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Contact angles for perfectly wetting pure liquids evaporating into air:
Between de Gennes-type and other classical models
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The present theoretical study is concerned with evaporation-induced apparent contact
angles for a perfectly wetting one-component liquid placed on a flat solid substrate and
undergoing diffusion-limited evaporation into ambient air. The analysis pertains to a
distinguished small vicinity of the contact line (the “microregion”), where such angles
are established and where various microscopic effects typically enable relaxing the well-
known evaporation-flux singularity. We proceed from a Joanny-Hervet-de Gennes-type
approach, involving the spreading coefficient, disjoining pressure in the form of an inverse
cubic law, and a truncated microfilm (precursor film) starting abruptly at a solid surface.
A more classical regime with an (infinitely) extended adsorbed microfilm is recovered
therefrom in the limit of large spreading coefficients upon additional incorporation of the
Kelvin effect (dew point shift due to the liquid–gas pressure difference). The latter regime
is critically revisited with a view to clarifying the scaling prefactor known in the literature.
The influence of the kinetic resistance to evaporation is analyzed as well.

DOI: 10.1103/PhysRevFluids.5.114007

I. INTRODUCTION

The fact that evaporation can give rise to finite apparent contact angles even for perfectly wetting
pure liquids (zero Young’s angle) has already been known for quite a while, although it is difficult to
be traced back to the original reference. On the one hand, such angles can be seen as a compromise
between the tendencies to spread and to evaporate. On the other hand, a key feature is the localization
of the zone where they are established near the contact line, rather than being merely smeared
over larger scales. This is what makes these angles really apparent ones, as seen from those larger
scales. Such localization comes as a result of a macroscopic singularity of the evaporation flux
towards the contact line, also giving rise to liquid flow singularities. Such singularities can only
be regularized by means of certain microscopic effects (e.g., disjoining pressure, precursor films,
Navier slip, kinetic resistance to phase change, Kelvin effect). This happens in a distinguished small
vicinity of the contact line, referred to as the microregion, where the evaporation-induced apparent
contact angles are established. Since it is these angles that we are concerned with here, the present
analysis is naturally focused on the microregion, where the problem can be formulated in its own
right, ignoring the coupling to any specific macroscopic shape (drop, bubble, meniscus, etc.). The
evaporation-induced angles and the associated liquid film slopes in the microregion turn out to
be quite small (after all, they must vanish in the limit of weak evaporation for perfectly wetting
liquids), so that a thin-film (lubrication) approximation is quite applicable in this context. The typical
evaporative microregion problem is steady with the contact line remaining at rest, and it will be
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FIG. 1. Sketch of the microregion profiles with truncated and extended microfilms.

considered as such in the present paper, the evaporative losses being compensated by an influx
from the macroscopic side of the liquid film. In the cases when the motion of the contact line is
nonetheless essential, its effect can then be evaluated by means of the Cox-Voinov relation, the
evaporation-induced contact angle taking the place of the Young’s angle therein.

While the above general picture does not depend on the nature of the evaporation process, the
latter does make a difference as far as finer physical details as well as the mathematical description
are concerned. In the literature, there are two large groups of studies in this regard. One of them
considers evaporation into an atmosphere composed exclusively of the pure vapor of the liquid
involved, with no inert or noncondensable gases [1–21]. In this case, to ensure evaporation, the
substrate must be superheated relative to the saturation (boiling) temperature corresponding to the
vapor pressure, the later being practically constant [13]. The evaporation rate is limited by heat
conduction across the liquid film, compensating for the latent heat of evaporation. This is a situation
typical for boiling applications. The other large group of studies deals with diffusion-limited
evaporation into a noncondensable gas atmosphere such as air, the total gas pressure being constant
and the thermal effects inessential (e.g., Refs. [12,22–29]). For instance, this is the situation for a
sessile drop evaporating into ambient air. The present paper belongs to this second group of studies,
for which fully-fledged models appeared only in the last decade and to which we limit our attention
hereafter.

The microscopic model most classically used in the literature implies an infinitely extended
adsorbed microfilm, covering all solid surface even far away from the macroscopic portions of
the liquid [23,27,28]. Of these works, Refs. [23,27] incorporate the microregion as an inseparable
part of a larger, macroscopic problem of an evaporating sessile droplet [23] or meniscus [27],
whereas Ref. [28] comes up with a closed-form evaporative microregion problem per se, which
is most relevant in the context of the present paper. However, ending in such an extended adsorbed
microfilm is not the only plausible microregion structure. Another one considered in the literature, of
a (Joanny-Hervet-)de Gennes type, involves a truncated microfilm (precursor film) abruptly starting
at the solid surface (cf. Fig. 1), as elaborated in the static and moving-contact-line contexts in
Refs. [30–33] and closer to the present evaporative context in Ref. [12], which differs from the
model of Refs. [24–26] principally by the choice of the boundary conditions at the tip of the film.1

In the present paper, we aim at a unifying view of such different approaches, complementarily
revisit the mentioned evaporative microregion models and consider the ones lying in between. We
proceed from the de Gennes-type model of Ref. [12] adopted as the basic one here. It is arguably
the simplest possible consistent model, with a mathematical formulation incomparably simpler than
for other models due to a lucky vapor-diffusion decoupling from the liquid film dynamics. Then,
certain pertinent microphysics generalizations are explored (see below), in particular, giving rise
to the extended-microfilm model in a limiting case. In this way, we shall eventually establish an

1Recently, there were some studies on different drop types (nonvolatile case) where some room was given to
the discussion of drops with truncated microfilms [34].
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interrelation between these models as well as see how the result for the evaporation-induced angle
is affected by such microscopic details.

The only microscopic effect in the present basic de Gennes-type model is the mechanical action
of a disjoining pressure in the form of a positive inverse-cubic law �∗ = γ ∗a∗2/h∗3, where γ ∗ is
the gas–liquid interfacial tension, a∗ is the molecular length scale (typically in the subnanometric
range), and h∗ the film thickness. The microfilm being truncated, the spreading coefficient S∗
also appears among the parameters of the problem. The scale ε of the film slopes dh∗/dx∗ in
such a microregion (x∗ being the Cartesian coordinate along the film), and hence the scale of the
evaporation-induced contact angle, is given by (see Sec. 4.2 in Ref. [12])

ε =
(

33/4ν∗
l D∗

gρ
∗
v,sat

γ ∗a∗1/2�∗1/2

)1/3

. (1)

Here D∗
g is the diffusion coefficient of the vapor in the gas phase; ν∗

l = μ∗
l /ρ

∗
l , μ∗

l and ρ∗
l are the

kinematic and dynamic viscosities and density of the liquid, respectively; ρ∗
v,sat = p∗

v,satM
∗/(R∗

gT ∗)
the saturation density of the vapor, T ∗ the temperature, p∗

v,sat the saturation pressure at T ∗, M∗ the
molar mass, and R∗

g the universal gas constant. Furthermore, �∗ is a length parameter characterizing
a given macroscopic configuration. For instance,

�∗ = 1
2π2R∗

c (2)

for a thin sessile droplet in the diffusion-limited regime of evaporation, where R∗
c is its contact

radius. As already mentioned, the evaporation-induced angles are typically small, implying ε � 1
as we shall assume here. The problem for this basic de Gennes-type model was fully formulated
in Ref. [12], although we did not provide the computation results. A first objective of the present
paper will then be to fill in this gap. The principal result, for the evaporation-induced contact angle
here denoted θmic (the subscript “mic” intended to convey the idea of a microscopic, or microregion
contact angle), is represented in the form

θmic = ε ϑmic. (3)

Here θmic is the value in radians, whereas ϑmic is a rescaled value such that generally ϑmic = O(1)
while ε � 1. The prefactor ϑmic in Eq. (3) is generally a function of the parameters of the problem.
For the basic model, it turns out to be only a function of the dimensionless spreading coefficient

� = 2S∗ε−2

γ ∗ , (4)

i.e., ϑmic = ϑmic(�) (cf. Ref. [12]). Such a basic model will further be treated in Sec. II below.
For an estimation of typical values, we use ρ∗

v,sat ∼ 0.2 kg/m3 (∼20% of air density), ν∗
l ∼

10−6 m2/s, D∗
g ∼ 10−5 m2/s, γ ∗ ∼ 20 mN/m, a∗ ∼ 0.3 nm, and R∗

c ∼ 1 mm. Then from Eqs. (1)
and (2), we obtain ε ∼ 0.06, which a sufficiently small value indeed (corresponding to ∼3◦). Larger
values of ε can be obtained for more volatile liquids, characterized by larger ρ∗

v,sat.
It is remarkable that the scaling Eqs. (1)–(3) for the evaporation-induced angles, with a prefactor

yet to be determined, naturally comes up once van der Waals forces (the disjoining pressure of the
form �∗ = γ ∗a∗2/h∗3) are recognized as a key [22,27,29], irrespective of other possible details of a
model that would just affect the prefactor. For instance, in Ref. [22], where an equivalent of Eqs. (1)–
(3) was put forth apparently for the first time in the literature, it was just a naturally occurring
scaling, without delving into further details of the formulation or the feasibility of the latter. In
Ref. [29], the results of the model with an extended adsorbed microfilm [28] were rendered in this
same scaling. It is important to note at this juncture that to ensure the existence of such a microfilm,
the sole mechanical action of the disjoining pressure is not sufficient (whereas it is sufficient in
the framework of the present basic model with truncated microfilms), and another effect acting at
microscopic scales is actually taken into consideration [23,27,28]. Namely, we mean the Kelvin
effect. It consists in a saturation point shift caused by a pressure difference between the liquid and
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the vapor, most notably due to the Laplace and disjoining pressures, hence in particular amounting
to a thermodynamic action of the disjoining pressure rendering possible a local thermodynamic
equilibrium between an adsorbed microfilm and the vapor. Thus, there must be a kind of Kelvin
number Ke (to be defined later on in Sec. IV) appearing in the model2. In contrast, � does not appear
since there is no three-phase contact line (the extended microfilm covering all the surface), hence
ϑmic = ϑmic(Ke) in Eq. (3). However, if the Kelvin effect is incorporated into the present basic model
with truncated microfilms, which we shall do in Sec. IV, then we will arrive at ϑmic = ϑmic(�, Ke),
the basic model being recovered at Ke = 0.

Here comes another objective of the present paper to be also fulfilled in Sec. IV. Similar to the
program we accomplished in Ref. [11] in the case of evaporation into the pure vapor, but here for a
very distinct case of diffusion-limited evaporation into air (hence anticipating no full analogy), we
shall show that the microregion regime with an extended microfilm is a limiting case in the family
of truncated-microfilm regimes at � � 1 (provided the Kelvin effect is incorporated).

Then, as an important by-product of the study, such a limit will also permit us to obtain the
prefactor ϑmic(Ke) in the extended-microfilm regime. The latter result could be expected to coincide
with Ref. [28] (cf. also the representation thereof given in Ref. [29]). Nonetheless, ϑmic(Ke) was
calculated in Ref. [28] by asymptotic means in the limit of small Kelvin numbers (speaking in
our terms) and may differ from the corresponding numerical result. Therefore, we shall here also
undertake a direct numerical computation of the more classical, extended-microfilm problem to
see whether we obtain the same result for ϑmic(Ke) in the mentioned limit and directly, which is
accomplished in the first part of Sec. V together with the comparison with those earlier obtained
results in the literature [28,29].

However, before proceeding to incorporation of the Kelvin effect in Sec. IV, another extension
of the basic model will be tested in Sec. III. Namely, we shall explore a possible role of the kinetic
resistance to phase change (defined by a Hertz-Knudsen-Schrage-like expression). Herewith, we
shall have ϑmic = ϑmic(�, K ), where K is the kinetic resistance number to be defined in Sec. III, the
basic model being recovered at K = 0. Later on, at the end of Sec. V, a similar study of the role of
the kinetic resistance will be undertaken in application to the regime with an extended microfilm to
disclose the dependency ϑmic = ϑmic(K, Ke).

To recapitulate the organization of the present paper, the basic de Gennes-type model will be
treated in Sec. II, which will be supplemented by the kinetic resistance to phase change in Sec. III.
In Sec. IV, the basic model will rather be supplemented by the Kelvin effect and transitions from
the truncated- to extended-microfilm regime will be studied. The regime with an extended microfilm
will further be considered in Sec. V by direct means, which at the end of Sec. V will be supplemented
by yet incorporating the kinetic resistance.

Then, in Sec. VI, we shall discuss the implications of the present study on the comparison with
experimental results undertaken in Refs. [28,29]. At last, our conclusions will be summarized in
Sec. VII. Certain mathematical details are relegated to appendices. Appendix A provides some
coordinate expansions of the solution at the extremes of the domain that did not find their way into
the main text of the paper. Appendix B serves as a supplement to Sec. V and revisits the asymptotic
analysis of Ref. [28] in the limit of small Kelvin numbers with the aim to yet calculate a higher-order
correction and thereby reconcile the asymptotic and present numerical results.

II. BASIC MODEL

The formulation of the basic model was provided in Ref. [12]. Here we take up its main points.
The steady lubrication equation governing the liquid film profile h∗(x∗) in the microregion can be

2In Refs. [28,29], a dimensionless number L is rather defined, a counterpart of the present Kelvin number
as discussed in Sec. IV.
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written in a standard way (e.g., Ref. [35] and, closer to the present context, Refs. [12,36]) as

q∗′ + j∗

ρ∗
l

= 0, q∗ = − h∗3

3μ∗
l

p∗
l
′
, p∗

l = p∗
0 − γ ∗h∗′′ − γ ∗a∗2

h∗3
, (5)

where q∗ is the volume flux along the film, p∗
l is the pressure in the film determined by the Laplace

and disjoining pressure contributions (p∗
0 being a constant), the asterisk marks the dimensional

quantities, while the prime denotes a derivative with respect to x∗. The evaporation flux j∗ [kg/m2s]
is represented by the classical integrable divergence near the contact line of a thin film,

j∗ = D∗
gρ

∗
v,sat

(�∗x∗)1/2
, (6)

where the tip of the film is chosen at x∗ = 0, �∗ (considered known in the microregion analysis) is
a macroscopic length scale given by Eq. (2) for a thin sessile droplet in a diffusion-limited regime
of evaporation assuming for simplicity a zero ambient humidity (e.g., Refs. [37,38]). The boundary
conditions at the tip of the film, starting abruptly at the solid surface, are

h∗ → 0,
1

2
γ ∗(h∗′)2 − γ ∗a∗2

2h∗2
→ −S∗, q∗ → 0 as x∗ → 0. (7)

The second condition is just the one of equilibrium at the tip of the film that needs to be formulated
as such in a situation when the disjoining pressure law γ ∗a∗2/h∗3 is formally assumed to hold down
to h∗ = 0 as it is here [11,12,31].3 In view of the small scales of the microregion, the curvature
therein is much greater than the macroscopic curvature. Therefore, at the outer (macroscopic) edge
of the microregion, the curvature must fall to asymptotically smaller values than in the microregion,
i.e., to zero at leading-order approximation. Thus,

h∗ → +∞, h∗′′ → 0 as x∗ → +∞, (8)

where h∗ and x∗ must tend to much greater values than in the microregion, i.e. formally to infinity
at leading-order approximation. Thus, the basic model is formulated in the domain 0 < x∗ < +∞
(the bare surface being located at x∗ < 0). These conditions at infinity given by Eq. (8) actually boil
down to a constant-slope behavior,

h∗ ∼ θmic x∗ as x∗ → +∞. (9)

The quantity θmic is unknown and must be found together with the solution of the problem. It is
clearly the apparent contact angle as seen from larger scales, which in our context and for perfectly
wetting liquids (S∗ > 0) is just the evaporation-induced angle (cf. Sec. I). By using Eq. (8) or Eq. (9)
in Eq. (5), we see that p∗

l → p∗
0 and p∗

l
′ → 0 as x∗ → +∞ as expected, meaning that the pressure

gradients fall to much smaller values than in the microregion towards the macroscopic domain.
At the same time, as it follows from Eq. (6) and the first Eq. (5), the influx into the microregion
from the macroscopic domain must go like q∗ = O(x∗1/2) as x∗ → +∞, not converging to any
definite value, to compensate for the evaporation losses in our steady microregion at rest. This
makes no contradiction with the second Eq. (5), where q∗ is a product of a vanishing term, p∗

l
′, and

a diverging term, h∗3, which can resolve into the required behavior at infinity. Note that the liquid
velocity associated with the influx decays then as q∗/h∗ = O(x∗−1/2) as x∗ → +∞ on account of
Eq. (9).

This concludes the formulation of the basic model. We now proceed to nondimensionalization.
For any dimensional quantity f ∗ (with asterisk), its dimensionless counterpart will be designated as

3However, in Ref. [12], we missed to explicitly mention the third of these conditions (expressing the absence
of a line source at the tip of the film), although it was tacitly meant throughout.
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FIG. 2. Solid line: rescaled evaporation-induced contact angle ϑmic, which is actually the prefactor in a
classical scaling law given by Eqs. (1)–(3) for the evaporation-induced contact angle, computed as a function
of the dimensionless spreading coefficient �, Eq. (4), in the framework of the basic model. Dashed line:
Young’s angle in the same scaling for comparison (defined only for � < 0—partial wetting). Inset: details
near the minimum of the curve.

f (without asterisk), whereas [ f ] will denote the scale used. Thus,

f = f ∗/[ f ]. (10)

As already elaborated in Ref. [12], we use the scales

[x] =
√

3 a∗

ε2
, [h] =

√
3 a∗

ε
, [ j] = D∗

gρ
∗
v,satε

31/4(�∗a∗)1/2
, (11)

where it is the choice of ε in the form of Eq. (1) that permits to scale the parameters out of the
lubrication equation for h(x) given by Eqs. (5). The latter equation then now reads

(h3h′′′ − h−1h′)′ + j = 0, (12)

with the dimensionless form of Eq. (6) given by

j = 1√
x
. (13)

Equation (12) with (13) can be integrated once to yield

h3h′′′ − h−1h′ + 2
√

x = 0, (14)

the integration constant vanishing in view of a zero volume flux as x → 0. The dimensionless form
of the boundary conditions given by Eqs. (7) and (8) reads

h → 0, (h′)2 − 1

3h2
→ −� as x → 0, (15)

h → +∞, h′′ → 0 as x → +∞, (16)
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FIG. 3. Computed dimensionless microregion film profiles h(x) at different values of the dimensionless
spreading coefficient (� = 0, 5 and 20) in the framework of the basic model. For comparative purposes, each
profile has been shifted so as to have h = 5 at x = 0. The scales are defined in Eq. (11).

where � is as in Eq. (4). Just as earlier with the dimensional versions given by Eqs. (8) and (9),
Eq. (16) amounts to the behavior

h ∼ ϑmic x as x → +∞, (17)

where ϑmic is the prefactor in Eq. (3), a rescaled apparent contact angle, to be determined together
with the solution of the problem. Thus, the dimensionless formulation of the basic model is given
by Eqs. (14)–(17). It depends on a single parameter �, hence ϑmic = ϑmic(�) as foreseen in Sec. I
based on the developments in Ref. [12].

The numerical solution of this third-order boundary-value problem can be obtained by shooting
from x ≈ 0 towards x � 1 aiming at h′′ = 0. The point x = 0 presents a “benign” singularity, with
the solution behaving as h ∼ ( 4

3 )1/4x1/2 as x → 0. This is a consequence of assuming a disjoining
pressure of the form ∝ h−3 down to h = 0, and the intricacies thereof are discussed in Ref. [12].
Further developing the coordinate expansion, one obtains (cf. Eq. (39) in Ref. [12])

h∼
(

4

3

)1/4

x1/2

[
1 − 31/2

4
�x − 6

5
x3/2 ln x− 23/2

5 × 33/4
�x3/2− 3

32
�2x2+O(x5/2 ln x)

]
as x → 0,

(18)
where � is a free coefficient which can be used in the shooting procedure.

Computation results for this problem were not provided in Ref. [12]. We rather show them here in
Figs. 2 and 3. Figure 2 presents ϑmic(�), which together with Eqs. (1), (3), and (4) yields the sought
values of the evaporation-induced contact angle according to the basic de Gennes-type model.
Although the primary focus in the present paper is on perfectly wetting liquids (i.e., � � 0), Fig. 2
also shows the extension of the result into the partial-wetting domain � < 0. In this latter domain,
θmic is not an evaporation-induced contact angle in its entirety, but is rather an evaporation-modified
Young’s angle. The true Young’s angle, in original terms (2S∗/γ ∗)1/2 (thin-film approximation)
and (−�)1/2 in terms of the rescaling given by Eq. (3), is also shown for comparison in Fig. 2 by
the dashed line. In the perfect-wetting domain (� � 0), the dependence of ϑmic (and hence of the
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FIG. 4. Geometric sketch of the vapor diffusion problem in the gas. The liquid layer is of negligible
thickness at the scale of the gas phase and corresponds to ϕ = 0 in terms of the polar coordinates {r, ϕ} centered
at the tip of the liquid layer (ϕ = π at the bare solid surface).

evaporation-induced angle θmic) on the spreading coefficient � is seen to be remarkably weak and
at the same time nonmonotonic.4,5

Figure 3 shows examples of the film profile in the microregion. One can appreciate the tendency
for the film tip to become sharper and more protruding as � is increased (and hence as the film
is made more wetting), which is rather intuitive. One can show that it is actually the de Gennes’
pancake [12,30,32,33] that starts to protrude from the film profile, similar what was shown in the
counterpart case of conduction-limited evaporation into pure vapor [12,36]. It is therefore for � � 1
that it becomes legitimate to use the pancake as the condition at the tip of film, cf. the approach in
Refs. [24–26].

III. BASIC MODEL + KINETIC RESISTANCE TO EVAPORATION

The effect of kinetic resistance to evaporation consists in a deviation from local phase equilibrium
under the conditions of sufficiently strong evaporation flux. This may be of especial relevance in the
microregion, inherently associated with an evaporation flux singularity. The basic model (Sec. II)
proceeded from the assumption of local phase equilibrium throughout, which ensured Eq. (6) and
(13) along the entire microregion. In the present section, we explore how this can be modified due to
the kinetic resistance and the possible consequences thereof upon the evaporation-induced contact
angle.

To that purpose, we delve into the vapor concentration field, here described in terms of the
partial vapor density ρ∗

v . Equation (6) corresponds in fact to a “corner” solution ρ∗
v = ρ∗

v,sat −
2ρ∗

v,sat (r
∗/�∗)1/2 sin(ϕ/2), with the lowest possible positive power of r∗, of the steady diffusion

(Laplace) equation ∇∗2ρ∗
v = 0 satisfying a local phase equilibrium condition ρ∗

v = ρ∗
v,sat at the

film ϕ = 0 and a zero-flux condition at the bare solid surface ϕ = π . Here {r∗, ϕ} are the polar
coordinates centered at the tip of the film, cf. Fig. 4. Furthermore, consistent with the thin-film
approximation used in the present paper, the film thickness is neglected at the scale of the gas phase,
so as for the film to approximately correspond to ϕ ≈ 0 (Fig. 4). The diffusion-limited evaporation
flux is then given by j∗ = −D∗

gr∗−1∂ρ∗
v/∂ϕ|ϕ=0, yielding indeed Eq. (6) for the mentioned corner

solution.

4Interestingly, the dependencies ϑmic(�) turns out to be quite similar in the present case of diffusion-limited
evaporation into air and in the counterpart case of conduction-limited evaporation into pure vapor (cf. Fig. 5
in Ref. [12] for the latter). Note though that these are just the prefactors in Eq. (3), the expressions for ε being
quite different between those two cases.

5One can show that the angle scale h0/x0 used in Refs. [24–26] is equal to 21/3ε in present terms. The
value of the prefactor can be read from their figure 2 (static case) and is approximately equal to 1.42. In our
present terms, this corresponds to ϑmic ≈ 1.42 × 21/3 ≈ 1.8, which is slightly below the typical values of ϑmic

encountered in Fig. 2 in the case of perfect wetting.
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Now, once the kinetic resistance is incorporated into the model, the condition ρ∗
v = ρ∗

v,sat is
replaced at ϕ = 0 by

ρ∗
v − ρ∗

v,sat = −2 − fa

2 fa

(
2πM∗

R∗
gT ∗

)1/2

j∗ (19)

in accordance with the Hertz-Knudsen-Schrage equation (see, e.g., Ref. [39] and references therein;
an ideal-gas relation ρ∗

v = p∗
vM∗/(R∗

gT ∗) was used as necessary, where p∗
v is the partial vapor

pressure). Here fa is what is sometimes referred to as the accommodation coefficient, and sometimes
the evaporation/condensation coefficient. Ideally, fa = 1. In reality, 0 < fa < 1 and its values can
in principle vary very significantly [39]. With this modification, the mentioned corner solution
and Eq. (6) are no longer valid throughout. However, they must still hold asymptotically as
x∗, r∗ → +∞, when Eq. (19) reduces back to the phase equilibrium consistently with j∗ → 0
according to Eq. (6). In other words, a new solution for ρ∗

v (r∗, ϕ) and j∗(x∗) must tend to them at
infinity.

It will be more convenient to work in terms of the deviation from the vapor density at saturation

ρ̃∗
v = ρ∗

v − ρ∗
v,sat. (20)

In addition to Eq. (11), we shall use the scales

[r] = [x] =
√

3 a∗

ε2
, [ρ̃v] = ρ∗

v,sat

(
[x]

�∗

)1/2

. (21)

Note in passing that as �∗ is a macroscopic length, e.g., Eq. (2), whereas [x] a microscopic one (the
longitudinal extent of the microregion), we actually have [x] � �∗, and hence [ρ̃v] � ρ∗

v,sat. The
formulated problem for the vapor concentration can then be written in dimensionless terms as

∂2ρ̃v

∂r2
+ 1

r

∂ρ̃v

∂r
+ 1

r2

∂2ρ̃v

∂ϕ2
= 0, (22)

ρ̃v ∼ −2r1/2 sin
ϕ

2
as r → +∞, (23)

∂ρ̃v/∂ϕ = 0 at ϕ = π, (24)

j = −1

r

∂ρ̃v

∂ϕ
at ϕ = 0, (25)

ρ̃v = −K j at ϕ = 0, (26)

where note that r ≡ x at ϕ = 0. Here

K = l∗
K

[x]
= l∗

Kε2

√
3 a∗ , l∗

K = D∗
g

2 − fa

2 fa

(
2πM∗

R∗
gT ∗

)1/2

(27)

are the kinetic-resistance number and length, respectively. Note that the basic model (Sec. II) is
recovered therefrom as K → 0.

For an estimation of typical values, we take D∗
g ∼ 10−5 m2/s, fa = 1 (ideal case), M∗ ∼

50 g/mol, R∗
g = 8.31 J/mol K, and T ∗ ∼ 300 K. One then obtains l∗

K ∼ 50 nm. However, for a∗ ∼
0.3 nm and taking into account that according to Eq. (3) and Fig. 2 we have roughly ε ∼ θmic/2
(θmic in radians), one obtains [x] ∼ 270 nm for θmic ∼ 5◦ and [x] ∼ 70 nm for θmic ∼ 10◦. This
corresponds to K ∼ 0.2 for θmic ∼ 5◦ and K ∼ 0.8 for θmic ∼ 10◦, which seem to be quite moderate
values. Note though that for fa < 1 (nonideal case, which is quite probable [39]), much higher
values of K can in principle ensue.

The solution of the problem given by Eqs. (22)–(26) is obtained numerically, of which we are
most interested in j(x). Note that it actually suffices to solve the problem only once, say, for K = 1,
yielding j(x) that we shall for the moment denote j1(x). Then, at any K , the evaporation flux profile
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FIG. 5. Solid lines: computed dimensionless evaporation flux distribution j(x) along the microregion for
a finite kinetic resistance to evaporation (K = 1 and K = 5) in the framework of the basic model + kinetic
resistance. Dashed line: the same distribution in the absence of kinetic resistance (K = 0), implying a local
thermodynamic equilibrium throughout, as given by Eq. (13) and used in the basic model. The scales are
defined in Eq. (11) while the parameter K in Eq. (27). At any K , we have j(x) = K−1/2 j1(x/K ), where j1 ≡ j
at K = 1 shown in the plot.

will be given by j(x) = K−1/2 j1(x/K ), which can be established by a simple rescaling in Eqs. (22)–
(26). Figure 5 shows the profiles j(x) at K = 1 and K = 5, and for comparison their counterpart
at K = 0 given by Eq. (13). We see that, at a finite kinetic resistance, the evaporation flux remains
finite at the tip of the film x = 0, unlike what we have in the absence of the kinetic resistance. The
profiles asymptotically merge towards large x, of course.

We are now ready for the final step: solving the problem for the film profile. The formulation
remains essentially the same as for the basic model in Sec. II, except that the evaporation flux must
no longer be used in the form of Eq. (13). It is now rather the newly calculated K-dependent profiles
j(x) that must be injected into Eq. (12). Accordingly, instead of Eq. (14), the integrated form of the
equation now becomes

h3h′′′ − h−1h′ + J = 0, J =
∫ x

0
j(x̌) dx̌,

where J (x), an integral evaporation flux, is a beforehand known function for each K (the film and
the evaporation problems are decoupled). The boundary conditions remain as in Eqs. (15)–(17). The
problem is solved in the same way as in Sec. II, by means of the shooting method.

Results for ϑmic(�, K ) in the perfectly wetting domain (� � 0) are presented in Fig. 6, where
note that the curve of Fig. 2 is recovered at K = 0. We see that the evaporation-induced angle
decreases as K is increased, which is what should be expected given that the kinetic resistance
mitigates the evaporative singularity (cf. Fig. 5). However, the dependence on K , just as the
dependence on �, turns out to be relatively weak, the most sharp variation of ϑmic occurring at
smaller values of � and K . Remarkably, a nonmonotonic behavior of ϑmic versus � is seen to
survive at finite kinetic resistances.

IV. BASIC MODEL + KELVIN EFFECT: TRANSITION FROM TRUNCATED TO EXTENDED
ADSORBED MICROFILMS

In the basic model, the saturation density and pressure of the vapor are just constants. However,
given the small size of the microregion, and hence large values of the curvature, Laplace and
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FIG. 6. The same as in Fig. 2, but now in the framework of the basic model + kinetic resistance for a few
values of the kinetic resistance number K = 0, 1, and 5. Inset: ϑmic versus K for � = 0. The result for K = 0
exactly coincides with the one of Fig. 2.

disjoining pressures, there may occur essential deviations of these saturation quantities from their
usual values, what is known as the Kelvin effect. To have an appreciable influence on what is going
on in the microregion, such deviations need not even be comparable to the original values; the
saturation-density deviation �ρ∗

v,sat just needs to attain the order of magnitude of [ρ̃v] in Eq. (21),
which was shown in Sec. III to be much smaller than ρ∗

v,sat itself. Thermodynamics relates �ρ∗
v,sat to

the difference between the liquid and vapor pressures, which in the present situation is principally
given by the sum of the Laplace and disjoining pressures:

�ρ∗
v,sat = −ρ∗

v,sat
M∗γ ∗

ρ∗
l R∗

gT ∗

(
h∗′′ + a∗2

h∗3

)
. (28)

This is a linearized version of a more general relation, valid for �ρ∗
v,sat � ρ∗

v,sat and sufficient in the
present context in line with the above reasoning.

In the present section, we once again disregard the kinetic resistance to evaporation, whose
consideration stays bound to Sec. III. In exchange, we now supplement the basic model with the
Kelvin effect and study the consequences thereof. As the saturation density, now ρ∗

v,sat + �ρ∗
v,sat,

will vary along the microregion in accordance with Eq. (28), we shall need, as in Sec. III, a detailed
consideration of vapor diffusion in the gas phase adjacent to the microregion, rather than merely
resorting to Eq. (6) or (13). At the same time, once again as in Sec. III, the evaporation-flux
expressions given by Eqs. (6) and (13) will still be relevant, but now just as asymptotic behaviors
at the outer edge of the microregion, as x → +∞, when �ρ∗

v,sat → 0 together with h∗−1 → 0 and
h∗′′ → 0, cf. Eqs. (8) and (28).

Furthermore, the formulation of the vapor diffusion problem developed in Sec. III is actually
verbatim applicable to the present situation with the only, yet paramount exception of the boundary
condition at the liquid film. Namely, instead of Eq. (19) at ϕ = 0, we now have

ρ∗
v = ρ∗

v,sat + �ρ∗
v,sat. (29)

114007-11



A. YE. REDNIKOV AND P. COLINET

Ke 0
Ke 0.01

Ke 0.03
Ke 0.1

Ke 0.3
Ke 1

0 10 20 30 40

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4
mic

FIG. 7. The same as in Fig. 2, but now in the framework of the basic model + Kelvin effect for a number
of values of the Kelvin number Ke = 0, 0.01, 0.03, 0.1, 0.3 and 1. Ke is defined in Eq. (31) and related as
L = 3 × 24/9Ke4/3 to the Laplace parameter L used in Refs. [28,29]. The result for Ke = 0 exactly coincides
with the one of Fig. 2.

Likewise, in the dimensionless terms still introduced by means of Eqs. (11) and (21), the boundary
condition given by Eq. (26) is now replaced with

ρ̃v = −Ke

(
3h′′ + 1

h3

)
at ϕ = 0, (30)

following from Eqs. (20), (28), and (29). Here

Ke = δ∗2ε

3a∗2
, δ∗ =

(
ρ∗

v,satν
∗
l D∗

gM∗

ρ∗
l R∗

gT ∗

)1/2

(31)

are the Kelvin number6 and length, respectively (the counterpart of δ∗ in the pure-vapor case was
introduced in Refs. [16,20]). Note that the basic model (Sec. II) is recovered in the limit Ke → 0.

For an estimation of typical values, we take up the material property values used when estimating
ε and K in Secs. I and III as well as ρ∗

l ∼ 1000 kg/m3. We obtain δ∗ ∼ 0.2 nm, Ke ∼ 0.01.
Obviously, larger values of δ∗ and Ke can occur for more volatile liquids, with larger ρ∗

v,sat. For
instance, we obtain Ke ∼ 0.05 for pentane.7

To recapitulate, the dimensionless formulation of the basic model + Kelvin effect is given by
Eqs. (12), (15), (16) [or rather Eq. (17)], (22)–(25), and (30). The two parameters of the problem, �

and Ke, are defined in Eqs. (4) and (31), respectively. The scales and renormalizations used are still
given by Eqs. (1)–(3), (11), and (21).

In spite of the above used similarity with the problem considered in Sec. III (basic model +
kinetic resistance), the present problem (basic model + Kelvin effect) is actually more complex

6The Laplace parameter L introduced in Ref. [28], cf. also Ref. [29], is hereby expressed as L = 3 ×
24/9Ke4/3.

7From an estimation L ∼ 0.08 given in Ref. [29] and using a conversion between L and Ke provided in an
earlier footnote 6.
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FIG. 8. Solid lines: computed dimensionless microregion film profiles h(x) (left) and evaporation flux pro-
files j(x) (right) within the basic model + Kelvin effect at Ke = 0.3 for a number of values � = 4, 5, 6 and 7.
Dashed lines: extended-microfilm asymptotics. All profiles except for � = 7 are suitably x-shifted so as to
highlight their actual partial overlapping. Horizontal thin solid lines (left) indicate the pancake thickness �−1/2

for some film profiles. The scales are defined in (11). For comparison, the film profiles shown in Fig. 3
correspond to Ke = 0 in current terms.

from the mathematical viewpoint. Indeed, in the former problem, we could first obtain once and for
all the vapor concentration field ρ̃v and the evaporation flux distribution j, and then merely use them
(namely, j) in the film part of the formulation to calculate h. In other words, the vapor part of the
problem was decoupled from the film part. This is no longer so with the Kelvin effect: the condition
given by Eq. (30) shows that the two are now coupled and must be resolved simultaneously. Thus,
the shooting method used in Secs. II and III is no longer applicable. Instead, we used a discretization
of the equations and boundary conditions by means of second-order finite differences (including
the Laplace Eq. (22) in a two-dimensional domain {r, ϕ} typically using 1500 × 250 points). A
strongly graded grid was used, with a higher resolution near the tip of the film, by making a variable
change like r = ln ξ and using a uniform grid in terms of ξ . To treat the boundary conditions at the
singular points x, r → 0 and x, r → ∞, the corresponding coordinate expansions were developed
(see Appendix A), so that the actual boundary conditions were replaced by patching the numerical
solution to the coordinate expansions at some sufficiently small and large values of x and r. Such use
of the coordinate expansions in particular allowed to achieve a high degree of independence of the
numerical domain size for quite moderate values thereof (the maximum values of x and r typically
used being of the order of 50, and their minimum values of the order of 10−4). The resulting system
of nonlinear algebraic equations for the values of ρ̃v , j and h at the grid points and free coefficients
of the coordinate expansions such as ϑmic in Eq. (17) or � in Eq. (18) was resolved by means of the
FindRoot command in Mathematica.

The results for ϑmic(�, Ke) are shown in Fig. 7. Apart from a decrease with an increase of the
Kelvin number, a most remarkable feature is that ϑmic appears to attain a constant at sufficiently
large dimensionless spreading coefficients �. The latter is seen to occur for each finite value of Ke,
whereas in the absence of the Kelvin effect (Ke = 0) ϑmic appears to grow indefinitely with �.

The physical reasons for such behavior become clear in Fig. 8, representing film profiles (left)
and evaporation-flux profiles (right) at different �. The profiles corresponding to � = 4, 5, and 6
are shifted along x so as for all profiles to largely overlap along their main parts, to the right
of the truncated microfilms. What is truly essential here is that they can be made to practically
overlap in this way. At the same time, the length of the truncated microfilm is seen to rapidly
grow with �, which is not unexpected given that larger � correspond to a more wetting situation.
In fact, we already saw signs of such growth in Fig. 3 in the framework of just the basic model
(without the Kelvin effect), although the presence of the Kelvin effect makes it appreciably more
drastic (Fig. 8 left). Indeed, the Kelvin effect is seen to significantly regularize the evaporation-flux
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profiles (Fig. 8 right), no longer diverging as Eq. (13) at the tip of the film (and now tending to
Eq. (13) only at x � 1), hence letting the truncated microfilms extend more without vaporizing.
Incidentally, this evaporation singularity reduction also goes along with lowering the ϑmic values
already pointed out for Fig. 7. Again, what seems to be truly essential in Fig. 8 is that the
growing (with �, but at the same Ke) truncated microfilms follow a “channel” specified by the
dashed curve in Fig. 8 (left), which is nothing else than the extended adsorbed microfilm profile
h = (Ke/2)1/3(−x)−1/6 [cf. Eq. (34) and Sec. V in what follows], suitably shifted along x. Thus,
we see that, at sufficiently large �, we practically attain the extended-microfilm regime within the
family of truncated-microfilm ones, the truncated microfilm deemed to formally extend to infinity
as � → +∞. At the same time, the evaporation-flux profile associated with the extended adsorbed
microfilm is j = 1

6 x−2 [cf. Eq. (39) and Sec. V in what follows], which is indeed attained within the
family of truncated-microfilm regimes as � is increased (Fig. 8 right; once again implying a shift
along x). Note also a small local burst of the flux that remains near the tip of the truncated microfilm.

Coming back to Fig. 7, the reason for the curves to reach constant values at large � is now
clear: these values of ϑmic must already practically correspond to the extended-microfilm regime,
independent of �. To verify the point, we carried out our computation directly for the extended-
microfilm regime (see the next section, Sec. V, for more details). The results for ϑmic proved to be
within less than 1% from those obtained for the truncated-microfilm regime at sufficiently large �,
thus demonstrating the point.

One can note that the transition from the truncated- to the extended-microfilm regime of the
microregion occurs in the present case of diffusion-limited evaporation into air in a somewhat
different way than in the case of conduction-limited evaporation into pure vapor studied in Ref. [11].
Here, it occurs asymptotically in the limit � � 1. There, it occurs at a finite critical value of �,
above which the truncated-microfilm regime ceases to exist at all. This difference can be traced
back to the fact that, here, the extended microfilm thickness decays away from the main part
of the microregion, cf. Fig. 8 (left), whereas, there, its thickness remains constant. Indeed, the
earlier mentioned de Gennes’ pancake has a dimensionless thickness �−1/2 [12], decreasing with
�. Therefore, here, the pancake thickness can actually never fall below the extended microfilm
thickness whatever large � could be: there will always be a location corresponding to the pancake
thickness along the decaying extended microfilm. This will roughly be the location of the truncated-
microfilm tip (cf. Fig. 8 left), hence an asymptotic estimation �mf ∼ 1

4 Ke2�3 for the dimensionless
length of the truncated microfilm in the limit � � 1, the scale being [�mf] = [x], cf. Eq. (11). In
contrast, there, the pancake thickness simply falls below the extended-microfilm thickness above
a certain critical value of �, signifying the end of the truncated-microfilm regime in favor of the
extended-microfilm one [11]. The present situation is in this sense closer not to its above-mentioned
pure-vapor counterpart, but rather to the microregion of an advancing contact line of a perfectly
wetting nonvolatile liquid studied in Ref. [31]. The present extended-microfilm regime appears to
be a full counterpart of the “maximal” solution by Hervet and de Gennes [31] (cf. also Ref. [12]),
to which the truncated-microfilm solutions tend in the limit of large spreading coefficients.

Let us also note the following. The extended-microfilm regime formally exists (is a solution)
irrespective of the value of the spreading coefficient, since it involves no actual three-phase contact.
However, in accordance with thermodynamic and kink-propagation arguments put forth in Ref. [11],
an adsorbed microfilm is metastable (with respect to the bare substrate state) when its thickness
is smaller than the pancake thickness. In the present context, with an asymptotically decaying
extended-microfilm thickness falling below the pancake thickness above a certain distance, this
indicates that it is the truncated-microfilm regime that is actually realized for any finite �, the
extended-microfilm regime being just a valuable limiting case corresponding to � � 1.

V. FURTHER RESULTS FOR THE REGIME WITH AN EXTENDED ADSORBED MICROFILM

The consideration in Sec. IV led us, among other things, to results for the (more classical)
regime with an extended adsorbed microfilm, which were obtained both as a limit � � 1 within the
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family of the regimes with a truncated microfilm and, for verification, by means of a computation
directly proceeding from the extended-microfilm formulation. It is worthwhile to dwell more upon
the extended-microfilm problem, which we accomplish in the present section. This is all the more
so given that, to the best of our knowledge, no exact, numerical solution of the problem in question
was previously reported in the literature (meaning the case of a diffusion-limited evaporation into
air). Indeed, the previous pioneering works by Eggers and Pismen [23], by Doumenc and Guerrier
[27], and by Morris [28] either relied upon an asymptotic approach [28], or considered a global
problem and not explicitly a microregion one [23,27].

Needless to recall that the consideration is still carried out in the framework of the scales and
renormalizations given by Eqs. (1)–(3), (10), (11), (21). Practically all equations and boundary
conditions used for the basic model + Kelvin effect in Sec. IV remain of the same form here,
except for the geometric domain of their applicability: the liquid layer now occupies the whole solid
substrate surface −∞ < x < +∞, and not just x � 0 as before. The sole boundary condition that
also implies a change of the form is an asymptotic condition for the extended adsorbed microfilm
as x → −∞ (see below) now replacing Eq. (15) at the truncated-microfilm tip. Besides, Eq. (24) is
now lost since no bare substrate surface is available anymore. For the same reason, � is no longer
explicitly present among the parameters of the problem (Ke remaining the only one). The new
geometry makes it more convenient to proceed in terms of the Cartesian coordinates {x, z} in lieu
of the earlier used polar coordinates {r, ϕ} (x = r cos ϕ, z = r sin ϕ). Here z is the one orthogonal
to the substrate surface, z = 0 corresponding to the surface itself, and the scale being just [z] = [x].
Thus, the mathematical formulation for the regime with an extended adsorbed microfilm can be
recapitulated as

h3h′′′ − h−1h′ + J = 0, J =
∫ x

−∞
j(x̌) dx̌, (32)

h′ = ϑmic as x → +∞, (33)

h ∼
(

Ke

2

)1/3

(−x)−1/6 as x → −∞, (34)

∂2ρ̃v

∂x2
+ ∂2ρ̃v

∂z2
= 0 (z > 0), (35)

ρ̃v ∼ −2r1/2 sin 1
2ϕ as r → +∞ (36)

with r = (x2 + z2)1/2, ϕ = arccos
x

(x2 + z2)1/2
,

j = −∂ρ̃v

∂z
at z = 0, (37)

ρ̃v = −Ke

(
3h′′ + 1

h3

)
at z = 0. (38)

The asymptotic behavior given by Eq. (34), corresponding to the extended adsorbed microfilm,
is deduced from Eq. (38) on account of Eq. (36), the latter giving rise to ρ̃v|z=0 ∼ −2(−x)1/2 as
x → −∞. Using Eq. (34) in the film Eq. (32), one can deduce

j ∼ 1

6x2
as x → −∞. (39)

Both Eqs. (34) and (39) were already referred to without derivation in Sec. IV and, with an x-shift,
in Fig. 8.

Consider now the coordinate expansion of the solution for the concentration field at infinity
[recall that some other coordinate expansions throughout the paper are relegated to Appendix A,
cf., e.g., Eq. (A1) for h as x → +∞, unless of immediate use for the discussion as the present one].
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One arrives at

ρ̃v ∼ −2r1/2 sin
ϕ

2
+ C1r−1/2 sin

ϕ

2
− (6r)−1 sin ϕ + o(r−1) as r → +∞. (40)

Equation (40) contains a few higher-order terms in addition to the leading-order behavior repre-
sented in Eq. (36). These are solutions of Eq. (35) with two boundary conditions: (i) Eq. (37)
on account of Eq. (39), and (ii) ρ̃v|z=0 = o(x−1) as x → +∞, the latter following from Eqs. (33)
and (38). The second term on the right-hand side is a “corner solution” of the same type as the
first term, C1 being a free coefficient. The third term is engendered by the mass transfer in the
extended absorbed microfilm Eq. (39). One can easily verify that, given an asymptotic nature of
the expression, the second term merely amounts to an x-shift within the first term. The problem
given by Eqs. (32)–(38) is actually invariant with respect to shifts along x, the asymptotic boundary
conditions at infinity representing just the leading-order behaviors. Thus, without loss of generality,
one can merely choose C1 = 0, which amounts to fixing the reference point along the x axis and
which is what is implied in what follows. The behavior given by Eq. (40) can be used to deduce
the asymptotic behaviors of the local and integral evaporation fluxes, j and J = ∫ x

−∞ j(x̌) dx̌, as
x → +∞ (which will be useful in what follows). For j, this is straightforward by using Eq. (37). In
the case of J , for any positive x, one can write

J =
∫ −x

−∞
j(x̌) dx̌ +

∫ x

−x
j(x̌) dx̌ =

∫ −x

−∞
j(x̌) dx̌ +

∫ π

0

(
−∂ρ̃v

∂r

∣∣∣
r=x

)
x dϕ,

where the second term was transformed in to an integral over a half-circle of radius r = x on account
of the integral form of species conservation in the diffusion problem. Now assuming x � 1 and
using Eqs. (39) and (40), we obtain the final result. Thus,

j ∼ 1

x1/2
+ 1

6x2
, J ∼ 2x1/2 − 1

6x
as x → +∞, (41)

where we chose C1 = 0 in accordance with the earlier made convention.
The numerical approach adopted here is essentially the same as the one described in Sec. IV,

except that the problem was now treated and discretized in the Cartesian coordinates in a large
rectangular domain {−xmax � x � xmax, 0 � z � zmax}, where xmax and zmax are large positive
values (we typically used xmax = zmax ∼ 40). The patching to the coordinate expansions was now
realized at the three sides of the rectangle remote from the origin. A change of the independent
variables, viz. x = sinh ξ and z = sinh η, was applied so as to discretize at a uniform grid in terms
of ξ and η (typically using 1000 × 500 points) and render the grid more dense in terms of x and
z near the origin. Computations using various domain sizes and numbers of grid points (e.g., both
varied by a factor of two in both directions from the typical values) were carried out so as to verify
that the results did not change within a certain precision (<0.1% for the ϑmic values reported here).

Figure 9 displays the here computed dependence of ϑmic(Ke) in the extended-microfilm regime
(solid line). It is notably a decreasing function of Ke, in accordance with what was already observed
in Fig. 7. A number of asymptotic results for ϑmic(Ke) pertaining to the limits of either small Ke
(dashed lines) or large Ke (dot-dashed line) are also shown for comparison.

Among these asymptotic results in Fig. 9 is most notably the one derived in Ref. [28] (cf. also
Ref. [29]) in the limit Ke � 1 (short-dashed line).8 While the trend is certainly well captured, one

8We use the representation given in Ref. [29], cf. Eqs. (3.6) and (3.7) therein, of the asymptotic result obtained
in Ref. [28]. Comparing these to Eqs. (1)–(3), we arrive at

ϑmic =
(

31/4

(π 2/2)1/6

)−1

k ≈ 0.99 k with k = 1.47758
21/6

π 1/3
W

( 4

L 3/2

)1/6

,

where W is the Lambert W function (the inverse of W expW ), while a relation between L and Ke is given in
an earlier footnote 6.
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FIG. 9. Rescaled evaporation-induced contact angle ϑmic, the prefactor in a classical scaling law given by
Eqs. (1)–(3) for the evaporation-induced contact angle, versus the Kelvin number Ke in the microregion regime
with an extended adsorbed microfilm (no kinetic resistance yet considered, K = 0). Solid line: our present
computation. Short-dashed line: asymptotic result in the limit Ke � 1 obtained in Ref. [28] and also used in
Ref. [29]. Long-dashed line: ditto but now also including a higher-order correction obtained in Appendix B.
Dot-dashed line: asymptotic result in the limit Ke � 1 adapted from Ref. [40].

nonetheless observes a nonnegligible underprediction of the numerical ϑmic values persisting even at
rather small values of Ke (the short-dashed curve lying noticeably lower than the solid one in Fig. 9).
An earlier indication that such an underprediction could occur can in fact be found in Ref. [29],
based on a test computation in the framework of the global sessile-drop model from Ref. [23].9 The
existence of such a discrepancy is actually not overly unexpected given a logarithmic character of
the asymptotic expansion here, the smallness parameter being essentially (ln Ke)−1 rather than Ke
itself. To clear up this point, we extended the asymptotic analysis of Ref. [28] to include the next
logarithmic order in the asymptotic expansion (see Appendix B). The outcome is shown in Fig. 9
(long-dashed line). One can appreciate that the discrepancy is thereby drastically reduced, which
confirms that a logarithmic correction can be rather appreciable even for Ke as low as Ke = 0.0001
and serves to reconcile the numerical and asymptotic approaches.

At the same time, the asymptotic analyses confirm what one could suspect on the basis that
the very existence of an extended microfilm here depends on the Kelvin effect. Namely, they
confirm that the problem is singular and no finite limit is attained by ϑmic as Ke → 0 in the regime
with an extended microfilm. Rather, ϑmic must continue to grow indefinitely, even if very slowly
(logarithmically). This is quite in contrast with the regime with a truncated microfilm, for which the
problem can be considered at Ke = 0 exactly (viz. the basic model, Sec. II, does not include the
Kelvin effect) and for which ϑmic attains finite values as Ke → 0 (cf., e.g., Fig. 7).

9Indeed, the latter yielded a prefactor value k = 1.9 (ϑmic ≈ 1.88), a higher value than k = 1.69 (ϑmic ≈ 1.67)
resulting from Ref. [28] under the same conditions. Here recall that ϑmic ≈ 0.99 k (cf. an earlier footnote).
However, k = 1.9 is still somewhat lower than k ≈ 2.04 (ϑmic ≈ 2.02) that we would obtain here (cf. the solid
line of Fig. 9). This is not too surprising given that the test computation actually concerned a small drop near
extinction (R∗

c = 103a∗, i.e., R∗
c ∼ 0.5 μm for typically a∗ ∼ 0.5 nm), so that a large negative “macroscopic”

curvature and a fast (accelerating towards extinction) receding of the contact line would result in a reduction
of the apparent contact angle.
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FIG. 10. Computed dimensionless microregion profiles (solid lines) of the film slope h′(x) for Ke =
0.0001, 0.001, 0.01, 0.1, and 1 (left) and evaporation flux j(x) for Ke = 0, 0.03, 0.1, 0.3, and 1 (right).
Regime with an extended adsorbed microfilm (and no kinetic resistance, K = 0). The scales are defined in
Eq. (11). The maximum values of both h′ and j decrease with increasing Ke, which permits to establish
an unambiguous correspondence between a given profile and its Ke value. Asymptotic behaviors given by
Eqs. (39) and (41) (dashed lines).

Also displayed in Fig. 9 (dot-dashed line) is what can be considered as an asymptotic result in
the limit of large Ke. It is based on the developments of Ref. [40], where the disjoining pressure
is completely disregarded while the Kelvin effect (due to the Laplace pressure) remains the only
regularizing mechanism in the microregion (cf. Ref. [36] for the counterpart of the large-Ke limit in
the pure-vapor case).10

The film-slope and evaporation-flux profiles computed for the regime with an extended microfilm
are represented in Fig. 10 for various Ke. One can see that the evaporation-flux profiles j(x) become
sharper (viz. higher and narrower) as Ke is decreased. Furthermore, they are seen to attain a finite
limiting form as Ke → 0, in spite of the overall problem with an extended microfilm being singular
as Ke → 0 as already mentioned. This is in fact fully in line with the predictions of the asymptotic
analysis of Ref. [28], where a corresponding reduced problem was formulated permitting to compute
j(x) at Ke = 0 exactly. This is precisely how it was computed here for Fig. 10 (right), see Appendix
B for further details. Another related feature evidenced by Fig. 10 is that the maximum of the h′
growth shifts more and more to the right as Ke → 0 while the position of the maximum evaporation
rate remains fixed. In other words, the zone where an essential part of the evaporation-induced
contact angle is formed gets separated from the maximum evaporation rate, the latter progressively
finding itself in the zone of the adsorbed microfilm. This also agrees with the asymptotic picture
developed in Ref. [28] in the limit Ke → 0. At the same time, Fig. 10 provides a hint at the possible
physical nature of the earlier discussed underprediction of ϑmic by means of the asymptotic theory
[28]: the evaporation flux j to the right of the zone of h′ maximum growth still appears to remain
quite nonnegligible, even if well smaller than at the j maximum, which can still contribute to the
buildup of the final slope ϑmic = h′|x→+∞ (see Appendix B for more details).

Thus far, the basic model has been supplemented by either the kinetic resistance (Sec. III) or the
Kelvin effect (Sec. IV and the present section up to now) separately. We now consider their joint
action, but limit ourselves to the regime with an extended adsorbed microfilm under study in the
present section. The condition given by Eq. (38) is then replaced with

ρ̃v = −Ke

(
3h′′ + 1

h3

)
− K j at z = 0 (42)

10Comparing Eqs. (1)–(3) here to Eqs. (4.2) and (4.6) in Ref. [40], the latter can be rendered as ϑmic =
1.84 Ke−1/13 in our present terms, which is the dot-dashed curve plotted in Fig. 9.
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FIG. 11. Dependence on the kinetic resistance in the extended-microfilm regime. The result for K = 0
(no kinetic resistance) reproduces the solid curve of Fig. 9, and its counterparts for K = 1 and 5 are also
represented. Inset: ϑmic versus K at Ke = 0.01.

[in essence, we end up with a combination of terms present in Eq. (26), on the one hand, and in
Eq. (30) or Eq. (38), on the other hand]. The formulation remains unchanged otherwise. We shall
hereby study how the kinetic resistance affects the evaporation-induced angles for the extended-
microfilm regime. This is reduced to a dependence on two parameters: ϑmic = ϑmic(K, Ke), among
which � does not appear since the extended-microfilm regime does not depend on the spreading
coefficient [unlike a truncated-microfilm regime, where one would have a dependence ϑmic =
ϑmic(�, K, Ke)]. The computation results are provided in Fig. 11. We observe quite a modest
influence of the kinetic resistance, which is even somewhat weaker (with no drastic change at small
K) than what we already saw in Fig. 6 in the framework of the basic model. The latter fact is
not surprising given that the kinetic resistance gives rise to a regularization of the evaporation flux
singularity in the framework of the basic model (cf. the two curves in Fig. 5), whereas it merely
exerts a smooth effect in the case of an extended adsorbed microfilm a priori involving no such
singularities.

VI. IMPLICATIONS FOR COMPARISON WITH EXPERIMENT

A detailed comparison of the predicted evaporation-induced contact angles with the experimental
results reported in Refs. [22,41,42] was undertaken in Ref. [28]. The measured values were thereby
found to fall below the predicted ones roughly at a ratio of 0.9 for octane, 0.8 for HMDS and 0.7
for nonane and OMTS (for sessile drops with a radius R∗

c ∼ 1 mm). However, as already mentioned
in Sec. V, although our present formulation for the regime with an extended adsorbed microfilm (at
K = 0) is exactly the same (up to notations) as the one originally put forth and used in Ref. [28], it
was an asymptotic method that Ref. [28] proceeded from, whereas an exact, numerical solution is
used in the present paper. In accordance with the discrepancy between the solid and short-dashed
curves of Fig. 9, this implies that, in reality, the agreement with the experiments turns out to be less
good than reported in Ref. [28], the earlier mentioned ratios needing to be modified by a factor11

11Between the various experiments processed in Ref. [28], the parameter L was found to vary between
0.00046 and 0.041 [28]. In terms of Ke (cf. an earlier footnote 6 for the relation between L and Ke), this
implies a variation between Ke = 0.0011 and Ke = 0.032. Accordingly, the ratio of the ϑmic values at the
short-dashed and solid curves of Fig. 9 is found to vary between 0.83 and 0.77. To simplify, we just use 0.8
throughout.
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∼0.8 and hence becoming roughly 0.7 for octane, 0.65 for HMDS and 0.55 for nonane and OMTS.
The reason for such a discrepancy is not clear without further study.

Likewise, given that Ref. [29] also relied upon the asymptotic result of Ref. [28] for comparison
to their own measurements, a similar “numerical rectification” as above can be applied to their
study too. To judge by their figure 6, this rectification will lead to an even greater overprediction of
their measured contact angle values than what they already had for nonane, octane and heptane. On
the contrary, for more volatile liquids with larger evaporation-induced contact angles (hexane and
pentane), the rectification will improve the agreement with experiment to a good level. Further study
of this issue is required, in particular to investigate whether an essential thermal-Marangoni inflation
of the drop revealed in Ref. [43] for more volatile liquids distorts the contact-angle measurements.

Let us now see whether accounting for the other physical effects studied in the present paper,
such as the possibility of the adsorbed microfilm getting truncated and the kinetic resistance to
evaporation, can substantially reduce the above-mentioned discrepancy with experiment. In other
words, we shall see whether one can end up with substantially lower values of ϑmic thanks to those
two effects. A certain improvement towards this goal appears to be possible for sufficiently small
Ke in the realm of truncated microfilms as manifest in Fig. 7 by the minima of the curves occurring
at a finite value of �. However, a maximum reduction of ϑmic achievable in this way is just from
ϑmic ∼ 2.0 (cf. the solid curve of Fig. 9 at small Ke) to ϑmic ∼ 1.9 (cf. the inset of Fig. 2), i.e.,
no more than ∼5%, which is too small to substantially correct the discrepancy with experiment.
For the kinetic resistance, our earlier estimations yielded at most K ∼ 1, hence (cf. the results for
K = 0 and K = 1 in Fig. 11) once again a maximum reduction of ∼5%. It is only anomalously low
values of the accommodation coefficient in Eq. (27), e.g., as found for water in Ref. [39], that could
in principle lead to much larger values of K and make a difference here. However, this does not
seems to be an a priori viable possibility. Thus, we conclude that the two considered effects are not
sufficient to take care of the discrepancy.

VII. CONCLUDING REMARKS

We have extended an approach due to de Gennes and collaborators to the problem of
evaporation-induced apparent contact angles of perfectly wetting liquids undergoing diffusion-
limited evaporation into air. As a main usable output of the analysis, the prefactor ϑmic entering
a classical scaling law for such angles, cf. Eqs. (1)–(3), has been calculated in various formulations,
in the order of increasing mathematical and physical complexity. Finer details of the liquid-film
profiles in the microregion have also been analyzed.

We started from a simplest possible formulation (“basic model”), where the mechanical action of
the disjoining pressure, in the form of an inverse cubic law, alone enables the singularity resolution
in the microregion where such angles are established. The evaporation-induced contact angle has
been found to be only slightly dependent, by means of the prefactor, on the spreading coefficient
in the perfectly wetting case. Interestingly though, this dependence turned out to be nonmonotonic.
The microregion film profiles are, in this formulation, abruptly starting off a bare solid surface. At
larger values of the spreading coefficient, a truncated microfilm (assimilated to a precursor film)
starts to develop from the overall microregion film profile, resembling more distinctly a protruding
de Gennes’ pancake.

The inclusion of the kinetic resistance to evaporation eliminates the evaporation-flux divergence
at the contact line and leads to somewhat smaller values of the evaporation-induced contact angle.
The biggest rate of such angle reduction has been found to occur at smaller spreading coefficients
and at smaller values of the kinetic resistance.

The inclusion of the Kelvin effect has similarly been found to lead to a quite moderate reduction
of the angles. A most important structural Kelvin-related change consisted in a pronounced elon-
gation of the truncated microfilms for sufficiently large spreading coefficients, ultimately leading
to the regime with an extended absorbed microfilm previously known in the literature [23,27,28].
Our computation for this extended-microfilm regime has yielded prefactor values somewhat greater
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(by ∼20%) than known from earlier asymptotic approaches [28,29], a discrepancy that we have
here successfully explained by accounting for a correction beyond the leading-order approxima-
tion within the asymptotic approach. However, this would imply a corresponding increase in the
evaporation-induced angle estimations provided for numerous liquids in Refs. [28,29], which in
most cases (for liquids less volatile than pentane) would somewhat worsen the agreement with
experiment as compared to what was claimed in Refs. [28,29]. A parametric study within the present
models (including the truncated-microfilm regimes and reasonable values of the kinetic resistance)
revealed only a possible partial improvement as far as the agreement with experiment is concerned,
indicating that the phenomenon may still depend on some other factor(s) not yet included into the
models.

Finally, let us mention that the scenario of the transition from the truncated- to the extended-
microfilm regime here turned out to closely resemble the one of Hervet and de Gennes [12,31],
but to be somehow different from the pure-vapor counterpart [11] of the present study, in that the
transition occurs asymptotically at large spreading coefficient values but not at a finite critical value
thereof.
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APPENDIX A: COORDINATE EXPANSIONS

Here we provide some relevant coordinate expansions of the solution of the problem at the
extremes of the domain that did not already appear in the main text of the paper.

First, we turn to the basic model + Kelvin effect (Sec. IV). At the tip of the truncated microfilm,
similarly to Eq. (18), one can deduce in a step-by-step way

h ∼
(

4

3

)1/4

x1/2

[
1 − 31/2

4
�x − 23/2

5 × 33/4
�x3/2 − 3

32
�2x2

− 2
√

2(5c1 + 3
√

3 Ke��)

105 × 33/4Ke
x5/2 + O(x3)

]
as x → 0,

ρ̃v ∼ Ke � + c1r cos ϕ − 2
√

2c1

37/4Ke
r3/2 sin

3ϕ

2
+ c2r2 cos 2ϕ + O(x5/2) as r → 0,

where �, c1, and c2 are free coefficients to be determined with the full solution. A noteworthy result
from these expansions concerns j = −x−1∂ρ̃v/∂ϕ|ϕ=0, cf. Eq. (25). We thereby obtain a behavior

j ∼
√

2 c1
33/4Ke x1/2 as x → 0, i.e. a local evaporation flux vanishing at the tip of the film (cf. Fig. 8 right),

quite in contrast with a divergence given by Eq. (13) in the absence of the Kelvin effect. At infinity,
supplementing the leading-order behavior given by Eq. (23) with a few higher-order terms, one
arrives at

ρ̃v ∼ −2r1/2 sin
ϕ

2
+ C1r−1/2 sin

ϕ

2
+ O(r−3/2 ln r) as r → +∞,

where C1 is a free coefficient. This is a solution of the Laplace Eq. (22) with the boundary conditions
given by Eq. (24) and ρ̃v = 0 at ϕ = 0. The latter is here actually Eq. (30) approximated up to the
order considered on account of Eq. (17) yielding ρ̃v|ϕ=0 = o(r−1) as r → +∞ [more precisely,
ρ̃v|ϕ=0 = O(r−3/2) on account of Eq. (A1) below]. As compared to Eq. (40), the term O(r−1) is
here absent, due to the absence of the extended microfilm but the presence of a bare substrate at
ϕ = π instead. Also in contrast with Eq. (40), C1 cannot be set equal to zero but must rather be
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FIG. 12. Solid lines: computed dimensionless microregion film profiles h(x) exactly corresponding to the
slope profiles of Fig. 10 (left). Larger Ke correspond to larger h within the region shown. Dashed lines: for
each case, the asymptotic behaviors given by Eq. (34) valid at large negative x (indiscernible and not shown
for smaller Ke) and Eq. (A1) valid at large positive x with the free coefficients computed from the full solution.
Here Eq. (A1) has been extended up to and including the order O(x−1).

determined together with the full solution of the problem (the reference point along the x axis being
here represented by the tip of the film located at x = 0 by definition).

Second, we also provide a generalization of Eq. (40) (extended-microfilm regime) in the case
when the kinetic resistance is included (K �= 0) as at the end of Sec. V:

ρ̃v ∼ −2r1/2 sin
ϕ

2
− Kπ−1r−1/2

(
ln r sin

ϕ

2
+ (π − ϕ) cos

ϕ

2

)

+C1r−1/2 sin
ϕ

2
− (6r)−1 sin ϕ + o(r−1) as r → +∞.

We note that the second (new) term on the right-hand side is a solution of the Laplace equation
with the following boundary conditions: (i) ∂ρ̃v/∂ϕ = 0 at ϕ = π , which is a consequence of j =
r−1∂ρ̃v/∂ϕ|ϕ=π from Eq. (39) actually decaying faster than O(r−3/2) as x → −∞ (r → +∞, ϕ =
π , x = −r) in the extended adsorbed microfilm, and (ii) ρ̃v = −Kr−1/2 at ϕ = 0 (x = r), which
follows from Eq. (42) to leading order as r → +∞ upon the substitution of j ∼ x−1/2 [cf. Eq. (41)]
and h ∼ ϑmicx.

Third, for all the models treated in the present paper, it turns out to be j ∼ x−1/2 + o(1) as
x → +∞ while the liquid film is always governed by Eqs. (12) and (17) [note that Eqs. (32) and
(33) are equivalent to those]. Then, deducing further terms of the coordinate expansion beyond
Eq. (17) from Eq. (32), one can obtain

h ∼ ϑmicx − 16

3ϑ3
mic

x1/2 + B1 ln x + B0 + O(x−1/2 ln x) as x → +∞, (A1)

where ϑmic, B1, and B0 are free coefficients to be determined with the full solution. Note though that
the higher-order terms not displayed in Eq. (A1) generally adopt a model-dependent form, unlike
the terms displayed. As illustrated in Fig. 12 for the liquid film profiles, the asymptotic behaviors
expected at large positive and negative x manifest a high degree of overlapping with the full solution
already at quite moderately large values of |x|.

APPENDIX B: REVISITING THE ASYMPTOTIC ANALYSIS AT SMALL Ke FOR THE REGIME
WITH AN EXTENDED MICROFILM AND NO KINETIC RESISTANCE

This Appendix is motivated by the necessity to rationalize the noticeable discrepancy between
the asymptotic results (the limit Ke � 1) of Ref. [28] and the present numerical results as it appears
in Fig. 9. The foundations of the asymptotic approach and the leading-order approximation were
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considered in great detail in Ref. [28]. Here the asymptotic analysis is reproduced in a concise
formal way in our notations with a view to advancing one step further to a logarithmic correction
beyond the leading order, with the help of which we shall seek to explain the discrepancy.

The asymptotic analysis of Ref. [28] reveals the existence of an “inner” (“tapered film”) region
where the Laplace pressure is negligible and a maximum evaporation rate j is attained, and, to its
right, a relatively narrow “corner” region where a maximum growth of the film slope h′ takes place.
Such distinct spatial separation between the maximums of j and h′ was noted to be compatible with
the numerical solution of the full problem in Sec. V (cf. the discussion of the h′ and j profiles at
small values of Ke in Fig. 10). The slope growth in the corner region is a dynamic effect of a liquid
flow passing through it to the inner region to compensate for the evaporative losses in the latter.
However, the evaporation in the corner region itself and its dynamic influence are effects beyond
the leading-order approximation.

Here we shall have to introduce yet another, “outer” region, to the right of the corner region.
The outer region is trivial and needs not be distinguished in the framework of the leading-order
approximation Ref. [28] was bound to. However, as we shall see, it is required when dealing with a
higher-order correction, for the evaporation flux at larger x (behaving as j = 1/x1/2 and J = 2x1/2

there) still slightly contributes to building up the film slope so as to affect the final value ϑmic =
h′|x→+∞. Thus, we here eventually end up with three regions (inner, corner, and outer). Solutions
are sought separately in each of them and joined by means of a matching procedure (matched
asymptotic expansions).

1. Inner region

In the inner region, associated with the extended adsorbed microfilm, we have h = O(Ke1/3) as
indicated by Eq. (34). Accordingly, we introduce a new dependent variable

h̄ = Ke−1/3h, (B1)

so as to have h̄ = O(1) there, whereas the independent variable x is not changed. Equation (34) can
then be rewritten as

h̄ ∼ (−4x)−1/6 as x → −∞. (B2)

The Laplace pressure contributions in Eqs. (32) and (38) are negligible to the leading order in
Ke � 1 in the inner region, and hence these equations rather become

−h̄−1h̄′ + J = 0, J =
∫ x

−∞
j(x̌) dx̌, (B3)

ρ̃v = −1/h̄3 at z = 0. (B4)

Other equations and boundary conditions of the full problem with an extended microfilm, viz.
Eqs. (35)–(37), remain formally unchanged within the leading order in the inner region except
for Eq. (33), which is now incompatible with the film Eq. (B3) and must be replaced with another
behavior at infinity. Assuming a sufficiently fast growth of h̄ and hence [cf. Eq.(B4)] a sufficiently
fast decay to zero of ρ̃v|z=0 as x → +∞ [verified a posteriori in Eq. (B5)], the behaviors given
by Eqs. (40) and (41) still hold in the framework of the leading-order problem in the inner region.
Using Eqs. (41) in (B3) and integrating, one obtains12

h̄ ∼ c x−1/6 exp
(

4
3 x3/2

)
as x → +∞, (B5)

12This is similar to Eq. (5.8) in Ref. [28]. Note that the different prefactors (4/3 here and 2/3 there) in front
of x3/2 are merely a consequence of the different scales used in the nondimensionalization and do not amount
to a real discrepancy. However, the flux J correction − 1

6 x−1 was not accounted for in Ref. [28], which would
subsequently lead to missing a prefactor x−1/6 in their equation as compared to Eq. (B5) here.
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where c is a constant to be determined together with the full solution in the inner region. The fact
that this solution fails to satisfy Eq. (33) and rather behaves as Eq. (B5) underscores once again the
necessity of introducing yet another (corner) region, where the Laplace pressure would no longer
be negligible and the behavior could be rectified toward Eq. (33).

To sum up, the leading-order problem in the inner region is given by Eqs. (35)–(37), (B2)–(B5).
It does not depend on Ke. Up to notations, it is equivalent to the corresponding problem originally
formulated in Ref. [28]13

It turns out (cf. Ref. [28] and the next subsection) that to proceed to a leading-order consideration
in the corner region one does not even need to know to value of c in Eq. (B5) or to otherwise know
the inner-region solution other than just the exponential growth in the asymptotic condition given
by Eq. (B5). However, on the one hand, we shall here be also interested in a (logarithmic) correction
beyond the leading-order approximation, as it was already stated. On the other hand, the numerical
code here developed for the full problem can straightforwardly be adapted for the problem in the
inner region anyway. Thus, the computation yields c = 0.80. Another result of this computation is
the evaporation-flux profile j(x), represented in Fig. 10 (right) as corresponding to Ke = 0 (exactly).

2. Corner region and the leading-order asymptotic result for ϑmic

In the corner region, new variables (with a hat) are introduced similarly to Ref. [28]:

x = �1 + �x x̂, h = �h ĥ, (B6)

where �1 (position of the corner region) is expected to be asymptotically large as Ke → 0, while
the scales �x and �h asymptotically small (the corner region being narrow), which is confirmed
in what follows. The Laplace pressure d2h/dx2 must no longer be negligible. For it to rather be
comparable with the disjoining pressure 1/h3, the following scale choice is appropriate:

�h = �x1/2. (B7)

Matching between the inner and corner regions is to be accomplished by means of the asymptotic
behavior given by Eq. (B5). Rewriting the latter in terms of the corner variables on account of
Eqs. (B1), (B6), and (B7), and carrying out some series expansions on account of the supposed
asymptotic order of the parameters, one obtains

ĥ ∼ Ke1/3�h−1c �
−1/6
1

(
1 − �x x̂

6 �1

)
exp

(
4

3
�

3/2
1 + 2�

1/2
1 �x x̂ + (�x x̂)2

2 �
1/2
1

)
. (B8)

Since both x̂ and ĥ are defined so as to be O(1) in the corner region, the scales can be chosen such
that

Ke1/3�h−1c �
−1/6
1 exp

(
4
3�

3/2
1

) = 1, 2�
1/2
1 �x = 1. (B9)

The parameters �1, �x and �h are now fully determined by the system of Eqs. (B7) and (B9), from
where one can see that �1 is logarithmically large, while �x and �h are logarithmically small as
Ke → 0 (thus confirming the original expectations concerning their largeness or smallness). Their
following combinations will hereafter be of special relevance:

ζ ≡ �x

�1
= 12

[
W

(
3Ke−6

64 c18

)]−1

, ε̂ ≡ �h

�x
=

(
4

ζ

)1/6

, (B10)

where W is the Lambert W function (the inverse of W expW , as already mentioned), ε̂ is the film
slope scale in the corner region (logarithmically large), and ζ is the small parameter defining the
first logarithmic correction to the leading-order approximation. The latter fact becomes evident as

13See Eq. (5.3) therein.
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soon as Eq. (B8) gets rewritten, on account of Eqs. (B7), (B9), and (B10) and an additional series
expansion within the exponential term, as

ĥ ∼ [
1 + 1

4ζ
(
x̂2 − 2

3 x̂
)]

exp x̂. (B11)

We note that the terms of an order higher than the first logarithmic correction are neglected in
Eq. (B11) and in what follows. Estimation of ζ at Ke = 0.001 and Ke = 0.0001 (recalling that
c = 0.8) yields ζ = 0.31 and ζ = 0.23, respectively. These are quite nonnegligible values so that
a possible explanation of the discrepancy motivating this Appendix by means of a logarithmic
correction indeed appears to be a viable path.

We note that in the corner region (and later on in the outer region) the dimensionless vapor
concentration deviation ρ̃v at the film surface turns out to be algebraically small in Ke, cf. Eq. (38),
whereas we are here dealing with logarithmic corrections at most. Therefore, in these regions,
we essentially have ρ̃v = 0 so that the evaporation flux is merely given by J = 2x1/2 − 1

6 x−1 in
accordance with Eq. (41) with no need to reconsider the diffusion problem in the gas phase. Using
this expression and Eq. (B6) with Eq. (B7) and Eq. (B10) in Eq. (32) and expanding in ζ � 1 up to
and including O(ζ ), one obtains the following film equation in the corner region:

ĥ3 d3ĥ

dx̂3
− ĥ−1 dĥ

dx̂
+ 1 + ζ

(
1

2
x̂ − 1

6

)
= 0.

The solution is sought by perturbations:

ĥ = ĥ0 + ζ ĥ1, (B12)

so that ĥ0 and ĥ1 satisfy the equations

ĥ3
0

d3ĥ0

dx̂3
− ĥ−1

0

dĥ0

dx̂
+ 1 = 0, (B13)

ĥ3
0

d3ĥ1

dx̂3
+ 3 ĥ2

0ĥ1
d3ĥ0

dx̂3
− ĥ−1

0

dĥ1

dx̂
+ ĥ−2

0 ĥ1
dĥ0

dx̂
+ 1

2
x̂ − 1

6
= 0. (B14)

At large negative x̂, the solution must match the one from the inner region, i.e., the form of Eq. (B11),
hence the boundary conditions

ĥ0 ∼ exp x̂, ĥ1 ∼ 1
4

(
x̂2 − 2

3 x̂
)

exp x̂ as x̂ → −∞.

At large positive x̂ we seek to satisfy Eq. (17), i.e., ĥ → +∞, d2ĥ/dx̂2 → 0 as x̂ → +∞ in terms
of the variables with a hat. One can then deduce the following asymptotic behaviors:

ĥ0 ∼ b̂0x̂ − 1

2b̂3
0

ln x̂ + . . . , ĥ1 ∼ 1

2b̂3
0

x̂ ln x̂ + b̂1x̂ + . . . as x̂ → +∞, (B15)

where note a logarithmic divergence of the slope at infinity for the correction. Here b̂0 and b̂1 are
constants to be determined together with the solution of the boundary-value problem for ĥ0 and ĥ1.
In fact, for ĥ0, it was already solved in Refs. [28,36] yielding in particular14 b̂0 = 1.123. Likewise,
resolving the boundary-value problem for ĥ1, one obtains b̂1 = −0.578.

We are now in a position to represent the leading-order result for ϑmic in the limit Ke � 1.
Indeed, ϑmic = dh/dx|x→+∞ ≈ ε̂dĥ0/dx̂|x̂→+∞ = b̂0ε̂ to leading order. On account of Eq. (B10),

14Equation (5.22a) of Ref. [28] contains a different prefactor as compared to our counterpart given by
Eq. (B13). Therefore, to obtain ours from their result given by Eq. (6.1) one should yet divide the latter by
31/4: 1.47758/31/4 ≈ 1.123.
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one obtains

ϑmic = b̂0

[
1

3
W

(
3Ke−6

64 c18

)]1/6

, (B16)

where the (earlier mentioned) computed values are b̂0 = 1.123 and c = 0.80. The formal difference
one could notice between Eq. (B16) and the corresponding result of Ref. [28]8 can be traced back
to the omission of the algebraic prefactor x1/6 in their counterpart of our Eq. (B5),12 apart from the
exclusion of c in their counterpart of our Eq. (B9). However, in reality, these differences do not affect
the leading-order approximation as such, but rather already pertain to a logarithmic correction. Esti-
mating Eq. (B16) at Ke = 0.001 and Ke = 0.0001 yields ϑmic = 1.72 and ϑmic = 1.81, respectively.
These can be compared to (cf. Fig. 9) ϑmic = 1.67 and ϑmic = 1.76 resulting from Ref. [28] and to
ϑmic = 2.02 and ϑmic = 2.07 resulting from the numerical computation of the full problem. Thus,
the result given by Eq. (B16) presents only a minor improvement over the one of Ref. [28] and still
appreciably underpredicts the full numerical one. To finalize the calculation of the O(ζ ) correction,
we now proceed to the outer region.

3. Outer region and the asymptotic result for ϑmic including the correction

The corner region is narrow (�x/�1 � 1), and the evaporation flux is essentially represented by
its Taylor expansion about the point x = �1, cf. the last terms on the left-hand sides of Eqs. (B13)
and (B14). In contrast, the outer region is the one where the flux varies by the order of itself to
the right of x = �1. Therefore, its longitudinal scale is obviously represented by �1. Furthermore, in
view of the behavior given by Eq. (B15), which now essentially becomes a matching condition, the
film slope in the outer region remains of the same asymptotic order as in the corner region (viz. ε̂).
Thus, the following variables (with a tilde) are appropriate in the outer region:

x = �1(1 + x̃), h = ε̂�1h̃ or x̃ = ζ x̂, h̃ = ζ ĥ, (B17)

where two equivalent representations are provided for future convenience. Using the first two
Eq. (B17) in Eq. (32) with J = 2x1/2 − 1

6 x−1 and only keeping terms up to and including the order
O(ζ ), one arrives at

h̃3 d3h̃

dx̃3
+ ζ (1 + x̃)1/2 = 0. (B18)

The solution is sought in the form

h̃ = b̃0x̃ + ζ h̃1, (B19)

Here the leading-order term is already compatible with both Eq. (33) and the matching condition
symbolically written as ζ ĥ|x̂→+∞ ∼ h̃|x̃→0. Furthermore, the latter yields b̃0 = b̂0 (= 1.123) on
account of Eqs. (B12), (B15), and (B17). Thus, the leading-order solution is here just trivial. If
one is just bound to the leading order as in Ref. [28], there is no need of introducing the outer
region. However, we are here concerned with the first correction, the equation for which is derived
upon the substitution of Eq. (B19) into Eq. (B18) as

d3h̃1

dx̃3
= − (1 + x̃)1/2

b̃3
0x̃3

. (B20)

Integrating twice and taking into account that d2h̃1/dx̃2 → 0 as x̃ → +∞, one obtains

dh̃1

dx̃
= (x̃ − 2)(1 + x̃)1/2

4b̃3
0x̃

+ 4 + x̃

8b̃3
0

ln
(1 + x̃)1/2 − 1

(1 + x̃)1/2 + 1
+ b̃1, (B21)
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where b̃1 = dh̃1/dx̃|x̃→+∞ is a constant to be determined from matching to the solution in the corner
region. From Eq. (B21), one deduces

dh̃1

dx̃
∼ − 1

2b̃3
0x̃

+ 1

2b̃3
0

ln
x̃

4
+ b̃1 as x̃ → 0. (B22)

Then the matching dĥ/dx̂|x̂→+∞ ∼ dh̃/dx̃|x̃→0, taking into account Eqs. (B12), (B15), (B17),
(B19), and (B22), yields

b̃0 = b̂0, b̃1 = b̂1 + 1

2b̂3
0

ln

(
4e

ζ

)
(B23)

(the first of these relations was already mentioned before).
Finally, we have ϑmic = dh/dx||x→+∞ = ε̂dh̃/dx̃|x̂→+∞ = ε̂(b̃0 + ζ b̃1). Substituting Eq. (B23)

into here and rearranging the result in an asymptotically equivalent compact form (valid up to and
including the asymptotic order considered on account of ζ � 1), one arrives at

ϑmic =
[

b̂4
0 + 2ζ ln

(
4

ζ
e1+2b̂3

0 b̂1

)]1/4

ε̂, (B24)

where ε̂ and ζ are given by Eq. (B10) while b̂0 = 1.123, b̂1 = −0.578 and c = 0.80 are the
earlier mentioned computed values. This is the final result of the present Appendix, providing
an asymptotic expression for ϑmic in the limit Ke � 1 including the first logarithmic correction.
Without the latter, it reduces back to Eq. (B16). It is the result given by Eq. (B24) that is shown
in Fig. 9 by the long-dashed line and discussed in Sec. V. We see that accounting for the first
logarithmic correction has significantly improved the agreement between the asymptotic theory and
the full numerical simulation.
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