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Long-time evolution of interfacial structure of partial wetting
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When a solid plate is withdrawn from a partially wetting liquid, a liquid layer dewets
the moving substrate. High-speed imaging reveals alternating thin and thick regions in
the entrained layer in the transverse direction at steady state. This paper systematically
compares this situation to the reversed process, forced wetting, where a solid entrains an
air layer along its surface as it is pushed into a liquid. To quantify the absolute thickness
of these steady-state structures precisely, I have developed an optical technique, taking
advantage of the angle dependence of interference, combined with a method based on a
maximum-likelihood estimation. The data show that the thicknesses of both regions of the
film scale with the capillary number, Ca. Further, an additional region is observed during
onset, the quantitative explanation of which requires future investigation.

DOI: 10.1103/PhysRevFluids.5.114001

I. INTRODUCTION

In “forced wetting,” a solid substrate rapidly enters a liquid bath with a film of air entrained
along its surface [Fig. 1(a)]. The liquid wets the solid. Conversely, in “dewetting,” a solid is rapidly
withdrawn from a liquid bath, dragging out a film of liquid [Fig. 1(b)]. The liquid film dewets the
surface as it is pulled down by gravity. This paper shows that forced wetting and dewetting share
many similarities.

The phenomenon of forced wetting or dewetting can be observed commonly in daily life. Yet,
it can often be difficult to see the steady-state behavior of forced wetting or dewetting, as distinct
from capturing only the initial onset. In order to characterize the long-time limit of forced wetting,
we developed a system in our previous study [1] to maintain the entrained air layer until a steady
state is reached. By steadily pushing a long ribbon of mylar tape into a liquid, the air layer develops
prominent and surprising structures. Figure 1 (inset A) shows that at steady state, the air layer
assumes a V shape with two extremely flat and thin sections positioned at the upper corners.

This paper extends this study to the process of dewetting. Figure 1 (inset B) shows that at steady
state, the entrained liquid layer forms an upside-down V shape. Both in the case of dewetting and
wetting (as shown in Ref. [1]), two sharply different thicknesses stably coexist inside a triangular-
shaped contact line (the solid/liquid/gas interface). There is a thin-thick alternation of the entrained
fluid that appears near the bottom (in dewetting) or near the top (in wetting) across the width of the
substrate. Despite the well-known fundamental difference in advancing and receding contact-line
motions [2], there is a striking similarity between the structures found in both experiments.

The study of wetting and dewetting began long before the age of high-speed imaging [3,4].
Various aspects have been addressed such as deposited layer thickness [5–8], maximum wetting
speed [9–15], contact angles [16–19], confinement effects [20–22], and the onset of the entrainment
transition [23–29]. The main purpose of this paper, on the other hand, is to study the long-time
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FIG. 1. (a) Schematic of forced wetting. A film of air is entrained into a liquid bath by the surface of a
moving substrate. Inset A: Front view of the steady state of an entrained air film in forced wetting. A mylar
tape of width w = 12.7 mm plunges vertically into a water-glycerin mixture of viscosity ηout = 226 cP at
U = 130 mm/s. The entrained air layer assumes a V shape with two thin, flat sections at the upper corners.
(b) Schematic of dewetting. A film of liquid is dragged out from a liquid bath by the surface of a moving
substrate. Inset B: Front view of the steady state of a liquid film in dewetting. An acrylic plate of width
w = 20.3 mm is pulled vertically out of a water-glycerin bath of viscosity η = 100 cP at U = 4.4 mm/s.
An entrained liquid layer forms an upside-down V shape with two thin sections at the lower corners.

evolution of the contact-line motion, and to characterize the prominent structure in the entrained
fluid layer at steady state. By measuring interference fringes as a function of the angle of incidence
of the light source, the absolute thickness of the wetting layer was determined as a function of
different control parameters.

Forced wetting or dewetting can occur in different geometries [30–34]. Notably, a series of
studies shows that the tail of a sliding droplet is in many aspects an equivalent problem [35–43].
The observations and conclusions presented in the present work may suggest similar behavior in
those situations and contribute an alternative perspective for wetting and dewetting in its various
other forms.

II. EXPERIMENTS

A. Mechanical apparatus, fluids, and substrate preparation

For the dewetting experiments, the solid substrate was installed on a stage on a vertical linear
guide (PBC LinearTM, Integral-V Technology; Rail system: AAW). The system was driven by a
step motor (Silverpak 17) through a roller chain. The substrate velocity ranged from 1 to 400 mm/s
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FIG. 2. (a) Measured liquid-air interfacial tension γ versus glycerin mass fraction Mg of water-glycerin
mixtures. Solid line, prediction of Eq. (1). (b) Receding and advancing contact angles on an acrylic substrate
(Rain-X® coated) versus Mg. At each value of Mg, the data are displaced slightly in the x direction to make
overlapping symbols visible. Dashed line, linear fit for receding contact angles.

with <5% fluctuation. Water-glycerin mixtures were used as the viscous liquid with a viscosity
range 0.9 � η � 1264 cP. The viscosity was measured by an Anton Paar MCR301 rheometer or
by manual glass viscometers (CANNON-Ubbelohde). The density ρ and the liquid-air interfacial
tension γ of the mixture were measured by a KRÜSS tensiometer, which were consistent with
literature values [44,45]. The measured γ ’s are plotted in Fig. 2(a), where the solid line shows that
they can be well described by the fractional contribution model [45],

γ = Mgγg + (1 − Mg)γw, (1)

where Mg is the mass fraction of the glycerin in the mixture, γg the surface tension of pure glycerin,
and γw the surface tension of pure water. The relation between η and the mass fraction Mg of the
glycerin in the mixture is well known [46] and is consistent with the measurements.

In the dewetting experiments, the solid substrate consists of slender rectangular sections
(560 mm × 3.2 mm) of black cast acrylic, cut to various widths, 12.3 � w � 50.5 mm. The edges
were further milled and polished to prevent contact-line pinning during the experiments. The
substrate surface was first wiped with isopropyl alcohol to remove chemical residues from the manu-
facturing process. Rain-X® Original Glass Water Repellent (PDMS) was then applied to the surface
and then wiped off. I found the wetting and dewetting configuration to be more reproducible
when the prepared surface has fully interacted with the water-glycerin mixture. Therefore, a few
wetting/dewetting cycles were carried out before any data were taken, to saturate any transient or
“aging” effect. The static contact angles were measured from side-view images of the drops of
the mixtures against the prepared acrylic substrate, shown in Fig. 2(b) [47]. The advancing values
(red squares) were measured from the drops soon after they were deposited onto the substrate.
To obtain the receding values (black circles), the contact line of a drop was made to move at a
negligible velocity (<50 μm/s) by continuously adding or removing liquid through a needle, and
the data scatter in Fig. 2(b) reflects the fluctuations of the stick-slip motion. Following le Grand
et al. [37], circles were fitted locally whose tangent lines were found ∼30 μm near the contact lines
to ensure reproducibility of the angle measurements. As can be seen in Fig. 2(b), the gaps between
the advancing and receding contact angles show a significant contact angle hysteresis of ∼20◦ of
water-glycerin mixtures on the Rain-X® coated acrylic. A linear fit (dashed line) gives an empirical
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formula:

θr = 60.78◦ − 8.9◦Mg. (2)

Both γ and θr are nearly constants in the experimental range, the weak decreasing trend of which
can be sufficiently characterized by the linear approximations in Eqs. (1) and (2). As will be shown
in Sec. III B, γ and θr have limited impact on the data analysis.

For the forced-wetting experiments, commercial magnetic mylar tape (cassette tape with w =
6.4 mm, VHS tape with w = 12.7 mm, and recording tape with w = 25.4 mm) was used as the
substrate. A water-glycerin mixture was used as the outer fluid with viscosity 26 � ηout � 572 cP.

Measurement of the refractive index (consistent with the literature [48]) and the thickness of the
entrained liquid layer are described below and in Ref. [49].

B. Measurement of absolute film thickness

Haidinger’s fringes, to be distinguished from Newton’s fringes, refer to the interference pattern
produced by a varying angle of incidence, θ , of the light source [50,51]. To obtain the absolute
thickness, h, of an entrained fluid layer, I have developed an interferometric method based on
measuring Haidinger’s fringes given by the sample. h affects how the optical path difference, �L,
changes with θ . By measuring �L (or equivalently, the interference intensity) as a function of θ

at at given point, h at that point can be deduced. The measuring device is similar to one used to
measure the thickness of oxide layers and silicon semiconductor samples [52,53]. The derivation of
the principle is shown in Appendix A and the features and capabilities of this method are described
in Ref. [49].

To map the detected interference pattern to sample thickness h, I have developed an algorithm
using likelihood maximization (Appendix B). This algorithm facilitates a reliable pattern detection
and a precise topography reconstruction.

Combining the above techniques, I am able to identify precisely the absolute thickness of the
entrained fluid layer systematically.

III. RESULTS

A. Formation of a V-shaped structure

Figure 3 shows a series of images of a fluid being pulled out of a bath by a flat substrate with
straight edges. The substrate travels vertically upward at a constant velocity while the liquid forms
a thin layer entrained to its surface. Initially, as shown in the first frame [Fig. 3(a)], the contact line
rises from the bath in the form of a trapezoid composed of a central nearly horizontal section with
two short sloping sides. In the second frame [Fig. 3(b)], the trapezoid grows in height. The sides
remain at the same angle and the central horizontal section advances upward and becomes narrower.
Just behind the contact line there is a thick ridge; further back there is an extended thin, flat region.
In the third frame [Fig. 3(c)] the horizontal contact line moves upward until the trapezoid closes into
a triangle. At this point, the central part of the thick ridge starts to widen and spread downward. In
the final frame [Fig. 3(d)], as the system reaches its steady-state shape, the thin part is split into two
smaller sections at the lower corners of the entrained fluid.

There appears a thin-thick alternation in the spanwise direction near the bottom of the entrained
layer. In steady state, as shown in the fourth image [Fig. 3(d)], the triangular contact line retracts
slightly so that the tilted sides are less steep compared to its shape during formation shown in the
third frame. When the velocity of the substrate is large enough, small liquid drops, attached to the
moving substrate, emerge at the tip of the triangular pocket, also shown in the last frame [Fig. 3(d)].

The number of alternating undulations of the layer thickness in the transverse direction depends
on the width of the substrate. Figure 4(a) shows steady state of a forced wetting film on a mylar
surface of width w = 25.4 mm. Compared to Fig. 1(a) (substrate width w = 12.7 mm), Fig. 4(a)
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FIG. 3. Images of a typical evolution of a dewetting liquid layer, for a duration of ≈40 s. An acrylic plate of
width w = 20.3 mm is pulled vertically out of a water-glycerin bath of viscosity η = 100 cP at U = 4.4 mm/s.
The fluid layer reaches its steady state in (d). (The images in (a)–(d) are not evenly spaced in time in order to
show the different stages clearly.)

shows that near the top of the V there are four thin sections. The thin-thick features are more
extended for wider substrates than they are for narrower ones.

The same trend applies for the case of dewetting. Figure 4(b) shows that the dewetting film
contains multiple marked thin-thick alternations for a w = 35.3 mm wide acrylic plate.

To quantify this trend, I measured in dewetting the width of the thick bulge W as indicated by
the dashed line in Fig. 4(b). Figure 5(a) shows that this width does not remain a constant with
increasing substrate width. For wide substrates, w > 70 mm in the case of water dewetting on
mylar, the adjacent thick parts constantly merge and resplit, so the width of a single bulge fluctuates
considerably. Despite these fluctuations, Fig. 5(b) shows that there is a linear relationship between
the number of thick bulges versus the substrate width w.

The front-view shape of the thick bulges in forced wetting, on the other hand, is very well defined.
A large portion near the tip of the thick section can be approximated by a circle, as indicated in
Fig. 4(a). In Fig. 6 I have plotted the measured radius, R, of the fitted circle, versus liquid viscosity
ηout, for a fixed substrate width w = 12.7 mm. The error bars indicate the influence on R of different
substrate velocities. The radius decreases with an increase of the liquid viscosity, and saturates
at a value close to the capillary length lc = √

γ /�ρg, independent of the substrate velocity. This
suggests that at a large viscosity (ηout > 90 cP) the shape of the thin-thick boundary of the air
layer is selected by a balance between buoyancy and interfacial tension. The inset of Fig. 6 shows
the superimposed images of two air layers entrained in two different viscous liquids (both with
ηout > 90 cP). The two shapes have very different V-shaped outlines, but the curves of the thin-thick
boundary overlap very well.

B. Wetting velocity of the contact line

The upside-down V shape of the contact line was first noted by Derjaguin and Levi [9], and was
quantitatively interpreted by Blake and Ruschak in terms of the maximum velocity that a contact
line could move across a substrate [12]. When the substrate velocity U exceeds the maximum value,
Umax, the stationary contact must become inclined by an angle φ (with respect to the horizontal
direction) so that the velocity of the contact line normal to its surface, Un, remains at a constant
value Umax:

Un = U cos φ � Umax. (3)
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FIG. 4. Increasing substrate width w increases the number of thin-thick alternations in film thickness. (a) A
25.4-mm-wide recording tape entrains an air film with three thick sections. The upper portion of the thin-thick
boundary can be approximated by a circle of radius R. (b) A 35.3-mm-wide acrylic plate entrains a water-
glycerin film with two thick sections with width W . In (a) and (b) the substrate widths w are twice what they
were in the corresponding images shown in Figs. 1(a) and 1(b). Scale bar: 5 mm.

FIG. 5. Geometry of dewetting films. (a) Width of a thick section, W , versus substrate width, w, for water
dewetting a mylar surface. (b) Number of thick parts, N , versus w, for water dewetting a mylar surface. Error
bars indicate different thin-thick configurations observed, for a given w. Dashed line, linear fit to the mean
observation.
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FIG. 6. Geometry of forced-wetting films. Radius of curvature, R, of the upper portion of the thick part is
plotted against liquid viscosity ηout. Dashed line, capillary length lc = √

γ /�ρg. Inset: Superimposed edge-
detected images of two different air films, entrained into different liquids of viscosities ηout = 160 and 290 cP,
respectively, at U = 150 mm/s.

In this section, I show a few experimental observations on contact-line movement that imply
more complexity than a simple model of a constant Un.

For a typical experimental condition (η = 100 cP, U = 4.4 mm/s, w = 20.3 mm), Fig. 7(a)
shows the inclination angle φ (relative to the horizontal direction) of the lateral contact line, tracked
continuously over time t for seven repeated runs. Clearly φ and, therefore, Un from Eq. (3) do
not remain constant during the formation of the V shape. An obvious trend can be observed: the
inclination first assumes an onset value φon, reaches a maximum, and plateaus at a steady-state
value φss. There are considerable fluctuations from run to run, but the variations do not show
a time dependence (the order of runs is shown in the legend), ensuring no apparent “aging” effect of
the Rain-X® coated substrate. A rough correspondence to the fluid shape imaged in Figs. 3(a)–3(d)
is also noted in Fig. 7(a) (as I-IV). The maximum values of φ consistently occur at the completion
of the triangular pocket shape [Fig. 3(c)]. Notice the extended duration of the experiments (∼40 s)
to reach steady state, which is much longer than that of forced wetting (∼300 ms; see Fig. 1 of
[1]), and often makes observation of steady state difficult in dewetting experiments. Since φon is
consistently smaller than φss, it is necessary to conduct separate analyses on both of these quantities.
Motivated by Eq. (3), I plot in Figs. 7(b) and 7(c) (cos φ)−1 versus U at onset and in steady state,
respectively, for various liquid mixtures. The linear trends indicate that there exists a constant Un

independent of U for each viscosity, but the value is different at onset from what it is in steady
state. The data for steady state in Fig. 7(c) depart significantly from linearity at larger velocities,
possibly suggesting a different regime that I do not focus on in the present work. I fit the data to
the relation (cos φ)−1 = U −1

n,fitU [Eq. (3)] for each liquid mixture. The resulting Un,fit is shown in
Fig. 7(d), plotted versus η. The average normal velocity Un,fit is consistently larger at onset than
it is in steady state as was noted above for the special case in Fig. 7(a). Observe that there is
an approximate linear relationship in the log-log plot of Fig. 7(d), which motivates a power-law
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FIG. 7. Contact-line inclination and contact-line velocity in dewetting. (a) Evolution of the inclination
angle φ (relative to the horizontal direction) of the lateral contact lines versus time t for seven different runs
under the same condition. Plate velocity U = 4.4 mm/s. Liquid viscosity η = 100 cP. (cos φ)−1 versus U for
(b) onset (φon, circles) and (c) steady state (φss, squares). Solid lines, linear fits to each data set (slope = 1).
(d) Fitted normal relative velocity, Un,fit, versus liquid viscosity η for both onset (circles) and steady state
(squares). Top solid line, Un,fit∝η−0.55; bottom solid line, Un,fit∝η−0.59. Legend is consistent for (b), (c), and (d).

fit Un,fit ∝ ηα:

Un,fit;on ∝ η−0.55±0.03, (4a)

Un,fit;ss ∝ η−0.59±0.01. (4b)

114001-8



LONG-TIME EVOLUTION OF INTERFACIAL STRUCTURE …

FIG. 8. Data collapsing for dewetting using Eq. (5). Only data from the linear regimes of Fig. 7(c) are used.
Inset: Fitted ln using Eq. (5) versus the glycerin mass fraction Mg.

Incorporating the surface tension γ or the static contact angle θr in the regression as Un,fit ∝ ηαγ β

or Un,fit ∝ ηαθβ
r shows that β is insignificantly different from zero [54]. The simple empirical laws in

Eqs. (4a) and (4b) well describe the data for over three decades of viscosity η, as shown by the solid
lines in Fig. 7(d). Yet it should be emphasized that Eqs. (4a) and (4b) are only phenomenological.
The maximum wetting speed Un may depend not only on η, γ , and θr but also the microscopic
quantities such as the slip length l .

Usually [37], Un is believed to be reached when the dynamic receding contact angle θ reaches
some critical value θc. Combined with the classical Voinov-Cox description [55,56], the maxi-
mum wetting speed is Un = γ (θ3

r − θ3
c )/9ηln, where ln ≡ ln(x/l ) is the logarithmic ratio of the

macroscopic to microscopic scales. Observations on sliding droplets by le Grand et al. [37] suggest
that this critical angle θc is close to the value θr/

√
3, postulated long ago by de Gennes [57]. For

simplicity, I assume θc = θr/
√

3, giving

Un = γ

η

θ3
r − (θr/

√
3)3

9ln
. (5)

Note Eq. (5) is not in immediate contradiction to Eqs. (4a) and (4b), because η, γ , θr , and ln may
all be related through the mixture fraction Mg. The simple model of Eq. (5) incorporates only local
factors (θr , ln) and assumes steady state. Below, only data from steady state are tested. Since the
slip length l cannot be directly measured from the current setup, ln was used as a fitting parameter
for Eq. (5), and the fitted result is shown in the inset of Fig. 8. It turns out that for the pure glycerin
Mg = 1, the slip length l = xe−ln ∼ 10−8 m is indeed in the nanometer scale corresponding to the
molecular size. However, for all other water-glycerin mixtures, including pure water, ln is unusually
large and as a result l � 10−9 m is unphysically small. Similar discrepancies have been found in
experiments of sliding droplets of water [35,42].

After ln is obtained, the data of Fig. 7(c) can be collapsed using Eqs. (3) and (5), as is shown in
Fig. 8.
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FIG. 9. Data collapsing for dewetting using Eq. (6). Legend consistent with Fig. 8. Dotted line, unstable
branch of Eq. (6); solid line, stable branch.

Snoeijer et al. matched the contact-line dynamics with the similarity solution of a corner flow
(Limat-Stone model [36,39]) for a sliding droplet, and found the relation [40]

C = 6


35 + 18
2
, (6)

where C = 3ηU/(γ εθ3
r ), 
 = (π/2 − φ)/ε, and ε = 1/

√
ln. Using the above fitting result of ln,

despite the lack of its physical interpretation, the data in Fig. 7(c) can also be collapsed by Eq. (6),
shown in Fig. 9. In the theory of Eq. (6), the stable branch only starts at 
 = √

35/18 ≈ 1.4
(solid line). In the unstable branch (dotted line) a rivulet solution takes place where the liquid is
continuously deposited through a thin stream (which would further break into sessile droplets) at
the tip of the V, as observed in Fig. 3(d). It is difficult to quantitatively verify the onset of the rivulet
solution at 
 ≈ 1.4 here using the current imaging resolution and frame size for the V shape. A
rough estimate suggests that the “pearling transition” takes place at 
 > 1.4. Interestingly, the data
collapse works for the whole range of 
, for both the supposed corner regime (solid line) and the
rivulet regime (dotted line). I find that the data collapse as well as the size of ln do not depend too
critically on the model of Eq. (5), although it indeed gave a somewhat better collapse compared
with several other hydrodynamic variations (Voinov and Cox [55,56], Dussan [58], de Gennes and
Brochard-Wyart [57,59], and Eggers [23]). In the meantime, I point out that Eq. (6) is not trivially
equivalent to Eq. (5) (only equivalent if 
 	 1.4 [39]) for my experimental regime so that the
collapse is not automatic. Curiously, Eq. (6) was based on a self-similar flow without gravity effect
for a sliding droplet, yet works for plate dewetting here of a more complex geometry (thin-thick
alternation) and a larger length scale, suggesting that the underlining dynamics may be closely
related.

For the case of steady-state forced wetting, our previous work [1] concluded a power law for the
relation between the normal wetting velocity, Un, versus the viscosity of the outer liquid, ηout, where
an air pocket is entrained into:

Un ∝ η−0.75±0.03
out . (7)

Therefore, the normal relative velocity, Un, decreases with increasing viscosity both in the case of
the inner fluid (as in the case of dewetting) and for the outer fluid (as in wetting).

Kamal et al. [29] studied the contact-line motion where the inner and outer fluids have compara-
ble contributions to the dynamics. This is the case for forced wetting near the contact line. Although
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FIG. 10. Forced wetting data plotted as Can versus ln ηout. Solid line: a least-squares fit shows a good linear
relation.

air has a much smaller viscosity than the viscous liquid, its dissipation cannot be neglected because
of the sharp wedge near the contact line (see also Refs. [28,60,61]). In their theoretical work they
concluded a logarithmic behavior:

Can ≡ ηoutUn

γ
= C1 ln ηout + C2, (8)

where C1, C2 are constants depending on the model details. To compare with Eq. (8), I plotted Can

versus ln ηout in Fig. 10 using the same data leading to the empirical relation Eq. (7). The linear
relationship in Fig. 10 indicates Eqs. (7) and (8) are compatible, and our data in forced wetting
verifies the logarithmic trend [62].

Finally I show a visualization of the transition of the velocity of the nearly horizontal contact
line, by continuously tracking the contact-line position through a high-speed camera. For a typical
dewetting process, Fig. 11(a) shows the superimposed positions of the contact line at equal time
intervals until the trapezoid has reached the triangular shape as seen in Fig. 3(c). The normal relative
velocity Un(x, y) can then be calculated at each point (x, y) at the contact line [illustrated in the inset
of Fig. 11(a)]:

Un(x, y) = [U − Ucl(x, y)] cos ϕ(x, y), (9)

where U is the plate velocity, Ucl is the vertical velocity of a contact-line element at (x, y), and
ϕ(x, y) is the local inclination of the contact line. In Fig. 11(a), the calculated magnitude field
Un(x, y) swept out by the nearly horizontal contact line during this period is mapped in the same
figure to a color scale. The color map shows a significant decrease in normal relative velocity,
Un, throughout the process, which is consistent with the above fitted result Un,fit;on > Un,fit;ss for
the lateral contact lines. The same conclusion applies for the case of forced wetting, as shown
in Fig. 11(b). Note a velocity change of the horizontal contact line soon after entrainment has
been observed and modeled with a quasisteady lubrication theory [24,25]. The current work further
extends the observation till steady state.

Previous studies show that there is no universal contact-line velocity among wetting and dewet-
ting processes in different geometries. For example, in plate withdrawal at different angles, droplet
sliding, or rupture hole expansion, different dewetting velocities have been reported [24,25,40,61].
This is because typically the wetting or dewetting velocity is determined not only by the local flow
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FIG. 11. Normal relative velocity, Un, of contact line during formation of a V. Color scale: Un deduced
from Eq. (9). (a) Contact-line positions at intervals of 100 ms, for an acrylic moving out of a water-glycerin
mixture of viscosity η = 18 cP at U = 15.8 mm/s. (b) Contact-line positions at intervals of 50 ms, for a mylar
moving into a water-glycerin mixture of ηout = 226 cP at U = 130 mm/s.

in the vicinity of the contact line, but also by a matching to the outer large-scale geometry [23,63].
The change of the contact-line velocity from the onset to steady state, observed in the current work,
could potentially be ascribed to a change of the outer geometry (shape of the entrained film), which
cannot be captured by simplified local models such as in Eq. (5).

C. Thickness structure of wetting layer

Figure 12 shows the measurements of the thin and thick regions of the dewetting layer. The first
row shows a measurement at one point of the thin, flat part. In the image shown in the top left panel,
the arrow and white spot indicate the position where the measurement is taken: near the bottom
middle of the frame. The top middle panel shows the circular fringes from the high-speed camera.
Using the method of maximum-likelihood estimation allows clear identification of the interference
rings; the top right panel shows the reconstructed pattern X0(x, y, βoptimal ) (see Appendixes A and B
and Ref. [49]). The thickness of the entrained layer in this region is hoptimal = 84.2 μm. Similarly
the second row shows a measurement of the thick part of the entrained fluid when it expands to
touch the bottom with the measurement placed near the bottom right as shown by the arrow. A
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FIG. 12. Thickness fitting by likelihood maximization. An acrylic substrate travels out of a liquid of viscos-
ity η = 18 cP at U = 17 mm/s. Left column is an image of the entrained fluid. The arrows pointing to focusing
spots indicate location of the measurement. Middle column: Corresponding interference fringes (Haidinger’s
fringes; see Appendix A and Ref. [49]) captured by high-speed camera. Right column: Reconstructions of
fringes using maximizing likelihood (see Appendix B), giving thicknesses of h = 84.2 μm for the thin region
(top row) and 285.0 μm for the thick region (bottom row).

thicker fluid layer gives rise to a much denser set of fringes, and the maximum-likelihood fitting
gives hoptimal = 285.0 μm.

To see the dependence of the steady-state thickness h on the substrate width w, I measured the
thickness of both the thin and thick regions for various substrate widths. As shown in Fig. 13(a),
when w is varied, h of the thick region fluctuates, but does not show an apparent general trend. The
thin part becomes slightly thicker (∼20%) as the width w is increased by a factor of ∼5. Therefore,
the thickness h for both the thin and thick parts is nearly independent of the plate width w. In the
following, I focus on one plate width w only in measuring the thicknesses.

Figure 13(b) shows a typical configuration of the liquid layer entrained on a wide substrate,
while Fig. 13(c) shows a zoomed-in image of the thin-thick alternation region, obtained using a
sodium-vapor lamp (wavelength λ = 589 nm). Because of a long coherence length of the light
source, interference patterns appear in the thin parts. An order of ∼10 fringes can be detected in
each thin part so one can estimate the thickness variation to be ∼3 μm, much smaller than the
thickness itself. It shows that the thin parts are very flat, and measuring thickness at one point only
is sufficient in characterizing the thin-part thickness.

For a fixed substrate width, w, Fig. 14 shows the measurements in the dewetting steady state of
the thin and thick regions as a function of liquid viscosity η and substrate velocity U . As is shown
for both regions, h, normalized by the capillary length lc = √

γ /�ρg, is approximately a power law
in the capillary number, Ca = ηU/γ :

h/lc ∝ Caα. (10)

For over two orders of magnitude in Ca, I find for the thick part

αthick = 0.46 ± 0.01. (11)

This result can be understood by a similar argument as was used for the reversed situation of
wetting [1]. The complex-shaped liquid layer can be simplified as a wedge with an average wedge
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FIG. 13. (a) Thickness h for steady state of dewetting, versus substrate width w. Markers connected by
solid lines, thin part; markers connected by dashed lines, thick part. Liquid viscosity η = 41 cP. (b) A typical
configuration of the entrained liquid layer on a wide substrate. (c) Zoomed-in view of the indicated region (red
square) in (b). Sample illuminated by a sodium-vapor lamp (wavelength λ = 589 nm). Interference stripes in
the thin regions indicate the flatness.

angle, �, where it meets the substrate. Using the result of Huh and Scriven [60] that the interface
velocity UI is proportional to the substrate velocity U ,

UI = ζ

(
ηin

ηout
,�

)
U, (12)

where ηin is the viscosity of the inner fluid (water-glycerin mixture) and ηout is the viscosity of
the outer fluid (air). In the limit of large ηin/ηout (102–105) and small � (<90), it can be shown
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FIG. 14. Thickness for dewetting layers normalized by capillary length, h/lc, versus capillary number Ca,
for both the thin parts and the thick parts. Top solid line, h/lc ∝ Ca0.46; bottom solid line, h/lc ∝ Ca0.48;
substrate width, w = 17.1 mm.

that the proportionality ζ is approximately a constant, nearly independent of ηin/ηout and �. Using
the average value of the measured static receding contact angle 63◦ as an approximation to the
dynamic contact angle �, we get ζ = −0.557 ± 0.005. The negative sign indicates that the flow at
the interface is in the opposite direction of the substrate motion, about half in magnitude. I argue
that the thickness is selected by maximum stability of the layer, so that Eq. (7) of Ref. [1] can be
directly applied:

hthick =
(

2(1 − ζ )
ηin

�ρg
U

) 1
2

=
√

3.1lcCa
1
2 . (13)

Equation (13) is plotted in Fig. 14 as the dash-dotted line. As with the case of forced wetting
[1], the simple argument gives a reasonable fit to the data. A rigorous derivation using lubrication
theory given by Snoeijer et al. [64] gives a nearly identical result as Eq. (13), with a prefactor equal
to

√
3. Note that these two arguments both effectively applied the no-shear boundary condition at

the liquid-air interface with flux conservation.
For the thin part, for over two orders of magnitude in Ca, Eq. (10) also provides a good fit with

αthin = 0.48 ± 0.02. (14)

Although Eq. (14) is close to that for the thin parts of forced wetting [1], I emphasize that the
same stability argument of Ref. [1] does not apply since a key assumption for the argument breaks
down in dewetting. In forced wetting, we approximated the velocity of the liquid-air interface near
the thin region to be equal to that of the thick region UI; thin ≈ UI; thick. As illustrated in the left
panel of Fig. 15, this was reasonable because the thin-thick variation of the air gap is only a small
perturbation to the shape of the bulk outer fluid (liquid; shaded area). The outer fluid (liquid) is the
dominant fluid except very close to the contact line [61], hence dictating the interface velocity to be
roughly uniform regardless of the gap structure. By contrast, in the case of dewetting as illustrated in
the right panel of Fig. 15, the inner fluid (liquid; shaded area) plays the dominant role everywhere.
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FIG. 15. Left: In forced wetting, the thickness variation of the entrained layer is a perturbation to the
dominant bulk liquid, resulting in a roughly equal interface velocity for the thin part UI; thin and the thick part
UI; thick. Right: In dewetting, the thickness variation of the entrained layer is expected to break the uniformity
of the interface velocity, making UI; thin 
= UI; thick in general.

The prominent thin-thick structure is expected to greatly influence the interface velocity, making
the assumption of a simple, uniform interface velocity invalid.

The thin-part thickness also significantly differs from the Landau-Levich-Derjaguin (LLD)
theory [5,6,65], which has an exponent:

αLLD = 2
3 . (15)

The LLD prediction is plotted in Fig. 14 as the dashed line for comparison. The measurements
deviate from the LLD theory especially at low Ca. In the LLD theory, gravity and viscous dissipation
are balanced, and the thickness of an infinite liquid layer is uniquely determined by matching the
meniscus shape near the bath. Assuming in the current case a similar balance between gravity
and viscous dissipation, the discrepancy suggests that the thin-part thickness hthin is not selected
by meniscus matching. The existence of the contact line nearby, neighboring thicker parts, and a
bounding overall V shape, which are not incorporated in the LLD theory, presumably play important
roles. Further modeling is required to quantitatively interpret the result in Eq. (14).

The method of maximum-likelihood fitting is also carried out for the case of wetting. Figure 16(a)
shows a laser image of a part of the entrained air film. There are interference fringes which are
noisy and have artifacts such as a dust shadow on the bottom left. The air film patch is divided into
four smaller parts, each of which can be approximated by a parabolic shape. Our fit for individual
parts gives satisfactory results, as shown in the middle image. Notice the slight mismatch near the
boundaries of adjacent parts. This indicates the inadequacy of the parabolic model near the edge
(rather than the inadequacy of the algorithm). The right-most image shows a simple example of
local edge detection for the same pattern, which in general cannot capture the features of main
interest, and is not robust against errors. The reconstruction of the topography of the air film is
achieved by stitching these data patches together. The result is shown in Fig. 16(b), with perspective
views from two different angles.

D. Onset on a wide substrate: Intermediate thickness

Previous theoretical and experimental work (e.g., Refs. [24–26,66,67]) have focused on the
thickness of a nonwetting liquid film during the early stages [before completion of the triangular
shape of Fig. 3(c)]. They indicated that two different film thicknesses appear during the deposition:
a leading ridge whose thickness is determined by the contact angle, followed by a thin LLD film
whose thickness is determined by the meniscus. Using the interferometric method discussed above
(see Appendix A and Ref. [49]), I have measured the film thickness soon after the onset, long before
steady state. The measurement was done on a wide plate with width w = 37.7 mm. I plot the result
in Fig. 17.
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FIG. 16. (a) Fringe fitting using likelihood maximization in forced wetting. Left: Interference fringes of
equal height produced by part of an air film (Newton’s fringes). Middle: Fringes reconstructed by maximum-
likelihood fitting. Frame partitioned into four smaller parts for separate fitting. Right: A typical local edge
detection algorithm for comparison. (b) Topography of an air film reconstructed. Peak thickness, 87 μm; thin
flat part, 3 μm. Absolute thickness obtained by using multiwavelength interference discussed in Ref. [1].

During the onset stage, there is a leading thick ridge structure near the contact line, whose
thickness is measured and shown as the black diamonds in Fig. 17. The thickness of the ridge
structure, hridge, roughly remains a constant over increasing Ca. This is consistent with the models
of Refs. [24,26,67], where hridge is a function of the relative capillary number Ca∗, which does not
vary much with the plate velocity (or Ca). I emphasize that the ridge is different from the thick part
at steady state, presented in Fig. 14, in both the thickness and the dependence on Ca.

There is an extended thin region of thickness hthin above the meniscus near the bath. It can
be fitted to hthin/lc ∝ Ca0.59±0.01 (bottom solid line). This thin film is close to the LLD predic-
tion hLLD/lc = 0.946Ca2/3 (dashed line), confirming previous studies of the onset of entrainment
[64,66,67].

In addition, there appears a region of intermediate thickness hint , which has not been reported in
previous works. The thin film of hthin close to the LLD prediction turns out to be only transient. It is
left behind immediately after entrainment begins, lasts for a short period, and is rapidly replaced by
a region of intermediate thickness hint (hthin < hint < hridge). The thickness change is discontinuous.
This process is illustrated in the schematic drawing of Fig. 17(a). The inset of Fig. 17(b) shows
an image of the ridge, the intermediate region, and the thin region at the same time soon after
entrainment. At low plate velocities, the LLD film may never appear.

The intermediate film can be fitted to hint/lc ∝ Ca0.63±0.02 (top solid line). Empirically hint ≈
2hthin, over two decades of Ca range. When the ridge thickness hridge approaches the thickness
hint of the intermediate region (Ca ∼ 10−2 in Fig. 17), the separation of the ridge region and the
intermediate film becomes less clear. At high Ca > 10−2, the ridge structure does not appear and
the layer behind the contact line assumes a monotonic thickness, which is similar to the result
of Ref. [67]. (Note the intermediate region was not considered, so the monotonic film without a
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FIG. 17. (a) Schematic showing the formation of a film of intermediate thickness (red) on a wide plate.
(b) Measured thickness scaled by capillary length, h/lc, versus Ca. Top solid line, h/lc ∝ Ca0.63; bottom solid
line, h/lc ∝ Ca0.59. Substrate width w = 37.7 mm. Inset: Typical image of onset film, showing the ridge, the
intermediate region, and the thin region.

capillary shock occurs at hthin = hridge in their work.) A thicker region behind the contact line will
nucleate much later to form the thick parts at steady state such as those of Fig. 3(d) and Fig. 4(b).

When the substrate width w is small, the formation of the intermediate region during the onset
is not observed [as is absent from Figs. 3(b) and 3(c) for w = 20.3 mm]. A thin film that can be
described by the LLD theory is deposited behind a thicker ridge during entrainment before steady
state. The above observations of the intermediate region using a wider plate suggest that the plate
geometry may impact the morphology of the film structure, which deserves further quantitative
investigations.

IV. CONCLUSIONS

I have presented an experimental study on various aspects of dewetting, and have systematically
compared the results with those we found in forced-wetting experiments. I have discovered a
prominent structure in the layer of steady-state dewetting, consisting of well-defined thin-thick
alternations transverse to the direction of substrate motion, behind a V-shaped contact line. This
paper draws attention to a possible instability in the spanwise direction in wetting and dewetting,
which is not incorporated in most current models.

For both wetting and dewetting, I found quantitatively that the normal relative velocity is larger
during the onset than it is at steady state, which extends the previous observations and is different
from a fixed maximum contact-line speed in other wetting and dewetting geometries.

To characterize and quantify precisely the thin-thick structure in the dewetting layer, I developed
a method, combining interference information from varying the angle of incidence and pattern fitting
with maximum-likelihood estimation. Power-law relationships are found between layer thickness h
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FIG. 18. Schematic of interference produced by a beam with angle of incidence θi onto a sample of
thickness h. Light reflected from top surface at θi and bottom surface at θ j interferes at the focal plane of a
lens placed above.

and capillary number Ca over two decades of Ca range, for different parts of the steady state. The
thickness of the steady-state thin part in dewetting differs from various existing models. The new
pattern-fitting algorithm also helps to reconstruct the topography of the air layer in forced wetting.

Lastly, onset of dewetting entrainment has been examined and I found a region whose thickness
is in between two known regions predicted and observed in various previous studies.

This work shows that dynamic partial wetting is far more complex than accounted for in various
simple models. Future work is needed to quantify and understand the contact-line velocity variation
as well as the mechanism for thickness selection in both the onset and steady state. Further
experiments on wetting in two-liquid systems, where both liquids contribute significantly, can help
to examine and clarify the argument of stability.
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APPENDIX A: MEASUREMENT OF ABSOLUTE THICKNESS: PRINCIPLE

When a parallel beam of light is incident upon a transparent sample of thickness h with an angle
of incidence θi, the reflected beam from the top surface at angle θi and the one from the bottom
surface at θ j are brought together by a lens placed above, as shown in Fig. 18. Interference occurs at
the focal plane of the lens. Considering the phase change upon reflection, the optical path difference
is 2nh cos θ j + λ/2, where n is the refractive index of the sample and λ is the wavelength of the light
source. The intensity of interference depends on the angle of incidence θi. When the interference is
completely destructive,

2nh cos θ j = mλ, (A1)
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where m is an integer indicating the order of the destructive interference. All the rays that produce a
single dark fringe correspond to the same value of θ j . These fringes are fringes of equal inclination.
When the angle of incidence is changed from θi1 to θi2 such that the order of interference increases
by �m = 1, from Eq. (A1) the corresponding θ j1 and θ j2 satisfy

2nh(cos θ j2 − cos θ j1) = λ.

Since θ j is related to θi through Snell’s law,

sin θi = n sin θ j, (A2)

we have

2nh

(
cos arcsin

sin θi2

n
− cos arcsin

sin θi1

n

)
= λ. (A3)

If θi1 and θi2 can be measured, Eq. (A3) gives a determination of h if the index of refraction, n,
is known. Notice that no small-angle approximation has been assumed, making the above analysis
valid for arbitrary angles of incidence.

In particular, in our setup described in Ref. [49], the interference pattern is a set of concentric
rings at the focal plane. θ j is given by

sin θ j = 1

n

√
(x − xc)2 + (y − yc)2

(x − xc)2 + (y − yc)2 + f 2
, (A4)

where f is the focal length of the convex lens, (x, y) is the coordinate at the focal plane, and (xc, yc)
is the center of the rings.

APPENDIX B: DATA FITTING: LIKELIHOOD MAXIMIZATION

In the thickness measurements, one needs to convert data images of interference fringes to
thickness information. It can be extremely difficult to extract fringe patterns from noisy data images.
Local edge detection algorithms often perform poorly for patterns whose length scales span multiple
orders of magnitude in the presence of a wide range of noise and artifacts (e.g., shadows, lens flares,
etc.). An example is shown in the third frame of Fig. 16(a).

Since the physical model, i.e., the relation between fringe configuration and thickness h, is
known, I approach this problem using likelihood maximization. For a data image the measured
pixel intensity of coordinate (x, y) is X (x, y). The parameters of the model are denoted as β, the
log-probability log P for all pixels of the data image taking the current values is

log P = log
∏
x,y

P(X (x, y), β )

= log
∏
x,y

P(X (x, y)|β )P(β )

∝
∑
x,y

log P(X (x, y)|β ). (B1)

In the last step above, P(β ) is omitted since the model parameter vector β is not a random vector.
The best β that fits the data is that which maximizes the log-likelihood l (β ) ≡ ∑

x,y log P(X (x, y)|β )
(viewed as a function of β):

βoptimal = argmax
β

l (β ). (B2)

The expression of l (β ) depends on how the pixel fluctuation is modeled. Consider the simple
case of normal distribution P(X (x, y)|β ) ∝ exp[−(X (x, y) − X0(x, y, β ))2/σ 2] where X0(x, y, β ) is
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the expected pixel intensity from the physical model given a particular vector β. Then we have

l (β ) ∝
∑
x,y

−(X (x, y) − X0(x, y, β ))2. (B3)

Thus, from Eq. (B2)

βoptimal = argmin
β

∑
x,y

(X (x, y) − X0(x, y, β ))2. (B4)

Therefore, under the assumption of normal distribution of pixel intensity, finding the optimal
parameter β amounts to a least-squares regression.

In the case of dewetting, we take h, xc, and yc as three fitting parameters. Combining Eqs. (A1),
(A2), and (A4), the expected intensity X0(x, y, β ) is given by

X0(x, y, β ) = 1

2
+ 1

2
cos

(
2π

λ
2nh cos θ j + π

)
,

sin θ j = 1

n

√
(x − xc)2 + (y − yc)2

(x − xc)2 + (y − yc)2 + f 2
,

β = (h, xc, yc). (B5)

Substituting Eqs. (B5) into Eq. (B4) gives the expression of βoptimal = (hoptimal,

xc,optimal, yc,optimal ). Since the right-hand side of Eq. (B4) is highly nonconvex, βoptimal is found
by brute-force searching through all nodes in (h, xc, yc) parameter space, with step resolution
δh = λ/(4n), δxc = δyc = 1 pixel. With known centers (xc,a, yc,a) and (xc,b, yc,b), an exhaustive
search in the parameter space β = (h, h + pλ/2n, n) to maximize the joint likelihood of the two
frames [summation over all pixels for two frames in Eq. (B4)] gives the optimal n.

Similarly for the case of forced wetting, I use normal incidence only and model the interference
fringes of equal height. The patterned area is divided into smaller parts, whose thickness can be
approximated by a quadratic expansion. This is shown in Eqs. (B6). Since there are six components
to optimize in β of this model, I use a basin-hopping minimizing algorithm instead of brute-force
searching:

X0(x, y, β ) = 1

2
+ 1

2
cos

(
2π

λ
2nh(x, y, β ) + π

)
,

h(x, y, β ) = β1x2 + β2y2 + β3xy + β4x + β5y + β6,

β = (β1, β2, β3, β4, β5, β6). (B6)
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