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This paper shows that the wavelength and rate of spatial attenuation of the small ripples
accompanying the large waves that form on a liquid film flowing down an inclined plane are
dictated by the requirement that their velocity equal the velocity of the large wave. For this
purpose numerical simulations of film flow are carried out and validated by comparison
with published work. The wavelength and rate of spatial attenuation of the computed
capillary waves are shown to equal, to an excellent approximation, the corresponding
quantities obtained from an approximate form of the Orr-Sommerfeld equation in which
the phase velocity is set equal to the velocity of the large waves. Thus the overall structure
of the falling film waves is similar to that encountered in many other problems exhibiting
a wave-hierarchical structure, such as waves in dusty or reacting gases, hydraulic jumps,
undular bores, and others.

DOI: 10.1103/PhysRevFluids.5.114005

I. INTRODUCTION

There are many wave phenomena which exhibit a hierarchical structure in the sense that the main
wave is accompanied by smaller waves, the characteristics and location of which are determined by
the requirement that their phase velocity matches that of the main wave and their group velocity be
such that energy be transported away from the main wave (see, e.g., Ref. [1]). Well-known examples
occur, e.g., in the free-surface flow disturbed by a submerged body (see, e.g., Refs. [1,2]) or other
agents (see, e.g., Ref. [3]), shock waves in reacting or relaxing gases (see, e.g., Ref. [4]), or in bubbly
liquids (see, e.g., Ref. [5]), traffic flow (see, e.g., Ref. [6]), and many others.

In this paper we identify yet another example of this general pattern in the flow of a liquid
film down an inclined plane. The wave pattern that develops in this flow, either naturally or under
the action of periodic forcing at the inlet, is characterized by a train of large waves, each one
accompanied by much shorter and smaller-amplitude ripples (see examples in Figs. 1, 5, and 6).
We show that the wavelength and rate of spatial attenuation of these capillary waves are dictated
precisely by the requirement that they propagate at the same speed as the large waves to which they
are, in a sense, enslaved. In the literature there is a brief reference to this aspect in Ref. [7], but the
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FIG. 1. The open circles show the measured film height (top) and streamwise velocity at a distance of
120 μm from the wall (bottom) reported by [33]. The solid lines are the results of the present simulations, and
the barely distinguishable dotted lines are the numerical results reported in [23]; see text for parameter values.

idea does not seem to have been followed up. A similar association of capillary ripples and much
larger waves is encountered, e.g., near the crest of breaking gravity waves as shown, among others,
in Refs. [8,9]. The large primary wave and the smaller waves that accompany it are components of
a single structure that can be related to a homoclinic orbit in the phase space of the system (see,
e.g., Refs. [10,11]). Nevertheless, the separation of scales between these two components makes it
possible to study them separately.

It has been known at least since the seminal work of P.L. Kapitza [12] that the film surface ceases
to remain plane as soon as the Reynolds number exceeds a critical value, which becomes smaller
and smaller as the inclination angle increases, until it vanishes for a vertical wall. The understanding
of the complex wave structure that develops as a result of this instability has proven challenging for
theory (see, e.g., Refs. [7,10,11,13–15]) as well as computation (see, e.g., Refs. [16–18]). At the
same time, it is this very wave structure that makes film flow scientifically interesting and endows it
with a much greater ability to transfer mass and heat compared to a flat film, thus providing further
stimulus for its study.

For obvious reasons much of previous work has focused on the large waves. A detailed focus on
the mechanics of the small viscous ripples is a relatively recent development, both generally (see,
e.g., Ref. [19]) and in the specific context of film flow. References [15,17,20] have argued that, in
spite of their smaller amplitude, these ripples play an important role in affecting the interaction and
separation between consecutive large waves. Specifically, the capillary waves exert a draining action
on the large waves, which affects their speed of propagation [11] and, with it, wave merging and
splitting. Furthermore, capillary waves appear to have a significant effect on the transfer of mass
and energy through the film since the transfer coefficient associated with them is approximately
inversely proportional to the film thickness [21,22].

Reference [23] describes a detailed study of capillary waves focusing on the mechanism of
their formation and their speed, wavelength, and attenuation. The author argues that these small
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capillary waves are quite different from conventional capillary waves and owe their formation and
characteristics to inherently nonlinear phenomena. By an analysis of wave patterns computed by the
present authors and others from the literature, the present paper shows that nonlinear effects, while
present, are not the determining factor. A linear approximation is adequate to satisfactorily account
for these small ripples, which actually bear a strong similarity to linear viscocapillary waves on a
horizontal liquid film of finite depth.

In the next section we give a very abbreviated exposition of our numerical method, which
is described in greater detail in a recent paper [24], followed in Sec. III by the solution of an
approximate form of the Orr-Sommerfeld equation from which the dispersion relation of the
capillary waves is obtained. In this step we are forced to take an unusual view of this equation,
solving it for a prescribed real velocity of the wave. The results are then applied to the capillary
waves on a falling film in Sec. IV, where proof of the hierarchical nature of film flow is proven. The
Appendix focuses on the relationship of our treatment of the Orr-Sommerfeld equation with other,
more common approaches.

II. NUMERICAL SIMULATIONS

The objective of this paper requires detailed information on wavelength, wave speed, attenuation,
and other features of the wave system on a falling film. Since the literature contains only a small
number of suitable examples, it has been necessary to carry out additional simulations by a method
that we now briefly describe. A more extensive exposition is available in a recent paper [24].

As in previous studies [18,23,25–27], in our numerical work we take advantage of the experi-
mentally confirmed fact that periodic trains of waves can be generated by a suitable excitation at
the inlet (see, e.g., Refs. [28–30]). The periodicity permits us to focus on a single spatial period,
keeping the total fluid volume (or mass) in the computational domain constant. This approach is
denoted as “closed flow” according to the classification of [31]. Following an approach common in
the literature (see, e.g., Refs. [11,13]), we limit ourselves to two space dimensions, x along the flow
direction and z normal to the plate.

The full Navier-Stokes equations are solved by a standard projection method. No-slip conditions
are applied at the solid wall z = 0 while, at the free surface, we apply the kinematic condition,
the conditions of vanishing tangential viscous stress, and the condition that the normal stress be
balanced by surface tension. Dynamical effects on the gas side of the interface are disregarded. The
results depend on the Reynolds and Kapitza numbers

Re = hU

ν
, Ka = σ/ρ

(g sin θ )1/3ν4/3
. (1)

In these expressions, g, σ , ρ, and ν are the acceleration of gravity, the surface tension coefficient,
and the density and kinematic viscosity of the liquid; h is the mean film thickness; and U the mean
velocity of a flat film with thickness h flowing down a plate inclined at an angle θ to the horizontal:

U = h
2
g sin θ

3ν
. (2)

The simulations shown later fall into the ranges 346 � Ka � 6752 and 11.1 � Re � 19.3.
The numerical method is based on a finite-difference discretization with colocated variables

except that, following Ref. [32], the z velocity component which is staggered in the direction z
normal to the wall. In order to deal with the unknown position of the free surface, we use a stretched
coordinate ζ defined by ζ = z/h(x, t ), with h(x, t ) the local instantaneous film thickness. The mesh
length in the x direction is about 10 times larger than in the ζ direction. We typically use 300 and 35
meshes in the streamwise and wall-normal directions, respectively. Thus, on the basis of our own
experience and of information in the literature (see, e.g., Refs. [17,23]) we are confident to have
a good spatial resolution. The time step was conservatively set on the basis of standard stability
conditions.
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The calculation is carried out in a fixed (laboratory) reference frame. It is started with an imposed
two-dimensional sinusoidal wave with the same wavelength as the computational domain. The fluid
velocity is initiated according to the local Nusselt profile adjusted to the local film height. The wave
propagates and develops in time until its shape no longer changes. The wave speed is calculated by
tracking the velocity of the wave crest in the computational domain. The code is able to perform
three-dimensional simulations but, due to the two-dimensionality of the initial condition, spanwise
perturbations do not develop in the present simulations.

We have validated the code by comparing with results in the literature. An example is shown
in Fig. 1, where the results of our simulations are superimposed on those reported in Ref. [33];
the pertinent parameter values are Re = 11.1, Ka = 509.5, �/h = 68.87, θ = 90◦. The open
circles are the film height (top) and streamwise velocity at a distance of 120 μm from the wall
(bottom) reported in the reference. The solid lines are our simulations, and the barely distinguishable
dotted lines under it the numerical results of Ref. [23]. In order to show this comparison we have
converted our results from space to time using the computed phase velocity. As can be seen, the two
computations are virtually identical and both closely match the data. Additional comparisons of this
type can be found in Ref. [24].

III. VISCOUS CAPILLARY WAVES ON A FALLING FILM

The objective of this paper is to show that the ripples that accompany the large waves on a falling
film are capillary waves, the velocity of which is dictated by the requirement that they appear steady
in the frame of reference moving with the large wave. If this statement is correct, in the linear
approximation, the Orr-Sommerfeld equation for the film flow should have solutions in the form
of small-wavelength ripples that appear steady when viewed in the rest frame of the main wave
propagating with velocity c. The wavelength and rate of spatial attenuation of these ripples should
match the numerical results shown in the previous and the next sections. In other words, we should
find solutions proportional to exp[ik(x − ct )], with k the complex wave number. Of course, k will
be dependent on c, as waves which appear stationary in one frame will not have this character in
a different frame. It may be noted that, as posed, the question is different from standard stability
problems in which k is real for temporal stability while the angular frequency ω is real for spatial
stability. We briefly address this point in the Appendix.

Solution of the full Orr-Sommerfeld equation is a matter of some complexity. For simplicity,
we adopt a useful simplification introduced in Ref. [34]. The authors show that approximating the
velocity profile in the film by the constant surface velocity gives results in good agreement with the
exact theory, with the error rapidly decreasing as the Kapitza number increases. Without reproducing
the details, which are available in several references (see, e.g., Refs. [11,13,34,35]), we solve the
Orr-Sommerfeld equation in the form

ϕ′′′′ − 2k2ϕ′′ + k4ϕ = −i
k

ν

[(
c − 3

2
U

)
(ϕ′′ − k2ϕ) + U ′′ϕ

]
. (3)

The stream function ψ has been written as ψ (x, y) = eik(x−ct )ϕ(y), and U is the Nusselt mean
velocity of the film given by (2) with h replaced by the mean thickness h of the liquid layer
supporting the small waves. Furthermore, U ′′ = −3U/h2. The no-slip condition at the plate requires
that ϕ(0) = ϕ′(0) = 0. The dynamic condition at the film surface y = h is(

c − 3

2
U

)[
ϕ′′′ − 3k2ϕ′ + i

k

ν

(
c − 3

2
U

)
ϕ′

]
− ik

(σ/ρ)k2 + gcos θ

ν
ϕ = 0, (4)

and the kinematic condition at the film surface y = h is(
c − 3

2U
)
(ϕ′′ + k2ϕ) + U ′′ϕ = 0. (5)
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FIG. 2. Real (left) and imaginary parts of the dimensionless wave number hk = hkr + ihki as functions
of the dimensionless wave velocity hc/ν for Reh = 0 (upper pair of panels) and Reh = 10. The lines are for
� = 200 (solid, red), 400 (dashed, green), 1000 (dotted, blue), and 2000 (dash-dotted, purple). Details near the
minimum points of kr are shown in Figs. 3 and 4.

Since the approximate equation (3) has constant coefficients, its solution is the superposition of
exponentials. We write

ϕ = A sin β+(h − y) + B cos β−(h − y) + C sin β+(h − y) + D cos β−(h − y), (6)

in which

β± =
[
−k2 + i

k

2ν
ĉ ± i

√
k2ĉ2

4ν2
+ i

kU ′′

ν

]1/2

, (7)

where we have written ĉ = c − 3
2U for convenience. Satisfaction of the boundary conditions leads

to imposing the vanishing of the determinant∣∣∣∣∣∣∣∣∣

sin β+h sin β−h cos β+h cos β−h
β+ cos β+h β− cos β−h −β+ sin β+h −β− sin β−h

−β+γ+ĉ −β−γ−ĉ i
[

σ
ρν

k2 + g
ν

cos θ
]
k i

[
σ
ρν

k2 + g
ν

cos θ
]
k

0 0 ĉ(k2 − β2
+) + U ′′ ĉ(k2 − β2

−) + U ′′

∣∣∣∣∣∣∣∣∣
= 0, (8)

in which γ± = 3k2 + β2
± − ikĉ/ν (we note a misprint in the original Ref. [34] in which the term k2

is erroneously preceded by a minus sign). In the present context, this is an equation for k = kr + iki

as a function of the (real) velocity c of the frame of reference in which the wave appears stationary.
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FIG. 3. Real (left) and imaginary parts of the dimensionless wave number kh as functions of the dimen-
sionless wave velocity hc/ν for small c. Here Reh = 0 in the upper pair of panels and Reh = 10 in the lower
pair. The lines are for � = 200 (solid, red), 400 (dashed, green), 1000 (dotted, blue), and 2000 (dash-dotted,
purple).

We solve this equation by Muller’s method [36]. Some results for the dimensionless wave number
k∗ = hk in terms of the dimensionless wave velocity c∗ = hc/ν are shown in Fig. 2 for a vertical
plate with θ = π

2 . Since the mathematical statement of the problem (3) to (5) is invariant after
complex conjugation followed by a sign change of the wave number, for every pair (kr, ki ) there
is also a pair (−kr, ki ), which is not shown. The parameters are a Reynolds number Reh and a
dimensionless surface tension �, defined by

Reh = Uh

ν
, � = σh

ρν2
. (9)

Details of the results near c = 0 are shown in Fig. 3 and near the other point where kr approaches
zero for larger |c| in Fig. 4.

For Reh = 0 the curves are symmetric about c = 0, as could have been expected. This result is
different from the dispersion relation for capillary waves over a horizontal plate because, in that
case, k is taken to be real while it is complex here (see the Appendix). From the detail in Fig. 3(a),
it is seen that kr vanishes and has a cusp at c = 0, at which point, from Fig. 3(b), ki has a vertical
tangent. Equation (A2) shows then that the group velocity, however defined, vanishes at this point.
The cusp is regularized for Reh = 10 [Fig. 3(c)] and, at the local minimum of kr , the term dc/dkr

gives a divergent contribution to the group velocity.
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FIG. 4. Real (solid lines, red) and imaginary (dashed lines, blue) parts of the dimensionless wave number
kh as functions of the dimensionless wave velocity hc/ν in the neighborhood of the second minimum of kr for
� = 200. The left panel is for Reh = 0 and the right one for Reh = 10. The scales for kr and ki are on the left
and right vertical axes, respectively.

With our choice of axes, the film flows in the direction of increasing x, which is the same as the
direction of propagation of the waves if c > 0. Thus for c > 0, a positive value of ki implies that
the amplitude of the waves decreases in the direction of propagation (which is the same as that of
the flow). Conversely, a negative value of ki for c < 0 corresponds to waves damped in the direction
of propagation (which, in this case, is opposite that of the flow). Therefore the two situations are not
substantially different from each other. However, ki < 0 for c > 0 describes waves the amplitude of
which increases in the direction of propagation. It can be seen in Fig. 3(d) that, for Reh = 10, there
is a short interval of positive c values with negative ki. The corresponding behavior has never been
reported for large waves on a falling film (propagating in the positive x direction with the current
choice of axes), which suggests that the parameter range where it occurs is not encountered in that
context.

As |c| increases further, kr first grows until it reaches a maximum which is visible in Figs. 2(a)
and 2(c) for � = 200 and 400. At this maximum the group velocity again diverges and is smaller
than the phase velocity between the maximum and the following minimum. With a group velocity
smaller than the phase velocity, capillary waves cannot exist ahead of the main wave, which suggests
that, again, this parameter range is not realizable for a falling film with developed large waves.
Near the minimum the results have a complicated structure shown for � = 200 in Figs. 4(a) and
4(b) for Reh = 0 and 10, respectively. For Reh = 0 the minimum of kr is exceedingly close to
zero numerically, but proof that it actually vanishes would require more work. For Reh = 10 the
minimum of kr is greater than zero and has a finite curvature. In correspondence with this point, ki

has a very steep tangent (possibly vertical), as can be seen from the solid lines (red) in Figs. 2(b)
and 2(d). In this neighborhood there are three points where ∂kr/∂c = 0, which are also points where
the group velocity diverges.

IV. COMPARISON

We are now in a position to prove that the small-amplitude ripples that accompany the large
waves in a falling film are essentially linear capillary waves, the wavelength and spatial attenuation
of which are determined by the requirement that their phase velocity match that of the primary large
wave as in all the wave-hierarchy examples cited in the Introduction and discussed in detail in the
references given there. For this purpose we consider nine examples of waves on a falling film and
compare the wavelength and rate of spatial attenuation of the capillary waves that accompany the
primary large wave with the predictions of the theory of the previous section.

Six of the wave forms are shown in Figs. 5 and 6 with the pertinent parameter values given in
Table I. The three examples of Fig. 5 are all for a vertical plate with Re = 16.1. The length of the
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FIG. 5. Computed shapes of some of the waves used for the comparisons of Fig. 7; the pertinent parameters
are given in the first three lines of Table I. The sections shown, with a length equal to 460 times the mean film
thickness h, have been obtained by splicing together repeated single waves. The color indicates the velocity
parallel to the plate normalized by the flat-film mean velocity (2); the range for each case is specified in Table I.
The vertical scale is magnified by a factor of 15 with respect to the horizontal scale.

section shown in the figure is 460 times the mean film thickness h. In the first example of Fig. 6, the
plate is inclined by 45◦, in the second one the film is “hanging” on the underside of a plate inclined
by 45◦, and in the last one the plate is vertical. For all three of these cases the length of the section
shown is 230 h.

In addition to these six cases, we also use three cases from the literature, the parameters of which
are given in Table II. The first one is from Fig. 19(b) of Ref. [33], the second one from Fig. 9(d) of
Ref. [17], and the last one from Fig. 3 of Ref. [37], as reproduced in Fig. 6.4(a) of Ref. [13]. The
first case is the same one used for validation of our method in Fig. 1, while the second case was used
for validation in an earlier paper Ref. [24]. For all these cases we performed our own simulations to
facilitate the extraction of the wavelength and attenuation of the capillary waves.

In order to proceed with this plan, we need to extract from the results of the simulations the wave
number kr and rate of attenuation ki of the capillary waves and the thickness h of the underlying film
(which, of course, is different from the mean thickness h of the entire liquid flow). The wavelength
can be simply determined by measuring the distance between consecutive maxima and minima
and averaging. These distances are not precisely equal, but the standard deviation typically does
not amount to more than 10%. For the other two quantities the situation is different. The rate of
attenuation can be affected by nonlinear effects, and the base film thickness slowly rises towards

FIG. 6. Computed shapes of some of the waves used for the comparisons of Fig. 7; the pertinent parameters
are given in the last three lines of Table I. The length of the sections shown equals to 230 times the mean film
thickness h. The color indicates the velocity parallel to the plate normalized by the flat-film mean velocity for
the vertical case; the range for each case is specified in Table I. The vertical scale is magnified by a factor of
15 with respect to the horizontal scale.
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TABLE I. Parameter values for the waves shown in Figs. 5 and 6. The last two columns give the maximum
and minimum values of the velocity parallel to the plate, used for the color scale. The flat-film mean velocity (2)
is used in the normalization of the first three. For Figs. 6(a) and 6(b), normalization is with the mean velocity
for case 6(c).

Figure Re Ka �/h θ max u/U min u/U

5(a) 16.1 1688 115 90◦ 3.68 –1.71
5(b) 16.1 3376 230 90◦ 4.53 –2.30
5(c) 16.1 6752 115 90◦ 3.13 –0.68
6(a) 11.4 3789 115 45◦ 2.13 –0.19
6(b) 11.4 3789 115 −45◦ 2.31 –0.40
6(c) 16.1 3376 115 90◦ 3.40 –1.06

the back of the wave ahead of it (i.e., to the right in the figures). To mitigate the effect of these
difficulties, we use the fact that the surface of a flat film with a perfect linear capillary wave of
amplitude A at x = 0 would have the form

η = h + Ae−kix cos(krx). (10)

The values of η at the maxima and minima of the capillary waves can be used to determine the
quantity of interest from a least-squares fit to the computed results. In this calculation we make sure
to include an equal number of maxima and minima to achieve a better balance, and we exercise
some judgment to try to eliminate the effect of the rising film. This is fairly straightforward when
the large waves are broadly spaced and there are numerous capillary waves, such as in the examples
of Figs. 5(a), 5(b), and 6(b), while it is less precise when the capillary waves are few and the large
waves relatively close to each other as in the other examples in the figures and some of the other
cases that we use for comparison. The results of the least-squares fit, the number of capillary waves
used in each case, and other pertinent information are shown in Table III.

The results of this procedure are compared with the theory of the previous section in Fig. 7, in
which the quantities measured from the simulations, shown on the horizontal axes, are compared
with the predicted ones from the previous section on the vertical axes. The left panel is for the
wave number kr while the right panel is for the rate of spatial attenuation ki, nondimensionalized
according to

k∗
r = kr

k0
, k∗

i = ki

2νk2
0/c0

g

, (11)

with c0
g = 3

2 c. Here k0 = ρc2/σ is the wave number of inviscid capillary waves having the same
phase velocity c as the calculated main wave; 2νk2

0 is the temporal damping rate of surface waves
in the limit of small damping; and division by c0

g turns it into a spatial damping rate according to
the relation of Gaster [39] [see (A7) in the Appendix]. For both the wave number and the rate of
spatial attenuation, the comparison is quite good for most cases, with a maximum difference that
does not exceed 5%. For two points (case (a) of Fig. 5 and the data point from [37]) the difference

TABLE II. Parameter values for the last three cases used for comparison in Fig. 7.

Reference Re Ka �/h θ Symbol

[33] 11.1 509.5 68.87 90◦ Circle
[17] 12.4 346 51.88 20◦ Diamond
[37] 19.3 526 149 6.4◦ Cross
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TABLE III. The first five lines of the table show the results of the least-squares fits of the capillary waves
data from Figs. 5, 6, and the three cases from the literature shown in Table II; h is the substrate thickness in
the capillary wave region, h the mean film thickness for the falling film simulation from Tables I and II, A the
amplitude of the capillary wave at the position of the first trough at the foot of the main wave, k∗

r and k∗
i the

real and imaginary parts of the wave number nondimensionalized as shown in (11), and Nwaves the number of
waves used for the fit (each one of which provides one value for a maximum and one for a minimum). The last
three lines of the table show the values of the dimensionless parameters used in the evaluation of the dispersion
relation (8) for each case.

5(a) 5(b) 5(c) 6(a) 6(b) 6(c) Ref. [33] Ref. [17] Ref. [37]

h/h 0.692 0.739 0.708 0.767 0.739 0.690 0.695 0.718 0.847
A/h 0.624 0.740 0.354 0.282 0.335 0.473 0.458 0.312 0.347
k∗

r 1.54 1.71 3.31 2.94 3.04 2.24 1.22 0.950 0.615
k∗

i 15.3 21.7 167 109 114 46.9 6.09 2.58 1.36
Nwaves 3 5 2 2 2 3 2 2 3

hc/ν 37.8 49.0 35.6 28.4 28.1 36.1 25.1 25.0 50.4
Reh 5.34 6.50 5.71 5.14 4.60 5.29 3.73 4.60 11.7
� 4254 9087 17401 9431 9088 8482 1139 850 1719

in the values of k∗
i is somewhat larger, about 10%, and for the point from Ref. [17] it reaches 30%.

A probable cause is a non-negligible effect of the rise of the film thickness trailing the preceding
wave.

It is well known in problems of this type that the main wave injects energy into the subsidiary
waves that needs to be removed in order for the subsidiary waves to maintain a constant amplitude
(see, e.g., Refs. [1,2]). Thus, in the case of a horizontal stream disturbed by a submerged obstacle,
for example, gravity waves form downstream of the obstacle so that their energy, that moves slower
than the stream, can be carried away by the stream, while capillary waves, whose group velocity
is faster than the stream, appear upstream of the obstacle and radiate their energy upstream (see,
e.g., Ref. [2]). For the same reason, the parasitic capillary waves at the crest of a nearly breaking
gravity wave appear on the forward face of the wave [8,9]. This argument, adapted to the present

FIG. 7. Comparison between the predicted and calculated values of the wave number (left) and rate of
spatial attenuation of the capillary ripples accompanying the large waves shown in Figs. 5 and 6 (squares) and
those characterized by the parameters shown in Table II; the cases denoted by circle, diamond, and cross are
identified in the table. The nondimensionalizations used are given in (11).
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case of a falling film, shows that if the group velocity of the capillary waves is larger than that of
the main wave (which we have verified to be true for all the cases that we have considered), the
capillary waves must be located ahead of the main wave so that their energy can be radiated away.
Due to the periodicity of the wave system, this energy will be partly dissipated by viscosity and
partly radiated toward the wave just ahead, which may provide another mechanism for wave-wave
interactions such as those described in Refs. [11,15,17,20].

The Supplemental Material [38] shows the results of a “thought experiment” in which the large
wave is allowed to grow in the absence of surface tension effects. When the wave has developed,
surface tension is abruptly restored. Still frames and a movie show that a capillary wave starts to
appear shortly after this instant and additional ones are generated one after the other. These results
suggest that not only the dynamics but the very formation of the small waves are entirely dependent
on the action of surface tension and its interaction with inertia and viscosity.

V. CONCLUSIONS

We have shown that the wavelength and rate of spatial attenuation of the ripples that accompany
the large waves on a falling liquid film are precisely determined by the requirement that they be
stationary relative to the main waves. In this sense, the structure of this wave system is similar to the
so-called wave hierarchies encountered in many of branches of science. Our study has been based
on the linear theory of viscocapillary waves on a falling film. The wave forms shown in Figs. 5 and 6
suggest that some nonlinear effects are probably present in these and, more generally, in other cases
as well. However, our results prove that a linear framework is sufficient to elucidate the fundamental
physics of the process.

Proof of the result required a nonstandard approach to the calculation of the dispersion relation.
The connection with more usual treatments is established in the Appendix. Here it is also shown
that the wavelength of these ripples can be closely approximated by that of viscocapillary waves
on a nonflowing horizontal liquid film. The rate of spatial attenuation, however, is not accurately
reproduced, as the error can be as large as 30%.
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APPENDIX: THE DISPERSION RELATION

In general, a dispersion relation such as the vanishing of the determinant (8) establishes a relation
between a complex k = kr + iki and a complex c = cr + ici or

ω = kc = krcr − kici + i(kicr + krci ). (A1)

From this expression we find

Re
dω

dk
= Re

(
∂ω

∂kr

)
ki

= cr + kr
∂cr

∂kr
− ki

∂ci

∂kr
= cr + kr

∂cr

∂kr
+ ki

∂cr

∂ki
, (A2)

where the last step follows from one of the Cauchy-Riemann relations. It is evident from this relation
that, if kr �= 0, Re dω/dk diverges at points where ∂kr/∂cr = 0.
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For the standard temporal stability problem, denoted by T , k = kr is real and c or ω are complex;
we write

k(T ) = kr (T ), c(T ) = cr (T ) + ici(T ). (A3)

The dispersion relation (8) can be solved for this problem by prescribing kr and solving for c(T ).
In this case, the speed of propagation of a wave packet localized in space, i.e., the group velocity, is
given by (A2) evaluated for ki = 0:

cgr (T ) =
[

cr + kr
∂cr

∂kr

]
ki=0

. (A4)

For the standard spatial stability problem, denoted by S, k, and c are complex while ω is real:

k(S) = kr (S) + iki(S), c(S) = cr (S) + ici(S). (A5)

In Ref. [39], Gaster uses the relations

ωi(T ) =
∫ 0

ki (S)

∂ωi

∂ki
dki = −

∫ ki (S)

0

∂ωr

∂kr
dki, ωr (S) − ωr (T ) = −

∫ ki (S)

0

∂ωi

∂kr
dki. (A6)

He then observes that, at least in many stability problems, ∂ωi/∂kr is small while ∂ωr/∂kr is slowly
varying with the results

kr (T ) = kr (S), ωr (T ) � ωr (S),
ωi(T )

ki(S)
� −∂ωr

∂kr
, (A7)

in which ∂ωr/∂kr can be evaluated at any point between ki = 0 and ki = ki(S). With the former
choice, ∂ωr/∂kr becomes equal to cgr (T ). The last relation connects the temporal and spatial rates
of amplification or damping.

The situation analyzed of Sec. III, denoted by the index N , is different from both T and S. In this
case c = cr is real while k and therefore ω are complex:

k(N ) = kr (N ) + iki(N ), c(N ) = cr (N ). (A8)

Since ci(N ) = 0, the analog of (A6) is, in this case,

ci(T ) =
∫ 0

ki (N )

∂ci

∂ki
dki = −

∫ ki (N )

0

∂cr

∂kr
dki (A9)

and

cr (N ) − cr (T ) =
∫ ki (N )

0

∂cr

∂ki
dki. (A10)

In the absence of information on the integrand appearing in the first relation we can appeal to the
mean-value theorem to deduce that

ci(T ) � −ki(N )

(
∂cr

∂kr

)∗
, (A11)

in which the asterisk denotes evaluation at an intermediate value 0 � k∗
i � ki(N ). If, similarly to

(A4), we define a function

V (kr, ki ) = cr (kr, ki ) + kr
∂cr

∂kr
, (A12)

we see that V (kr, 0) = cgr (T ) and we may rewrite (A11) as

ωi(T ) = krci(T ) = −ki(N )[V − cr]k∗
i
. (A13)
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FIG. 8. Real (left) and imaginary parts of the complex frequency ω normalized as in (A18) of capillary
waves on the surface of a viscous liquid layer as functions of kh. The curves correspond to different values of
the parameter ν/

√
(σ/ρ )h, which, in the direction of the arrows, takes the values 0.02, 0.05, 0.1, 0.2, and 0.4.

With the nondimensionalization used here, ω∗
r equals the phase velocity nondimensionalized by division by the

inviscid phase velocity. In the left panel the dashed portion of the lines shows the parameter range in which the
group velocity is smaller than the phase velocity. In the right panel the dashed curves are ω∗

i in the parameter
range where ωr = 0.

This relation may be seen as a generalization of (A7) to a situation in which the frame of reference is
moving with a velocity cr . By determining ωi(T ) from the solution of the dispersion relation (8) for
the temporal problem we have verified that, for the cases considered in Sec. IV, the approximation
[V − cr]k∗

i
� cgr (T ) − cr (T ) is numerically quite good.

Proceeding similarly with (A10) we have

cr (N ) = cr (T ) +
(

∂cr

∂ki

)∗
ki(N ). (A14)

If ∂ki/∂cr is large, cr (N ) closely approximates cr (T ). For each choice of cr (N ), the vanishing of
the determinant (8) gives a value of kr and, for this value of kr , we can solve the T version of the
Orr-Sommerfeld equation to find cr (T ). We have verified that, for the examples of Sec. IV, the value
of cr (T ) so determined is numerically very close to cr (N ).

If Reh = 0 in the characteristic equation (8), aside from the effect of gravity, which is negligible
with the small wavelengths of present concern, one finds the dispersion relation for viscocapillary
waves on the surface of a liquid layer resting on a horizontal plate, namely,

�4 + 2�2 + 5 − (�4 + 6�2 + 1)
tanh �kh

�
tanh kh +

(
tanh kh − tanh �kh

�

)
�2

0

= 4(�2 + 1)

cosh �kh cosh kh
, (A15)

in which

� =
√

1 − iC

νk
, �2

0 = σ

ρν2k
. (A16)

In the deep-layer limit kh � 1, and Eq. (A15) becomes(
2 − iC

νk

)2

+ σ

ρν2k
= 4

√
1 − iC

νk
, (A17)

which, with C = ω/k, agrees with the standard dispersion relation for viscous capillary waves on
deep water (see, e.g., Ref. [40]). If these waves are convected with the surface velocity of the film,
3
2U , they acquire a phase velocity cr (T ) = C + 3

2U . We have verified that, for the cases of Sec. IV,
cr (N ) is numerically very close to this quantity. This result suggests that the fact that film is flowing
is ultimately of little consequence as far as the phase velocity of the wave is concerned, provided
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that transport at the surface velocity 3
2U is accounted for by a simple kinematic transformation.

In this sense it may be stated that the ripples accompanying the large waves on a falling film are
essentially “ordinary” viscocapillary waves.

In view of its somewhat complicated nature, it may be useful to show some numerical results
of the complex frequency predicted by the dispersion relation (A15) vs the wave number k made
dimensionless by multiplication by the film thickness h. Figure 8 shows the real and imaginary parts
of ω nondimensionalized by the angular frequency of inviscid capillary waves:

ω∗ = ω∗
r − iω∗

i = ω√
(σ/ρ)k3 tanh kh

. (A18)

It can be seen in the left panel of the figure that the real part of ω is nonzero only in a finite range of
the parameter kh, which becomes larger and larger as ν/

√
(σ/ρ)h decreases. For long waves, i.e.,

small kh, the surface perturbation sets into motion the entire liquid layer. The no-slip condition
induces a massive amount of dissipation and, as the wavelength increases, the motion changes
from damped oscillatory to an aperiodic relaxation. Conversely, for very short waves (large kh),
dissipation is confined to the surface layer, but it rapidly grows with k and, once again, the motion
turns from oscillatory to aperiodic as kh increases. The imaginary part of ω exhibits a minimum in
the range where the bottom-induced and surface-induced dissipations are in approximate balance.
In the range in which the real part ωr vanishes, continuation of the complex solution ±ωr − iωi

gives two imaginary branches, both of which are shown as dashed lines.
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