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Expanded scaling relations for locomotion in sloped or cohesive granular beds
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Dynamic similarity, while commonly applied in fluid systems, has recently been ex-
tended to locomotion problems in granular media. The previous work was limited to
locomotors in cohesionless, flat beds of grains under the assumption of a simple frictional
fluid rheology. However, many natural circumstances involve beds that are sloped or
composed of cohesive (e.g. damp or powdery) grains. Here we derive expanded scaling
relations inclusive of these phenomena. To validate the proposed scalings, we perform
discrete element method simulations with inclined beds and cohesive grains using rotating
“wheels” of various shape families, sizes, and loading conditions in accord with the pro-
posed scaling laws. The data show a good agreement between scaled tests, suggesting the
usage of these scalings as a potential design tool for off-road vehicles and extraplanetary
rovers and as an analysis tool for biolocomotion in soils.

DOI: 10.1103/PhysRevFluids.5.114301

I. INTRODUCTION

Locomotion problems in granular media have been studied in experiments for various purposes
from understanding the nature of animals [1–3], to guiding the design of vehicles on unprepared
ground [4], and even planetary explorations [5,6]. Fully resolved simulations using the discrete
element method (DEM) [7,8] have also been employed, especially in the cases where detailed
information such as the flow field near the locomotor is of interest. In practice, engineering
terramechanics models [9–11] are developed for the design of vehicles which typically require
many empirical parameters. Resistive force theory [12,13], though initially proposed for viscous
fluids, has also shown efficacy in modeling locomotion of generic locomotors in granular media
[14,15].

Inspired by dynamic similarity in fluids problems, one option is to seek out scaling laws for loco-
motion based on a presumed granular constitutive relation. Many complexities in granular rheology
are known to exist, including history-dependent effects [16–18], anisotropy [19], hysteresis [20],
rate-dependent effects [21,22], nonlocal effects [23,24], and relaxational dynamics [25]. Including
all these effects in a continuum model would produce a very complicated and not particularly
robust set of scaling relations. In Ref. [26] scaling relations for locomotion in flat beds of dry
granular material were considered based on a model that sets aside most of these complexities and
assumes only a tension-free frictional rheology, which is independent of grain size. Despite using a
simplified model, the scaling relations obtained in Ref. [26] were shown to describe many features
of locomotion in dry flat granular beds in a number of experiments and DEM simulations. However,
terrains in nature are frequently sloped (e.g., hills, piles, dunes) and the grains may be cohesive,
typically due to moisture or attraction from van der Waals or electrostatic forces, giving rise to
novel locomotive dynamics [27,28]. How or if scaling relations extend under these circumstances
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has remained unclear. Furthermore, since the previous scaling law was shown to be effective under
variations of gravity, if an extended scaling relation could be found, it could lead to novel protocols
for modeling extraplanetary rovers by way of experiments performed on earth that properly scale
the gravity and essential frictional/cohesive soil character of the target environment.

In this work, extended scaling relations for basic locomotive observables, such as power expen-
diture of the locomotor and its traveling velocity, are proposed for use in inclined and/or cohesive
granular beds. For verification, DEM simulations are performed using locomotors of various sizes
and three different locomotor shapes (triangle, rectangle, and hexagon) along with a variety of mass
loadings, rotation speeds, and gravities. We show the proposed scalings are satisfied in separate
studies of sloped beds and cohesive grains.

II. DIMENSIONAL ANALYSIS

Our scaling analysis begins by supposing a simple continuum model for the granular media and
analyzing its dimensional consequences. First, the media satisfies momentum balance

ρv̇ = ∇ · σ + ρb

where v is the velocity of a material point, σ the Cauchy stress tensor, ρ the density of the material,
and b the specific body force. We consider a constitutive relation that assumes wherever the density
is below a critical value, ρ0, the material is disconnected and thus stress-free (i.e., σ = 0 when ρ <

ρ0). Alternatively, in the dense state, which is described as when ρ = ρ0, we presume a frictional
and cohesive rheology, which can be concisely summarized with the system of constraints below:

ρ̇(C2 + p) = 0 and C2 + p � 0 and ρ̇ � 0,

fyγ̇ = 0 and fy = τ − μs p − C1 � 0 and γ̇ � 0,

where p is the pressure, γ̇ the shear rate, τ the shear stress, and μs the material critical friction
coefficient [29]. C1 is the cohesive shear stress that must be overcome in order to plastically shear the
material at zero pressure [30–33], and −C2 is the hydrostatic stress necessary to detach the material
in uniform expansion. In words, the first equation above states that material exiting the dense state
(ρ̇ < 0) does so when its pressure becomes critical (p = −C2), otherwise material that is above the
expansion criterion (p > −C2) can flow only incompressibly (ρ̇ = 0). The second equation above
states that either material is shearing and the stress satisfies fy = 0, or the material is not shearing
and the stress is subyield, fy < 0. For noncohesive grains, C1,C2 are zero. For cohesive grains, C1

and C2 both manifest from the same microscale source, cohesive bonds at the grain contacts, so we
assume both C1 and C2 are expressible in terms of a common characteristic cohesion stress, which
we denote as σc.

The constitutive model is free of particle size effects, which is justifiable as long as the length
scale of the locomotor and sinkage is much larger than the grain scale [23,34,35] including
possible grain-size-based cohesion length scales. Also, note that the constitutive equations above
are rate-independent; the inertial number I ∼ γ̇ /

√
p [21] is deemed too small to affect the flow

resistance. Indeed, the dependence of shear stress on rate is typically low for granular intrusion
problems, even rapid ones, because high pressure develops against the intruding surface, which
counters the large shear rate in the inertial number definition. For example, Ref. [36] modeled
the same impact problems using both a rate-dependent constitutive model and a rate-independent
model and found the difference in predicted intruder motion to be rather small (<10%) in terms
of traveling depth and time. Even though the particle inertial time scale is not particularly relevant
to the intruder’s trajectory, this does not imply that all impact observables are free of influence
from material timescales. For example, grain elasticity and intrusion speed have been shown in
experiments [37] to strongly affect the growth rate of force chains surrounding an intruder.

With the constitutive model just described, we next infer scaling relations for locomotion and
check how well they hold against a number of DEM simulations. In so doing, this study is also a de
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facto check on the validity of using the above basic continuum assumptions for these problems. We
perform a dimensional analysis similar to that in Ref. [26]. For a wheel having large out-of-plane
thickness DW and characteristic in-plane length L, one can nondimensionalize the driving inputs
and constitutive parameters to express the velocity V of the wheel and power P expended by the
wheel as follows:[

P
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for some two-output scaling function �. Here t is time, the gravitational acceleration is g, the
inclination of the bed relative to the direction of gravity is θ , the mass of the wheel is M, the
rotational speed is ω, the shape of the wheel is represented by a set f , and μw is the friction
coefficient of the wheel-bed interface. Each set of scaling tests below utilizes a fixed granular
material and fixed wheel roughness so μs and μw can be absorbed into the undetermined � function.

We study the validity of the above relation by splitting it into two sets of cases, which we shall
analyze separately. We consider wheels traveling on inclined beds of noncohesive particles, where
the dimensionless number ρ0gL

σc
is not involved. Thus the relation becomes
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We also consider the case of wheels traveling on horizontal beds of cohesive granular media. Here
we can take away θ and the relation becomes[
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III. NUMERICAL EXPERIMENTS

In order to test the proposed scaling relations, traveling wheels of different sizes and different
shapes in different operating conditions are numerically simulated on horizontal granular beds of
cohesive particles as well as inclined granular beds of noncohesive particles using the open source
software LAMMPS [38]. In all our numerical experiments, the granular beds are made of particles
with a mean diameter of d̄ = 0.635 mm and the polydispersity is 20%. The solid density of grains
is 2500 kg/m3, close to the density of quartz. For noncohesive granular beds, the contact model is
Hooke’s law in both normal and tangential directions, with damping in the normal direction and a
frictional sliding coefficient of 0.4 [39,40]. The stiffness k is set large enough that the hard particle
limit is satisfied everywhere in the bed—that is, pbd̄/k < 10−4, where pb is the pressure in the
bed due to the weight and motion of the material—and the damping corresponds to a restitution
coefficient e = 0.1. The same values of the particle parameters have been used in previous studies
[26,41].

For the cohesive particles, there are a few cohesive granular interaction models such as capillary
models [42,43], van der Waals interactions [44], the powder chemistry model [45], the liquid
bridging model [46], and DLVO theory [47]. In our simulations, as used in other researchers’ work
on cohesive particles [44,48], cohesive particles have an extra Lennard-Jones potential to enable
medium range attraction, with the help of the built-in function lj/cut in LAMMPS. The radius at
which distance the potential is minimum is set to be d̄ and the potential is calculated within a cutoff
of 2.5d̄ . The depth of the potential well is 2 × 10−9 J.

Our choice to use a fixed granular material for all scaled locomotion tests is for practical
purposes, as it would be difficult in reality to have to “manufacture new sand” in order to utilize
a scaling relation.

Because the scaling purports to apply to arbitrary wheel shapes, we consider three different
shapes in this study: equilateral triangular wheels, rectangular wheels, and regular hexagonal
wheels. All wheels are composed of particles having a uniform diameter d0 = 0.8 mm rigidly
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FIG. 1. Example simulation system—case of a rectangular wheel in cohesive grains pictured. A wheel
comprising rigidly connected yellow inner particles and blue particles on the edge is given a fixed rotation
speed, which causes it to travel to the right. The particles in the bed are shown in green, while the red particles
at the bottom are fixed. The pictured domain width is about half of that of the whole simulated domain.

connected to each other. The characteristic in-plane size L of the triangular and hexagonal wheels are
represented by the side lengths, while for the rectangular wheels (aspect ratio 2:1) L is represented
by the long side length. The mechanical properties of the outer layers (single or double layers)
of the wheel particles are set to be the same as the particles in the granular bed to maintain a
common wheel-grain and grain-grain contact interaction, while the density of the inner layers of the
wheel particles can be tuned accordingly to scale the mass of the wheel in the study. The rotational
velocity of the wheel is prescribed about the wheel’s geometric center, and the particles constituting
the wheel move as a rigid body. When studying locomotion in a cohesive granular bed, the outer
particles of the wheel also interact with the bed particles via the Lennard-Jones potential described
above.

The numerical experiments are quasi-3D (see Fig. 1) in the sense that the simulated domain
has a depth of d0 into the page (y direction) and periodic boundary conditions are applied in the y
direction, allowing the bed particles with a mean diameter d̄ ∼ 0.79d0 to move out of plane. Hence,
the simulation represents a “thick” wheel driving on a granular bed. Periodic boundary conditions
are also applied in the x direction (wheel traveling direction). The bottom of the bed is made of
fixed particles, representing a no-slip boundary condition. In the simulations with horizontal beds,
the gravity points vertically downward. Tilted beds are treated by tilting the gravity vector.

IV. SCALING LAW FOR WHEELS ON INCLINED BEDS OF NONCOHESIVE GRAINS

The numerical simulations of wheels traveling on inclined beds of noncohesive particles consist
of three groups corresponding to three different shapes: triangle, rectangle (aspect ratio 2:1), and
hexagon. Each group adopts a set of three wheels of identical shape but different sizes or operating
parameters: we denote them A, B, and C, as shown in Table I, where the value of the parameters
are shown in Table II with the wheel particle size d0 = 0.8 mm. The parameters of the wheels are

TABLE I. Parameters of the wheels, in each group of the same shape, tested on inclined beds of noncohe-
sive particles at varying angles. The numerical values can be obtained using Table II.

Wheel Size M/DW ω g

A L1 M1 ω1 g1

B L1 M1 2ω1 4g1

C k1L1 k2
1 M1 ω1/

√
k1 g1

114301-4



EXPANDED SCALING RELATIONS FOR LOCOMOTION IN …

TABLE II. Value of the parameters for different wheel shapes, tested on inclined beds of noncohesive
particles at varying angles.

Shape L1/d0 k1 M1 (kg m−1) ω1 (rps) g1 (m/s2)

Triangle 36 3/2 0.56 1 9.8
Rectangle 36 (length) 3/2 1.09 1 9.8
Hexagonal 18 4/3 0.77 1 9.8

designed according to Eq. (2) such that g/Lω2 and ρ0DW L2/M are fixed across all wheels sharing a
common shape.

The range of scaled tests we perform are controlled by the following simulation constraints. The
computational cost scales quadratically with the size of the wheel for each time step, and the number
of the time steps needed scales with the square root of the wheel size, which places an upper limit
on the sizes of the tested wheels. At the same time, the wheels also must be large enough to ensure
removal of grain-size effects (i.e., ensure a sinkage of at least a few particle diameters). The rotation
velocity is limited to avoid kicking the particles so violently that they eject across the periodic
boundary and hit the wheel from the other side. The rotation velocity also cannot be too small, or
the simulation time required will be prohibitive.

Each set of three wheels are tested with four different angles between the traveling direction and
the gravity: θ = 85◦ (downhill), 95◦ (uphill when θ > 90◦), 100◦, and 105◦. Due to the periodic
boundary conditions in the traveling direction and the finite depth of the granular bed, the angles
are constrained to a range that permits the bed to be static in the absence of a wheel, and to ensure
that any flows set off due to impact by the moving wheel do not cause grains to pass through the
periodic boundary and hit the front of the wheel, nor produce divots that expose or come close to
the bottom wall of the bed.

First we present detailed results of the rectangular wheel simulations. Snapshots of those simula-
tions at a fixed value of t̃ are compared in Fig. 2. It can be seen that for each tilt angle θ , the footprint
and impression patterns of the three wheel cases (A, B, and C) are geometrically similar, which is
a first indication that the scaling relations proposed are indeed scaling the relevant physics. More
quantitatively, the dimensionless power P̃ = P

Mg
√

Lg
and traveling velocity Ṽ = V√

Lg
as a function of

dimensionless time t̃ = t
√

g/L are shown in Fig. 3, comparing the set of three rectangle wheels on
beds of noncohesive particles at different angles θ . The dimensionless power and traveling velocity
of the three wheels show strong agreement, supporting the proposed scaling relation for driving up
(or down) inclined terrains. More specifically, within the set of the three wheels, wheels A and C
are under the same magnitude of gravity, whereas wheel B is under a different gravity magnitude.
This suggests the potential of the scaling law to be applied to locomotion in extraplanetary terrains.

The dimensionless power and traveling velocity of the rectangular wheels can be further averaged
in each case and then plotted as a function of inclination angle as shown in Fig. 4, in comparison
with the counterparts of different shapes. The data are averaged over a distance of at least five wheel
“diameters” (maximum length across the wheel) on a virgin bed surface in steady state. The scaling
relation works well through different shapes, covering a range of inclination angles from uphill
locomotion to downhill.

We also notice that the smaller triangle wheels (A and B) consume less power than the prediction
(∼10% less). This effect may be a result of size effects in granular flow rheology since the corners
of the triangular wheels are sharp, causing penetration widths that compete with the grain size. The
granular bed performs stronger (more difficult to deform) when the interaction occurs at limited
contacts and in thin layers, which makes the smaller triangular wheels prone to sink slightly less,
so that driving over the surface requires less power. Similar size effects were also observed when
we tried “bar wheels” (elongated rectangles with an aspect ratio of 9:1 with the short edges no
longer than 6d0). As the size of the wheel becomes much larger than the grain size (low aspect ratio
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FIG. 2. For each of panels (a)–(d), snapshots are shown of rectangular wheels at the same dimensionless
time driving in noncohesive particle beds of a particular tilt angle θ . The subfigures correspond to the supposed
scale-equivalent test cases A, B, and C. The value of θ is (a) 85◦, (b) 95◦, (c) 100◦, and (d) 105◦. The wheels
spin clockwise and travel to the right. t̃ ∼ 82, 118, 81, 127 for the four �g angles, respectively.

rectangles shown here) and corners less sharp (hexagons), the size effect diminishes and the scaling
law works well. The notion that grain-size effects make “smaller act stronger” in granular media is
confirmed by experiments [20,49,50] and has been explained with nonlocal (grain-size-dependent)
rheologies [23,34,51–54].

V. SCALING LAWS FOR COHESIVE GRAINS

To study the scaling relation on beds of cohesive particles, we have tested a set of three triangular
wheels, three rectangular wheels, as well as three hexagonal wheels for generality. Dimensionless
groups g/Lω2, ρ0DW L2/M, and ρ0gL/σc are controlled and the design of the wheels can be found
in Table III, where the parameters that are picked (see Table IV) produce reasonable wheel sinkages
in the simulated domain.

Figure 5 shows snapshots of the simulations at the same dimensionless time. The “footprint”
patterns left by wheels of the same shape but differing size show geometric similarity, a signature
of the underlying scaling. Indeed, when the dimensionless wheel shapes are fixed (same f ) and

TABLE III. Parameters of the wheels, in each group of the same shape, tested on horizontal beds of
cohesive particles. The numerical values can be obtained using Table IV.

Wheel Size M/DW ω g

Small k2L2 k2
2 M2 ω2/k2 g2/k2

Medium L2 M2 ω2 g2

Large k3L2 k2
3 M2 ω2/k3 g2/k3

114301-6



EXPANDED SCALING RELATIONS FOR LOCOMOTION IN …

FIG. 3. Dimensionless power and traveling velocity comparisons of a set of three rectangle wheels on beds
of noncohesive particles, with the angle θ between the traveling direction and the gravity (a) θ = 85◦, (b)
θ = 95◦, (c) θ = 100◦, (d) θ = 105◦. Blue curves stand for case A, red for case B, and yellow for case C.
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FIG. 4. Averaged dimensionless power and traveling velocity comparisons of (a) triangular wheels,
(b) rectangular wheels, and (c) hexagonal wheels, at different inclined angles. Case A represented by blue
markers, case B red, and case C black.

dimensionless groups g/Lω2, ρ0DW L2/M, ρ0gL/σc are controlled to be the same, the power P and
traveling velocity V appear to scale as in Eq. (3), as evidenced in Fig. 6. Both the triangular
and rectangular wheels’ dimensionless power and velocity as functions of dimensionless time
match well, respectively. The hexagonal wheels have noisier time-dependent profiles, but the
time-averaged values match best among all the tested shapes: P̃ within a difference of 1.0% and
Ṽ within a difference of 6.0% relative error with respect to the mean values of the time-averaged
power and velocity, whereas the relative error of power and velocity is within 2.9% and 8.4% for
rectangle wheels and 7.5% and 7.7% for triangle wheels. The scaling relation seems to be more
robust to sharp corners; it appears the triangular wheels scale better in cohesive versus noncohesive
particles.
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TABLE IV. Value of the parameters for different wheel shapes on beds of cohesive particles.

Shape L2/d0 k2 k3 M2 (kg m−1) ω2 (rps) g2 (m/s2)

Triangle 36 2/3 3/2 0.57 1 9.8
Rectangle 36 (length) 2/3 3/2 0.54 1 9.8
Hexagonal 18 2/3 4/3 0.77 1 9.8

Due to the cohesive nature of the particles, the gravity g and the characteristic length L produce
the dimensionless group ρ0gL/σc. Observe that when the granular material and gravity are fixed,
this group can stay fixed only if L is unchanged. Conversely, a test in one gravity to predict behavior
in another comes with a specific size-scaling rule. For example, to test a Mars rover on Earth
in a soil matching the behavior of Martian soil, the dimensionless group ρ0gL/σc dictates that
the size of the wheel to be tested on the Earth should be scaled to (gearth/gmars)−1 = 0.38 times
the size of the one intended for Mars. Other testing parameters can be decided by matching the
dimensionless numbers in Eq. (3). Besides investigations involving variations in gravity, the scaling
of wheel size in cohesive grains is also possible if one is able to directly control and vary the
granular cohesion stress, σc, which would presumably require control over the physical mechanism
causing particle attraction (e.g., water content, charging, solvent chemistry, or particle coating [55]).

FIG. 5. Snapshots at the same t̃ of the differently shaped/sized wheels in horizontal cohesive particle beds:
(a) triangular wheels, (b) rectangular wheels and (c) hexagonal wheels. All tests use the same DEM grains.
Different wheel sizes are compared in different columns: small in the first column from the left, medium
in the second column, and large in the third column. The wheels spin clockwise and travel to the right.
t̃ ∼ 57, 61, 119, respectively, for the three shapes.
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FIG. 6. Dimensionless power and traveling velocity comparisons of (a) a set of three triangle wheels, (b) a
set of rectangle wheels, and (c) a set of hexagonal wheels on horizontal beds of cohesive particles. Blue curves
stand for small wheels, red curves for medium wheels, and yellow curves for large wheels.

From the numerical standpoint, we reiterate that there are many types of cohesive interactions
possible, and we are considering only a simple, van der Waals-type medium-range interaction here.
Though the interactions and flow behaviours of cohesive granular materials are more complicated
than noncohesive, the results presented here suggest that a simple scaling law exists to predict the
driving performance of wheels on cohesive granular beds, as long as the cohesive length scale is
small enough that a characteristic cohesion strength σc is the only relevant variable.
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VI. CONCLUSION

In this work, scaling relations for driving performance, namely, the power and traveling ve-
locity, have been proposed for wheeled locomotion on inclined and cohesive granular beds. For
verification, DEM simulations of different shaped wheels have been performed, and the results
have confirmed the proposed scaling relations. These scaling relations shed light on how to design
experiments in laboratory scales and/or in a different gravitational environment by following the
dimensionless groups. For example, consider two driving experiments in the same (noncohesive)
grains having common wheel shape f , where one system has inputs (g, L, M, DW , ω, θ ) and the
other has (g′, L′, M ′, D′

W , ω′, θ ′) ≡ (qg, rL, sM, sr−2DW , q1/2r−1/2ω, θ ), where q, r, s are arbitrary
scalars that can be selected by the user. Then, by Eq. (1), these two tests have matching dimen-
sionless inputs and ought to obey similitude. If the grains used in the pair of tests are also cohesive,
Eq. (1) would now require r = 1/q in order to secure dynamic similarity, thereby removing one free
parameter from the design space for the scaled test. However, if σc can be tuned in the locomotion
experiments, then three free parameters reemerge in the cohesive case. Because the scalings were
obtained assuming a local granular rheology, they are more accurate when the grain size is indeed
negligible compared with wheel length scales, since small-body intrusion effects may bring out
rheologically nonlocal contributions in the granular media. For example, wheels with vary narrow
features or wheels that do not protrude into the bed deeply enough compared to the grain size
may not satisfy the scalings as well. In this work, we have studied the two factors (cohesion
and inclination) individually, to provide a controlled and systematic study of those effects. Our
results leave us encouraged that the locomotive scalings will continue to function on beds that
are both inclined and cohesive, though direct validation of this is left as future work. To do so
would require performing simulations over a wide sweep of input space, varying wheel shapes,
sizes, cohesion, and inclination, which requires a fairly sizable amount of computational resources,
especially considering cohesive particles are more computationally expensive.
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