale size range of the
droplet size distribution. Although demonstrating a significant effect on the averaged droplet size
distribution, the Weber number has minimal effect on the radial profiles of the normalized standard
deviations of key quantities.

Data are publicly available through Gulf of Mexico Research Initiative Information and Data
Cooperative (GRIIDC) at [46].
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