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Transition prediction is an important aspect of aerodynamic design because of its impact
on skin friction and potential coupling with flow separation characteristics. Traditionally,
the modeling of transition has relied on correlation-based empirical formulas based on
integral quantities such as the shape factor of the boundary layer. However, in many
applications of computational fluid dynamics, the shape factor is not straightforwardly
available or not well-defined. We propose using the complete velocity profile along with
other quantities (e.g., frequency, Reynolds number) to predict the perturbation amplifica-
tion factor. While this can be achieved with regression models based on a classical fully
connected neural network, such a model can be computationally more demanding. We
propose a convolutional neural network inspired by the underlying physics as described by
the stability equations. Specifically, convolutional layers are first used to extract integral
quantities from the velocity profiles, and then fully connected layers are used to map the
extracted integral quantities, along with frequency and Reynolds number, to the output
(amplification ratio). Numerical tests on classical boundary layers clearly demonstrate the
merits of the proposed method. More importantly, we demonstrate that, for Tollmien-
Schlichting instabilities in two-dimensional, low-speed boundary layers, the proposed
network encodes information in the boundary-layer profiles into an integral quantity that
is strongly correlated to a well-known, physically defined parameter—the shape factor.

DOI: 10.1103/PhysRevFluids.5.113903

I. INTRODUCTION

Laminar-turbulent transition of boundary-layer flows can have a strong impact on the perfor-
mance of flight vehicles because of their influence on surface skin friction and aerodynamic heating.
Therefore, transition prediction is a key issue for the design of next-generation aerospace configura-
tions. Indeed, according to the CFD Vision 2030 Study [1], the most critical area in computational
fluid dynamics (CFD) simulation capability that will remain a pacing item for the foreseeable future
is the ability to adequately predict viscous flows involving transition-to-turbulence and/or flow
separation.
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Under the benign disturbance environment in flight, boundary-layer transition is often initiated
by the amplification of linearly unstable eigenmodes of the laminar boundary layer. For two-
dimensional (2D) and weakly 3D boundary layers developing over a nominally smooth surface,
the dominant instability mechanisms correspond to streamwise propagating Tollmien-Schlichting
(TS) waves at subsonic speeds, oblique first-mode disturbances at supersonic edge Mach numbers,
and again planar waves of the second mode, i.e., Mach mode type in hypersonic flows. Additionally,
centrifugal instabilities in the form of Gortler vortices are known to influence the transition process
over surfaces with significant regions of concave longitudinal curvature. Finally, attachment line
and crossflow instabilities come into play when the flow becomes three-dimensional.

The transition process begins with the generation of instability waves via the interaction (i.e.,
receptivity) of the laminar boundary layer to its disturbance environment. However, the onset of
turbulence ensues only after the instability waves have gained sufficiently large amplitudes to un-
dergo a sequence of nonlinear processes that culminates with the breakdown to turbulence. Because
the nonlinear breakdown tends to be relatively rapid, the slow amplification of the linear instability
waves accounts for a majority of the laminar flow region preceding the onset of transition. As a
result, the linear amplification ratio, eV, of the most amplified instability mode can often be used
to predict the experimental trends in the transition location. The linear amplification ratio is usually
computed by using the classical stability theory based on the assumption of a quasiparallel boundary
layer flow. Reviews of the linear stability theory for fluid flows may be found in Refs. [2-5]. The
connection between the stability theory and laminar-turbulent transition in boundary-layer flows has
been discussed in Refs. [6—8]. Prior work [9,10] has shown that the N-factor values between 9 and
11 correlate with the transition locations measured in a broad class of boundary-layer flows.

Direct computations of boundary-layer stability place rather stringent demands on the accuracy
of mean flow calculations, much more so in comparison with that required for the prediction of
aerodynamic metrics such as the skin friction drag. In addition, the solution to the eigenvalue
problem associated with the discretized version of the linear stability equations incurs a significant
computational cost. Furthermore, due to the complex nature of the eigenvalue spectra and their
sensitivity to both input parameters and numerical discretization, stability computations are difficult
to automate, and they also require significant user expertise in the details of the hydrodynamic
stability theory. Consequently, the task of transition prediction based on the N-factor methods
has been a specialist’s domain, and is often performed as a post-processing step that follows the
computation of the laminar boundary layer over the flow configuration of interest. Implicit in this
post-processing approach is the assumption of a weak coupling between the transition location and
the basic state computation.

The weak-coupling assumption may be justified for fully attached boundary-layer flows such as
aircraft wings at the cruise condition. However, a number of technological applications, such as
high-lift systems [11], rotorcraft [12], and other configurations involving flow separation, entail
a strong viscous-inviscid interaction, requiring an iterative prediction approach that reflects the
stronger coupling between transition and the overall flow field. To that end, the CFD Vision 2030
Study has called for transition prediction methods that can be fully integrated into the overall process
of aerodynamic prediction. In the past, several attempts have been made to simplify the application
of the N-factor methods in the engineering environment, ranging from analytical but potentially
complex data fits [9,13,14] to numerical, table-lookup procedures based on a prior database of
stability results [15-22]. In recent work, such empirical fits have also been incorporated into CFD
integrated transition models based on auxiliary transport equations, such as the amplification factor
transport model [23].

In the above-mentioned database-query techniques, a response surface model is developed in
terms of a small number of scalar input parameters representing the combination of the global
flow parameters, selected measures of boundary-layer profiles, and the relevant disturbance char-
acteristics such as frequency and wave-number parameters. Almost universally, one or more shape
factors of the boundary-layer profiles have been used to encapsulate the complex dependence of
the disturbance amplification rates on the underlying mean flow. This tends to limit the expressive
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power of the model as discussed by Crouch er al. [24]. Secondarily, while such shape factors can be
easily evaluated when the mean flow computation is based on the classical boundary-layer theory,
it is not easy to compute them in a consistent and accurate manner when Navier-Stokes codes are
used for the basic state computation, especially for unstructured grid solutions. Such situations
arise rather commonly in high-speed applications, such as the flow past blunt nosed bodies, where
the inviscid flow beyond the edge of the boundary layer includes nonzero vorticity as a result of
vorticity generation at the curved shock. The database methods can perform rather poorly in these
cases, as demonstrated by Paredes et al. [25].

Stability predictions based on artificial neural networks [24,26,27] allow additional features
of the boundary-layer profiles to be taken into account without sacrificing the computational
efficiency and robustness of the conventional methods based on a previously computed database
of amplification characteristics. The neural network methods can also be easily generalized to
higher-dimensional input features. This allows the multiparameter dependence of the stability
characteristics to be accounted for, whereas the conventional methods for database query do not
scale very well as the number of independent parameters becomes significantly large. Neural-
network-based stability predictions for free-shear layer flows were first presented by Fuller et al.
[26]. However, a significant advance related to transition prediction was made by Crouch et al. [24],
who found that the expressivity of the model could be improved by augmenting the set of scalar
variables used in conventional database methods via the slopes of the appropriately normalized
velocity profiles at six equidistant points across the boundary layer. The details of the neural network
architecture used in that paper are somewhat limited; however, a feed-forward network based on
fully connected hidden layers was used to approximate the maximum amplification rate among all
unstable modes at any given station. This maximum amplification rate was integrated along the
airfoil surface to evaluate the N-factors.

The selection of a smaller number of input features by Crouch et al. [24] was somewhat arbitrary
and is unlikely to lend itself to other instability mechanisms without further modifications. In the
present work, we present an alternate approach based on convolutional neural networks that can
automatically learn a reduced-order representation of the boundary-layer profiles in terms of a
specified number of most significant features that can optimally predict the targeted linear stability
characteristics across the training space. As such, the proposed architecture can be easily adapted to
predict the amplification characteristics of a broad range of very different instability mechanisms.

The objective of this paper is to present a preliminary proof of concept to establish the potential
of convolutional neural networks (CNN5s) to distill the latent features of the boundary layer profiles.
To that end, it is sufficient to consider the simplest case of TS instability waves in two-dimensional,
incompressible boundary layers. Because the architecture of the CNN is not related to the specific
physics of the TS instability mechanism or to the flow geometry, the proposed neural network can
be easily generalized to other classes of instability waves.

The rest of the paper is organized as follows. An overview of the methodology is presented in
Sec. I, which includes a summary of modal stability analysis for two-dimensional, incompressible
flows, followed by a description of the proposed architecture of a hybrid convolutional/fully
connected neural network. Section III presents the results based on the training and validation
of the proposed network architecture, including an assessment of its generalization capability for
real-world applications. In particular, we highlight the capability of the proposed network for
encoding boundary-layer profiles into integral parameters in an automatic, data-driven manner.
Section IV concludes the paper.

II. METHODOLOGY

Using the ¢V method, the onset of laminar-turbulent transition is predicted to occur where the
logarithmic amplification ratio N of the most amplified instability mode reaches an empirically
defined critical value, denoted herein as N = N;.. As described in Sec. II A, the logarithmic amplifi-
cation ratio N can be computed by solving the governing equations based on linear stability theory.
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Thus, N is a direct function of the laminar boundary-layer profiles (e.g., U, dU/dy, and d*U /dy?),
the flow Reynolds number Rey based on local momentum thickness of the boundary layer, and
disturbance parameters such as the frequency of the instability wave w and, for 3D disturbances,
the spanwise wave number. The objective herein is to develop a surrogate transition model based
on a neural network that would incorporate the physics of the transition phenomenon and predict
the transition onset location without requiring the direct computations using linear stability theory.
Since this data-driven surrogate transition model is being developed based on linear stability theory,
any limitations of the quasiparallel theory are inherited by the present implementation of the
neural-network-based surrogate model. However, since the methodology developed here has no
intrinsic dependence on the quasiparallel theory, the basic framework can be extended to use any
advanced simulation method, such as parabolized stability equations (PSEs), to generate the data
and thus to overcome of the limitations of the classical theory. This would be a fruitful avenue for
future work.

We propose a hybrid neural network (consisting of convolutional and fully connected layers) that
allows the relevant flow information (boundary-layer profiles and scalar disturbance characteristics)
to be processed in a physically informed manner. The resulting regression models predict the
local instability amplification rates, o, for the relevant frequencies of the instability waves as they
propagate through the laminar boundary layer. The N-factor curves can be computed by integrating
the predicted o values to allow the transition onset location to be predicted on the basis of the
empirically defined critical value, N,.. Moreover, as a baseline to compare the performance of the
proposed neural network, we also consider the fully connected neural network architecture based on
the idea proposed earlier by Crouch et al. [24]. In the first part of this section, we discuss the basis
of the " method and the linear stability theory. The transition models based on the proposed neural
network and the fully connected neural network are outlined in the second part. The database used
to train these neural-network-based transition models is discussed in the last part of this section.

A. The e method

For simplicity, we outline the transition prediction procedure in the context of an incompressible,
fully attached flow over a two-dimensional airfoil. An orthogonal, body-fitted, curvilinear coordi-
nate system (s, ) is introduced such that s denotes the distance from the stagnation point, measured
along the airfoil contour on either the suction or the pressure side of the airfoil, and n represents
the outward surface normal. Consistent with the boundary-layer character of the basic state, both
coordinates are normalized by a length scale comparable to the local thickness of the boundary
layer, which is taken to be the local momentum thickness 6(s) without any loss of generality. The
two-dimensional boundary-layer flow over the airfoil is represented by the velocity field (U, V),
where the velocities are normalized by a local velocity scale U, (s), taken to be the flow speed at the
edge of the mean boundary layer. The Reynolds-number parameter based on the free-stream speed
and the momentum thickness is denoted by Rey.

We consider small-amplitude, time-harmonic, spatially evolving perturbations to the mean
boundary-layer flow of the form

o] = [V expitots) - arn, 1)

v

where i = +/—1 is the imaginary unit, @ = 27 f denotes the real valued disturbance frequency, f is
the frequency parameter in Hz, ¢ is the appropriately normalized time, and d¢/ds = « denotes the
complex streamwise wave number. Substituting the above normal mode ansatz into the linearized
Navier-Stokes equations and neglecting the weak nonparallel effects associated with the O(Rde™")
velocity component V and the slow streamwise evolution dU/ds of the tangential velocity field, one
obtains the quasiparallel form of the disturbance equations that must be solved with homogeneous
boundary conditions for U and V at the surface (n = 0) as well as in the free stream (n — 00).
For an incompressible flow, the quasiparallel disturbance equations can be combined into a single
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equation for the wall-normal velocity perturbation, yielding an eigenvalue problem based on the
well known Orr-Sommerfeld (OS) equation [28]:

(@U — )V +a*V)—aU"V = (V" —=2a*V" + a*)/(iRep), )
along with homogeneous Dirichlet boundary conditions:
VO)=V'(0)=0 and V(co)=V'(c0)=0, 3)

where a prime denotes the derivative with respect to the wall-normal coordinate n. The solution
to the eigenvalue problem [Egs. (2) and (3)] at a given station s determines the local value of
the complex streamwise wave number « as a function of the frequency parameter w. The local,
streamwise amplification rate of a disturbance at frequency w corresponds to 0 = —Im(a(w, 5)),
where Im(-) denotes the imaginary part of a complex quantity. Hence, the logarithmic amplification
of the disturbance amplitude with respect to the neutral station, where the disturbance first begins
to amplify, is given by

N(w,s) = / o(w, 5)ds, %)
S0

where the subscript “0” denotes the neutral station. The ¢ method postulates that transition is likely

to occur when the envelope N-factor, N, (s) = sup(N(w, s)), reaches the critical value of N,(s) = Ny.

Here “sup” denotes the maximum over the frequency range of all unstable disturbances. Values of

Ny = 9-11 have been found to correlate with the onset of transition in a number of subsonic and

supersonic flows [9,10].

B. Convolutional neural network

A neural network is a sequence of composite functions representing the mapping from an input
vector ( to output vector y. Each member of the sequence is parametrized by the weight matrix W
and bias vector b, which can both be learned iteratively by using the available training data. This
sequence of composite functions is arranged in the form of layers that consist of several neurons in
general. For example, a neural network with one intermediate (hidden) layer h between the input
layer (q) and output layer (y) may be represented by the following composite functional mapping:

y=W%h+b? with h=f[WDq+b"], orequivalently
y = WO Whq+ b)) + b, 5)

where f is an activation function, and W and b represent the weight matrix and biases vector for
the ith layer, respectively. Activation functions introduce the nonlinearity in the composite functions
that enables them to represent arbitrarily complex functional relationships. Several different activa-
tion functions have been proposed for this purpose, such as the sigmoid function f(x) = 1/(1 + e™)
or the rectified linear unit (ReLU) f(x) = max(0, x). The training of the neural network consists of
successive adjustments of the weights and the biases in order to minimize the squared error between
the predicted and truth values of the output feature, i.e., the local amplification rate o in the present
application. Neural networks with at least one hidden layer are universal approximators, i.e., they
can represent any continuous function on a compact domain to arbitrary accuracy, given a sufficient
number of neurons in the hidden layer [29].

In a fully connected neural network, each neuron in a given layer is connected to every neuron in
the adjacent layer, yielding a generic connection pattern that makes no assumptions about the input
features in the data. The schematic of a fully connected neural network with multiple input features
is displayed in Fig. 1. As mentioned in the Introduction, the existing models starting with Ref. [13]
have used analytical curve fits or other database query methods to predict the local amplification
rate of the instability wave as a function of the disturbance frequency w, local Reynolds number
Rey, and a scalar parameter such as the shape factor H. A fully connected neural network such
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FIG. 1. Fully connected neural networks, (a) with input features including a scalar boundary-layer param-
eter, shape factor H, and (b) with boundary-layer profiles as direct input features. Other scalar parameters in
both architectures represent disturbance characteristics of instability waves, i.e., frequency (w) and Reynolds
number (Rey).

as that shown in Fig. 1(a) provides a suitable architecture to achieve a similar functionality by
using a neural network in place of the database interpolation or curve fitting. However, we note
that the scalar boundary-layer parameter H does not appear directly in the governing equations for
linear stability theory, and hence it is only indirectly related to the amplification characteristics
of the instability modes. Moreover, the shape factor cannot be determined in a straightforward
and/or accurate manner for several boundary layers, such as high-speed flows over blunt nose
configurations [25]. Therefore, it is desirable to introduce the boundary-layer profiles directly
into the predictive model, which is physically more consistent with the underlying linear stability
equation. Crouch er al. [24] presented a model of this type by including a coarse representation
of the mean velocity profiles as part of the input for the fully connected neural network. Whereas
they used the velocity and its first derivative at just six equidistant points, Fig. 1(b) presents a
model architecture based on a well-resolved representation of the boundary-layer profiles (i.e.,
velocity profile U and its derivatives dU /dy and d*U /dy?) as input features for the fully connected
neural network. However, by using a large number of parameters to characterize the boundary-layer
profiles, a model architecture of this type risks a potential misrepresentation of the dependence of
instability growth rates on the two remaining physical parameters, namely w and Rey. The balance
involving the number of input parameters becomes more lopsided for high-speed flows, since the
boundary-layer profiles for temperature or density are also required for a reliable prediction of the
amplification rate o.

A convolutional neural network (CNN) [30] is composed of a number of convolutional and
pooling layers, which enable it to automatically extract the latent features of the input data, which
are considered to be an ordered data structure. Specifically, the boundary-layer profiles can now be
considered to be an ordered array, in contrast to the fully connected neural network that makes no
assumption about the ordering of basic state quantities across the input profile. Furthermore, the
CNN exploits two special attributes to learn efficiently with a smaller number of model parameters.
First, each neuron in the convolutional layers has only local connections to the neurons in the
previous layer, allowing it to develop a correlation with the neighboring neurons. Second, the
convolutional kernel has translational invariance in terms of model parameters, which leads to a
drastic reduction in the number of network parameters. These attributes allow the CNN to achieve
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(b) Fully Connected NN
()
(a) Convolutional Neural Network Rey o o
Convolutional layer O..0
o O
i‘ Convolutional layer : o—4-{o
I : 0..0
Y 3G
- 1 878
boundary layer feeees
profiles (U, U,, U,,) )
Pooling layer Pooling layer
Encodes boundary layer profiles to latent physical parameters Maps physical parameters

to instability amplification rate

FIG. 2. Proposed hybrid convolutional neural network architecture including (a) a regular CNN, which
encodes the boundary-layer profiles to a set of latent physical parameters W, and (b) a fully connected neural
network, which maps the CNN-extracted features W along with other physical parameters (frequency of the
instability wave w and Reynolds number Rey) to the output (instability amplification rate o).

a comparable predictive accuracy much more efficiently in terms of the training cost and/or the
amount of data required for training [31].

A schematic of the proposed hybrid neural network is presented in Fig. 2. In this network
architecture, the CNN first [Fig. 2(a)] maps the boundary-layer profiles to a specified number
of latent features in a physically consistent manner while accounting for the spatial proximity of
neighboring points across the boundary-layer profiles. The encoding of the boundary-layer profiles
in the form of these latent features is denoted by the vector W. Following a preliminary assessment,
the number of latent features in vector W was empirically chosen to be 8. However, the results are
not significantly sensitive to this parameter. Next, the revised set of input parameters comprising
the vector ¥ and the remaining physical scalar parameters (w and Rey) is nonlinearly mapped
through a fully connected neural network [Fig. 2(b)] to yield the local instability amplification
rate o as the final output. Observe that the dependence of o on the physical parameters w and
Rey is introduced into the network architecture in an explicit yet flexible manner. In particular, the
relationship between the local instability amplification rate and the parameters w and Rey, along
with the boundary-layer profiles, is known from the linear stability theory [Egs. (2) and (3)], and
that quantitative relation can be inferred via the training process.

The hyperparameters of the proposed neural network (Fig. 2) and those of fully connected
neural networks (Fig. 1) have been empirically selected to yield an adequate complexity of the
neural network model for learning all of the required information, without causing an overfitting
of the training data. The list of primary hyperparameters includes the number of convolutional
layers, the number of channels in each convolutional layer, the number of fully connected layers,
the number of neurons in each fully connected layer, and the learning rate for the training of the
model. A summary of the relevant model architectures is given in Table I, wherein each category of
architecture has been labeled as A, B, or C| ; 3 for future reference. The number of neurons in each
fully connected layer and the number of channels in each convolutional layer have also been listed
for the respective architectures. The number of input channels for networks C;, C,, and C3 can be
varied to accommodate the desired number of boundary-layer profiles that are to be used as input
to the convolutional layers. Convolutional kernels of size 3 x 1 have been used to extract the latent
features from the boundary-layer profiles defined by 41 equidistant points along the wall-normal
direction. In all networks, the ReL.U is used as the activation function, and the Adam optimization
algorithm [32] has been chosen to minimize the sum squared error during the training process. All of
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TABLE I. Details of network architectures along with respective input features. Acronyms used: FC, fully
connected; NN, neural network; NL, neurons in FC network layers; CH, number of channels in CNN layers.
The first fully connected layer of the C; (i = 1, 2, 3) networks has (24-8) neurons, where the first two neurons
correspond to the physical parameters (w, Reg), and the eight additional neurons correspond to a vector of
parameters, U, that encodes the information from boundary-layer profiles. The C; (i = 1, 2, 3) networks use
only one scalar value for representing parameter W, hence the first fully connected layer has (2+1) neurons.

Number of
Network Input features Architecture type Architecture parameters
A w,Rey, H Fig. 1(a): Fully NL:[3,96,96,96,96,96,96,1] 56 353
connected NN
B w,Reyg, U, 42| ‘jf)g’ | Fig. 1(b): Fully NL:[125,96,96,96,96,96,96,11 57 261
X s J
connected NN
C, w, Rey, Uj ‘2—‘; B %L Fig. 2: Convolutional CH: [3,6,8,4] + NL: 57 337
J 7 J
NN + fully [2+8,96,96,96,96,96,96,1]
connected NN
C, w, Rey, Uj ‘fl—‘; } Fig. 2: Convolutional CH: [2,4,8,4] + NL: 57 257
J
NN + fully [2+8,96,96,96,96,96,96,1]
connected NN
Cs w, Rey, Uj Fig. 2: Convolutional CH: [1,4,8,4] + NL: 57 245
NN + fully [2+8,96,96,96,96,96,96,1]
connected NN
Cfi=1,2,3 Same asC; above Same as C; above Same as C; above, but 57 245

with only 241 input
features for the fully
connected network

the neural network architectures considered herein have been implemented in the machine learning
framework PYTORCH.

C. Generation of training data

The training database is obtained by solving the Orr-Sommerfeld (OS) eigenvalue problem
[Eq. (3)] for the Falkner-Skan family of self-similar boundary-layer profiles over a wide range
of pressure gradient parameter By and local Reynolds number Rey(s). It was generated by using
the stability analysis software, LASTRAC, developed at the NASA Langley Research Center [33].
LASTRAC is a well-known software suite that has been extensively validated against existing bench-
mark data including direct numerical simulations.

The convolutional neural network model maps the complex dependence of the local instability
amplification rate on the relevant disturbance characteristics and the mean flow parameters. The
training database consists of a tabular listing of stability characteristics for the Falkner-Skan
boundary layers, which includes a comprehensive, discrete sampling of the complex-valued local
wave number « of the TS instability wave as a function of the real-valued frequency of the wave
w and the mean flow parameters, which include the Hartree pressure gradient parameter S, or
equivalently the shape factor H of the Falkner-Skan velocity profile, the local Reynolds number
Rey based on the momentum thickness, and the velocity profile and its first- and second-order
derivatives.

The Falkner-Skan group of boundary layers supports a single instability mode that corresponds
to the viscous-inviscid interactive TS waves by themselves (8y > 0) or a combination of instability
mechanisms involving the TS waves and the predominantly inviscid Rayleigh instabilities (8y < 0).
All stability calculations were carried out for a compressible boundary-layer flow with a vanishingly
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TABLE II. Input features for neural network models.

Feature Definition Expression

q Nondimensional frequency of the instability wave w

q2 Reynolds number based on edge velocity and momentum thickness Rey

q3 Local value of velocity profile shape factor (derived parameter) H

qs Velocity profile as a function of wall normal coordinate y Uj,j=1,2,...,41
qs First-order derivative of velocity profile ‘%‘; [, j=12,...,41
qs Second-order derivative of velocity profile ”1’1).’5’ pd=12,...,41

small Mach number of 1073, and a stagnation temperature of 311.11 K, along with an adiabatic ther-
mal wall boundary condition and zero transpiration velocity at the surface. All parameters included
in the database are nondimensional. Lengths are scaled with respect to local momentum thickness,
velocities with respect to the flow speed at the edge of the boundary layer, and temperature with
respect to the local edge temperature. The database includes Hartree pressure gradient parameters
in the range of By € [—0.1988, 1], corresponding to the discrete values given by

Bu = [—0.1988, —0.19, —0.18, —0.16, —0.14, —0.12, —0.10, —0.075, —0.05, —0.025,
0,0.025, 0.05, 0.075,0.1, 0.15,0.2,0.3, 0.4, 0.5, 0.6, 0.8, 1.0].

Because of a rapid change in the instability characteristics for 8y < 0, especially as By — —0.1988
(i.e., when the boundary layer is on the verge of separation), the sampling in Sy is chosen to be
denser at the negative values of By. This bias in sampling may result in a bias in the learning
of the neural network models toward the lower limit of the By values. Stability computations were
carried out for Reynolds numbers extending from just below the minimum critical Reynolds number
(below which all disturbances are predicted to decay) up to Re; = U,s/v = 10'°, where v denotes
the kinematic viscosity of the fluid. The frequency range at each Reynolds number included the
entire range of unstable disturbances as well as a modest range of stable disturbances in the vicinity
of the neutral stability curve. Because the parameter range covered multiple orders of magnitudes, a
logarithmic increment was used along both axes. Due to computational considerations, a quarter of
the data points in the database were used, which amounts to approximately 400 000. The results are
not influenced by the down-sampling of training data. The input parameters used to train and predict
the local instability amplification rate correspond to a suitable subset of the various features listed
in Table II. Boundary-layer profiles include the velocity profile along with the first- and second-
order derivatives, sampled at 41 equidistant points in order to resolve each profile. The scalar input
features (q; : w, ¢ : Rey, and g3 : H) have been scaled and shifted to the range of [0, 1]. We note
in passing that modified input features based on a logarithmic scale along the Rey and w axes were
also considered on the basis of the high Reynolds number asymptotic theory of Tollmien-Schlichting
waves [34], but no significant improvement in the testing error was noted.

The present database has been generated as part of the NASA Langley Research Center’s effort
to use machine learning methods to enable robust, CFD-solver-friendly models for boundary-layer
transition. This database will be made available in an electronic form to encourage the development
of physics-based transition models that can be integrated with CFD solvers.

III. RESULTS

In this section, we demonstrate the predictive performance of the proposed convolutional neural
network (Fig. 2) and compare it with the performance of the fully connected neural networks
[Figs. 1(a) and 1(b)]. In the first part of this section, the proposed neural network model is validated
using the Falkner-Skan database (presented in Sec. II C) by randomly splitting the data, with 90%
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TABLE III. Comparison of the validation error corresponding to neural network models from Table 1.
Training and validation datasets correspond to a random 90-10 % split of the available database over the entire
range of the pressure gradient parameter By .

Network Input features Validation error
A w,Rey, H 0.58%
2
C ,Reg, Uy, 451, G5 0.41%
C, o, Rey, Uj, 421 0.44%
C3 w, Re(.), U,' 0.46%

of the data points used for training and the remaining 10% for validation. Both the training and
validation datasets contain data from the entire range of the pressure gradient parameter 8. We then
assess the proposed model for interpolation and extrapolation cases by splitting the Falkner-Skan
database into training and testing datasets based on the data corresponding to each pressure gradient
parameter By .

Finally, the capability of the network trained on the Falkner-Skan database (with self-similar
boundary layers) to generalize its predictions to realistic flow configurations is evaluated by
comparing the predictions of the neural network model with actual stability computations for those
configurations. Specifically, we consider two different airfoils with non-self-similar boundary layers
for this purpose, namely a symmetric 2D HSK airfoil [35] and an asymmetric NLF-0416 airfoil
[36,37]. The Reynolds number parameter based on the free-stream speed and the chord length
of the airfoil is chosen to be Re, = 1.23 x 10° for the HSK airfoil and Re, = 9 x 10° for the
NLF-0416 airfoil. At the selected flow conditions, the boundary-layer instability is dominated by
the TS instabilities of interest. In all cases, the following metric corresponding to the percent error
based on the Frobenius norm is used for the evaluation of the model throughout this paper:

lotuth — Opredicted 7

€, = 100 x , (6)

”Utruth ” F

where the Frobenius norm is defined as |X||r = /D, |X;|>. In the second part of this section, we

analyze the feature learning and encoding capability of the convolutional neural network and how
it makes the proposed model more robust and generalizable to other flow regimes. In the third part
of this section, the potential advantages of the proposed model over the previously proposed model
architecture [24] are analyzed.

A. Demonstration of predictive performance

The predictive performance of the convolutional neural network (Fig. 2) is first validated by
using the Falkner-Skan database and is also compared with the performance of the fully connected
network [Fig. 1(a)] with scalar input features. In these cases, the training process utilized a randomly
sampled subset of the available dataset, amounting to 90% of the total data points. The validation
is conducted by using the remaining 10% of the data that were never seen by the neural network
model during the training process. The results presented in Table III show that the proposed model
demonstrates slightly improved predictive performance (Network C;, 0.41%) as compared to that of
the fully connected neural network with scalar input features (Network A, 0.58%). Furthermore, the
proposed neural network provides qualitatively similar results when the number of velocity profiles
used as input features is varied from the velocity and its two derivatives (network C;) to the velocity
profile alone (network Cs). The data presented in Table III indicate that the inclusion of the velocity
derivatives decreases the validation error, but the improvement is rather small. The small reduction
in validation error is consistent with the fact that the derivative information is contained within the

113903-10



CONVOLUTIONAL NEURAL NETWORK FOR TRANSITION ...

TABLE IV. Results for interpolation and extrapolation in the Hartree pressure gradient parameter. The
testing dataset is comprised of data at a specified value of 8, while the remaining data are used as the training
dataset.

Cases Testing dataset Testing error

Interpolation Bu = —0.1 3.97%
Bn =0.1 3.02%
B =0.5 4.68%

Extrapolation Bu = —0.1988 15.34%
B =1.0 28.52%

velocity profile itself, and therefore we believe that the observed improvement is attributed to the
well-resolved yet finite sampling of the velocity profile. Since the validation error for the neural
network based on the velocity profiles alone (i.e., network Cs3) is already small, the margin for
improvement is rather limited, and the findings in Table III confirm this expected behavior. Given
the small differences in validation error corresponding to the networks C; through Cs, all of the
remaining assessments reported in this paper are based on a single set of input features, which is
chosen to include the velocity profile U and its derivatives dU /dy and d*U /dy*. Thus, the mapping
sought by the neural network may be represented as

d*U
K dyz

du

(a), Rey, Uj, —
dy

) —> o, where j=1,2,...,41.
J J

We now evaluate the performance of the proposed neural network for more challenging inter-
polation and extrapolation cases, where the Falkner-Skan database has been split for testing and
training based on the Hartree pressure gradient parameter Sy. In these cases, data corresponding
to a selected value of By are reserved for testing while the data corresponding to the remaining
values of Sy are used for the training process. Interpolation cases were considered by isolating a
single value of By for evaluating the testing error, and the corresponding results for Sy = —0.1,
0.1, and 0.5 are given in Table IV. The proposed neural network model is able to interpolate the
remaining database at each of these three values of Sy with a testing error of between 3% and
5%. We also considered two additional cases based on testing corresponding to the two extremes
of the By range, namely By = —0.1988 and 1.0, which amount to an extrapolation from the
training database. As expected, the corresponding results in Table IV indicate significantly higher
testing errors with the extrapolation in comparison with the testing errors for the three interpolation
cases discussed above. Since most of the neural networks are intrinsically interpolators and do not
perform well for something beyond the distribution of training data, the proposed neural network
is not able to extrapolate well. Some of the neural network architectures that impose physical
knowledge such that the model satisfies the governing equations (i.e., cost functions based on
ordinary differential equations) are capable of extrapolating significantly [38]. In current work,
while sound physical knowledge has been used to guide learning of underlying functions, the model
is still an interpolator just like most of the other neural networks, random forest models, or other
regression models [39—41] in physical modeling. Further, the testing error percentage toward the
lower limit (B = —0.1988) is significantly lower (15.3%) than that toward the higher limit of the
range of pressure gradient parameters (namely, 28.5% error for By = 1.0). This disparity in testing
errors may be due to the significantly denser sampling in Sy toward the lower end of the range,
indicating that the overall accuracy of the neural network could perhaps be improved by increasing
the database size by including additional data at higher values of By.

As the underlying purpose of the proposed neural network model is to predict the transition
onset location, we next evaluate the predictive performance of the neural network model C; for a
symmetric HSK airfoil section and an asymmetric NLF-0416 airfoil section. These two examples
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FIG. 3. N-factor curves for non-self-similar boundary-layer profiles over the upper surface of a symmetric
HSK airfoil section and an asymmetrical NLF-0416 airfoil at different angles of attack («). Transition location
corresponds to the critical value of N = 9 (marked by a dashed line). Corresponding transition onset locations
are mentioned on the upper left corner and marked on the horizontal axis as predicted by the proposed neural
network C; model (blue arrow) and computed by linear stability theory (LST) (red arrow). The neural network
model was trained using the Falkner-Skan database (with self-similar boundary layers). Red and blue lines
correspond to N-factor curves. (a) HSK airfoil, « = 0°, (b) NLF-0416, « = 0°, (c) NLF-0416, o = 2°,
(d) NLF-0416, o = 5°.

collectively cover both favorable and adverse pressure gradients. For this assessment, the proposed
neural network model has been trained on the complete Falkner-Skan database while the testing
dataset corresponds to the upper surface of the airfoil sections. Unlike the Falkner-Skan database, the
boundary-layer flows on these airfoils evolve in a non-self-similar manner. Therefore, the evaluation
of the neural network trained on the database of self-similar profiles allows us to gauge the practical
utility of this model, i.e., the capacity to generalize the predictions to arbitrary, but still attached,
boundary-layer profiles. Figure 3 shows the corresponding results where the predicted N-factor
curves for instability waves with a selected set of disturbance frequencies have been superposed
on those based on the linear stability theory (LST). The predicted N-factor curves are computed
by integrating the local amplification rates o predicted by the proposed neural network model.
Figure 3(a) shows the comparison plots for the symmetric HSK airfoil section wherein the abscissa
corresponds to the surface location along the upper surface of the airfoil section (scaled with respect
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to the airfoil chord length) and the N-factor values are plotted along the ordinate. As discussed in
Sec. IT A, transition is predicted to occur when the value of N reaches a critical value, which is
chosen to be Ny, = 9 for the purpose of this comparison [9,10]. This critical value of N is marked
by a dashed line in the plot, whereas the corresponding transition locations predicted by the neural
network and the LST are indicated by blue and red arrows, respectively, and are also listed in the
upper left portion of the figure. The error in the neural network prediction for the transition location
based on N, = 9 is approximately 2% for the HSK airfoil. Similar results are shown in Figs. 3(b)—
3(d) for the predicted transition location along the suction surface of the asymmetric NLF-0416
airfoil section at selected angles of attacks. For these cases, the transition onset location has been
predicted to within an error of approximately 2—5 % by the neural network model.

B. Automatic, data-driven feature extraction of boundary layer profiles

The primary advantage of the proposed neural network is the feature extraction capability of the
CNN (Fig. 2). The CNN is able to distill information from the boundary-layer profiles in a physically
consistent manner, i.e., by considering the boundary-layer profiles as continuous functions and by
encoding the information into a set of parameters indicated by the (green) shaded neurons W in
Fig. 2(b). The CNN provides a mapping from the space of boundary-layer profiles to the physical
parameter space in an automated, data-driven fashion, i.e., without requiring the user to specify an
explicitly defined learning target for the CNN. To demonstrate this capability of the proposed neural
network, we consider the case in which the CNN maps the distilled information from the boundary-
layer profile U;(j = 1,2, ...,41) to a single parameter W at the interface between the CNN and
the fully connected network in Fig. 2. In essence, this process mimics the behavior of the fully
connected network A from Table II by choosing the CNN parameters to encode a single feature from
the boundary-layer profiles. Because the CNN does not make any prior assumptions about what this
single feature should be, one might expect that the predictive performance of the CNN architecture
C} would be better than that of the fully connected network A. Somewhat surprisingly, however,
comparison of the respective testing errors for the asymmetrical NLF-0416 airfoil indicates that the
network A performs slightly better than C} (testing error of 21.2% versus 24.5%). The explanation
of this relative performance is left as a topic for future studies. However, it does seem to provide
independent evidence that supports the practice of using the analytically defined shape factor H as
a nearly optimal scalar representation of the boundary-layer profile for the purpose of predicting the
amplification rates. Next, we evaluated the parameter W for each of the 111 boundary-layer profiles
along the upper surface of the asymmetrical NLF-0416 airfoil by using the convolutional neural
network model that was trained on the full Falkner-Skan database. For convenience of interpretation,
we normalize (i.e., shift and scale) the learned parameter W to W such that the latter falls within the
range of [0, 1]. Figure 4 indicates the variation in W with a similarly normalized shape factor A
of the velocity profiles that is defined in the inset of the figure. The plot shows a nearly linear
relationship between the CNN-extracted feature W and the physically defined counterpart . We
point out that, because the activation function for the last convolutional layer is linear, the mapping
to the parameter W remains unchanged if we scale all of the weights leading into this layer by an
arbitrary factor a and the value of all neurons from the layer by 1/a. As such, the normalization
process is well justified.

A similar evaluation of the data-driven feature extraction capability of the CNN was performed
by varying the number of boundary-layer profiles used as input to the neural network. Specifically,
the correlation analysis from Fig. 4 was repeated by including the first and second derivatives of
the velocity profile in addition to the velocity profile itself. The results of this analysis for all three
networks (namely, network C} with U, dU/dy, and d*U /dy2 profiles as input, C; with U and
dU/dy as input, and C; with U only) are presented and compared in Fig. 5. It can be observed
that the correlation between W and A is linear for C%, where only the velocity profile U is used
as input. In comparison, a mild nonlinearity may be observed in the W-H relations for the C}
and C} networks, where the first and second derivatives dU/dy and d°U/dy* of the velocity are
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FIG. 4. Correlation between normalized CNN learned parameter (&) from non-self-similar boundary-layer
profile U and normalized shape factor (H), at 111 locations along the upper surface of an asymmetric NLF-
0416 airfoil section at 0 degrees angle of attack. The learned parameter W and the shape parameter H are
normalized to within the range [0, 1] to facilitate comparison. The Falkner-Skan database (with self-similar
boundary layers) has been used for training.
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FIG. 5. Comparison of correlation between normalized CNN learned parameter () for varying sets of
non-self-similar boundary layer profiles (corresponding to networks Cj, C3, and C3) and normalized shape
factor (H), at 111 locations along the upper surface of an asymmetric NLF-0416 airfoil section at 0 degrees
angle of attack. Falkner-Skan database (with self-similar boundary layers) has been used for training.

113903-14



CONVOLUTIONAL NEURAL NETWORK FOR TRANSITION ...

— — Blasius BL —— Confluent BL
10 I
|
8 |
1
6 /2
y p
4 _
~
2 e
0 -
0 0.5 1
u

FIG. 6. Comparison of Blasius profile and a confluent boundary layer involving the wake deficit due to an
upstream element. The shape factor value of both profiles is 2.59, but the instability characteristics are expected
to be very different from each other.

also introduced as additional input features to the CNN. However, whether the relation is linear
or nonlinear does not have any major consequence for our purpose. What is more important is
that all three networks exhibit a one-to-one correspondence between the CNN-extracted quantity
W from the boundary-layer profiles and the physically defined quantity H. Thus, we may conclude
that the proposed CNN architecture has a robust performance in goal-oriented feature extraction.
In particular, without any explicit instruction from the user, the CNN has been able to encode the
boundary-layer profiles (i.e., velocity and its derivatives) into a quantity W that is predictive of
the amplification rate o when used in conjunction with the other physical parameters w and Rey.
The quantity W is strongly correlated to the shape factor H, which is known to be correlated with
the stability characteristics [13]. This observation points to the physically consistent nature of the
proposed neural network architecture. Furthermore, profiles with substantially different stability
characteristics can have the same integral shape factor, and therefore the shape factor alone cannot
be an adequate predictor of the stability characteristics. As an example, Fig. 6 presents a comparison
between the self-similar Blasius boundary-layer profile and a confluent boundary-layer profile with
a wake deficit, which may be encountered in the case of boundary layers over multielement airfoil
configurations. The integral shape factor value for both profiles is 2.59; however, the stability char-
acteristics of both profiles are expected to be substantially different. The Blasius profile would have
the viscous-inviscid interactive instability concentrated closer to the wall, whereas the confluent
boundary-layer profile would have primarily inviscid instability within the wake deficit region.
However, both profiles would appear the same in the shape factor space. In comparison, the proposed
CNN model would use the well-resolved boundary-layer profile to capture the differences between
the two profiles toward the prediction of their instability characteristics. In addition to the theoretical
importance, the results also have practical importance. Specifically, the results above highlight
the intrinsic potential of the proposed network to allow additional features of the boundary-layer
profiles to be taken into account with manageable computational costs and without compromising
the robustness of the network performance.

Admittedly, the shape factor H of the Falkner-Skan boundary layers can be easily evaluated and
then used to map the complex dependence of the disturbance amplification rate on the underlying
mean flow through a fully connected neural network [Fig. 1(a)]. However, in several other cases,
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such as high-speed flows over blunt nose configurations or flows where the edge of the boundary
layer cannot be easily determined, the shape factor H cannot be defined in a consistent and accurate
manner and/or computed straightforwardly. References [42,43] highlight some of the difficulties in
determining the boundary-layer edge, and hence in computing the shape factor of both transonic
[42] and hypersonic [43] laminar boundary-layer flows encountered in practical applications. In
such cases, a numerical solution to the full Navier-Stokes equations must be used to compute
the boundary-layer flow. For these flows, the proposed convolutional neural network provides a
more general and effective architecture for modeling the local instability amplification rates based
on the boundary-layer profiles and other relevant physical parameters. Such capability has been
demonstrated in a companion paper [44] for the case of a blunt-nosed body in hypersonic flows
where, irrespective of the existence of a shape factor (H), the CNN model has been able to
predict local instability amplification rates accurately. Although a reduced representation of the
input features can also be achieved via dimensionality reduction techniques, such as principal
component analysis [20], the proposed neural network architecture provides an easier technique
to encode the targeted information from boundary-layer profiles into a smaller set of parameters.
This feature extraction capability of the CNN is likely to assume an even greater significance for
(1) three-dimensional boundary-layer profiles involving the additional crossflow velocity com-
ponent, (ii) high-speed flows that involve the profiles of thermodynamic quantities such as the
density and/or temperature, and (iii) boundary-layer flows that are inhomogeneous in two spatial
coordinates instead of just the wall-normal coordinate, e.g., planar boundary-layer profiles that vary
along both the wall-normal and the spanwise directions. One expects that more complex flows
such as three-dimensional boundary layers are likely to require increasingly long feature vectors as
compared to the Falkner-Skan boundary layers where even a scalar representation of W provided
satisfactory results.

Finally, we emphasize that while the shape factor is known to work well for predicting the
growth characteristics of TS waves, we emphasize that the proposal to use the shape factor was
completely ad hoc and based on domain expertise. The shape factor does not appear anywhere in
the mathematical statement of the stability theory, or for that matter in the analytic solutions based
on high Reynolds number asymptotic theories of TS waves. The present work presents completely
independent evidence extracted from data that the shape factor is a nearly optimal scalar predictor of
TS growth rates and how one may develop additional predictors of instability growth rates. Feature
extraction capabilities of translation invariant images have been demonstrated in recent work in
computer vision and even geosciences [31]; however, the principle of translation invariance does
not apply to the boundary-layer velocity profiles, and the success of the CNN as demonstrated here
is by no means a foregone conclusion.

C. Comparison to a fully connected network with profile inputs

The proposed convolutional neural network has also been assessed against the straightforward
method of directly introducing the full boundary-layer profiles as input features to a fully connected
neural network, as shown in Fig. 1(b). The latter architecture may be viewed as a generalization
of the architecture in Ref. [24]. Figure 7 shows a comparison between the predictive performances
of the proposed convolutional neural network (Fig. 2) and the fully connected network [Fig. 1(b)].
Both neural network models have been trained using the stability database for Falkner-Skan profiles,
and the predictive performance is evaluated for instability amplification over the upper surface of
the HSK airfoil section. To help ensure a fair comparison, the number of model parameters for both
models is kept approximately equal as given in Table I for networks C; and B, respectively. The
predicted transition onset location based on each model is marked by an arrow on the x-axis and
mentioned below the legends in Figs. 7(b) and 7(d). For reference, the predictions based on direct
stability computations are also shown. Although the validation plots for instability amplification
rates in Figs. 7(a) and 7(c) show better predictive performance for the convolutional neural network,
the prediction of transition onset location is better for the fully connected network. The transition
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FIG. 7. Comparison between fully connected network B and proposed convolutional neural network C;.
Validation plots of local instability amplification rates o and N-factor curves for an asymmetric NLF-0416
airfoil section at 0 degrees angle of attack are given for both networks. Transition location corresponds to the
critical value of N =9 (marked by a dashed line). Corresponding transition onset locations are mentioned
below the legends in (b) and (d) and marked on the horizontal axis as predicted by the neural network model
(NN) (blue arrow) and computed by linear stability theory (LST) (red arrow). (a) Validation plot, growth rate
predictions for CNN C;, (b) N-factor curves, CNN C;, (c) Validation plot, growth rate predictions for fully
connected network B and (d) N-factor curves, fully connected network B.

location predicted by the fully connected network is within 1.1% of the transition onset location
based on the linear stability theory, whereas the convolutional neural network predicts the same
with a 2.3% error. Even though both measures of error are rather small, the qualitative trend is
somewhat unexpected and requires further investigation in future studies.

One significant advantage of the proposed convolutional neural network (Fig. 2) over the fully
connected network [Fig. 1(b)] pertains to the number of trainable model parameters required
to achieve a comparable performance. With full information available as input features, a fully
connected network would require a significantly higher number of model parameters, and conse-
quently a higher training cost to provide a comparable performance, whereas the convolutional
neural network is likely to provide more robust predictive performance with a smaller number of
model parameters. Figure 8 presents the results of the analysis designed to verify this behavior.
Here, the test error percentage has been plotted against the size of the neural network model as
measured by the total number of trainable model parameters. We observe that the performance of
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FIG. 8. Comparison of testing error for the fully connected neural network (FC NN) [Fig. 1(b), Network
B from Table I] and the convolutional neural network (Fig. 2, Network C; from Table I) as a function of the
total number of learnable model parameters. Input features for both models include boundary-layer profiles.
The Falkner-Skan database (with self-similar boundary layers) was used for training while the testing error was
evaluated for an asymmetric NLF-0416 airfoil section with non-self-similar boundary layers at 0 degrees angle
of attack.

the fully connected neural network deteriorates significantly as the number of model parameters
is reduced, while the proposed convolution-based neural network is able to maintain its predictive
performance. The convolutional neural network in the proposed model encodes the information
from the boundary-layer profiles into a significantly smaller number of scalar parameters (eight
parameters for network C;z) before folding them into the ensuing fully connected portion of the
overall network, along with the other physical parameters (namely, frequency of the instability
wave » and the local Reynolds number Rey). Such feature engineering for the boundary-layer
profiles via the convolutional neural network enables one to achieve a comparable performance
with a significantly reduced number of model parameters and training cost.

IV. CONCLUSION

A neural-network-based transition model has been presented that is capable of accurately predict-
ing the transition onset location for incompressible, two-dimensional attached flows in a physically
informed manner without requiring the direct computations using the linear stability theory. The
proposed model has the ability to encode information, using convolutional layers, from boundary-
layer profiles (velocity and its derivatives) into a set of integral quantities. More importantly,
the encoded feature W shows strong correlation with, or even one-to-one correspondence to the
physically defined shape parameter H, which clearly demonstrates the physically consistent nature
of the proposed neural network. These encoded integral quantities are then nonlinearly mapped to
local instability amplification rate o along with other scalar disturbance characteristics (w and Rey).
The proposed model is shown to have robust predictive performance, clear physical interpretation,
and superior computational efficiency.

The CNN architecture presented herein can be easily generalized to other instability mechanisms
and, in follow-on (and as yet unpublished work), we have demonstrated the application of this
architecture to second mode instabilities in high-speed boundary layers that cannot be predicted well
on the basis of local shape factors of the boundary-layer profiles. Thus, it could become the means
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for physics-based transition prediction in practical applications of computational fluid dynamics
codes.
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