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Subcritical dynamos in rapidly rotating planar convection
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We study dynamo action using numerical simulations of planar Boussinesq convection
at rapid rotation (low Ekman numbers, Ek), focusing on subcritical dynamo action in
which the dynamo is sustained for Rayleigh numbers, Ra, below the critical Rayleigh
number for the onset of non-magnetic convection, Rac. These solutions are found by
first investigating the supercritical regime, in which the dynamo is able to generate a
large-scale magnetic field that significantly influences the convective motions, with an
associated Elsasser number of order Ek1/3. Subcritical solutions are then found by tracking
this solution branch into the subcritical regime, taking a supercritical solution and then
gradually lowering the corresponding Rayleigh number. We show that decreasing the
Ekman number leads to an extension of the subcritical range of Ra/Rac, down to an
optimal value of Ek = 10−5. For magnetic Prandtl numbers of order unity, subcriticality
is then hampered by the emergence of a large-scale mode at lower Ekman numbers when
the dynamo driven by the smaller scale convection generates relatively stronger large-scale
magnetic field. The inability of the large-scale mode to sustain dynamo action leads to
an intermittent behavior that appears to inhibit subcriticality. The subcritical solutions are
also sensitive to the value of the magnetic Reynolds number (or equivalently, the magnetic
Prandtl number, Pm), as values of the magnetic Reynolds number greater than 70 are
required to produce dynamo action, but large values lead to fluctuations that are able to
push the system too far from the subcritical branch and towards the trivial conducting
state.

DOI: 10.1103/PhysRevFluids.5.113702

I. INTRODUCTION

Understanding the physical mechanisms that generate magnetic fields in electrically conducting
fluids is one of the fundamental challenges in magnetohydrodynamics. In most astrophysical bodies,
magnetic fields are thought to be generated by a hydromagnetic dynamo, which converts the kinetic
energy of fluid motions into magnetic energy, leading to the amplification of the magnetic field.
In the case of the geodynamo, for example, convectively-driven motions in the liquid core are
responsible for the generation of the Earth’s magnetic field. While numerical simulations have
successfully replicated many of the features of the geodynamo [e.g., Refs. 1–3], it is currently
not possible to carry out simulations at Earth-like parameter values. One particularly problematic
parameter for numerical simulations is the Ekman number, Ek, which estimates the strength of the
viscous forces with respect to the strength of the Coriolis force. With considerable computational
effort, modern spherical geodynamo calculations can reach Ekman numbers as small as Ek = 10−7

[4,5], but this is still approximately 8 orders of magnitude larger than the estimated Ekman number
for the Earth’s liquid core, so all such simulations overestimate the relative importance of viscous
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forces compared with the Coriolis force. While it may be possible to use scaling laws [e.g., Ref. 6] to
bridge the gap in parameter space between numerical dynamos and planetary dynamos, this remains
controversial [7–9], thus further exploration of the low Ekman number regime is necessary. One
productive approach to this problem is to consider the more idealised case of convectively-driven
dynamos in simpler geometries, for example, a plane layer. Although there are still limitations
on how small the Ekman number can be made, these simpler problems are more amenable to a
systematic study of the computationally accessible regions of parameter space.

Many previous studies have focused upon layers of electrically conducting fluid in uniformly
rotating Cartesian domains, in which convection is driven by heating the layer from below. If the
layer is rotating about the vertical axis (with the angular velocity vector anti-parallel to the constant
gravitational acceleration), then it is well known that rotation tends to inhibit convection; further-
more, near convective onset, the horizontal lengthscale of the convective motions decreases with
increasing rotation rate, leading to tall, narrow convective cells [10]. For a rapidly rotating domain,
Childress and Soward [11,12] were the first to demonstrate that these near-onset convective motions
are capable of sustaining a dynamo. One of the key results of their study was the identification
of several possible force balances in the governing equations, depending upon the strength of the
generated magnetic field. These balances suggest the existence of multiple dynamo branches. If the
induced magnetic field is weak [12], then it plays a negligible dynamical role and the dominant force
balance is geostrophic. In the (so-called) “intermediate” and “strong” field limits [e.g., Ref. 13],
the Lorentz force plays an increasingly important role in the dynamics of the dynamo, significantly
perturbing the driving flow.

Different aspects of the Childress-Soward dynamo have been explored by many authors [e.g.,
Refs. 14–19]. Arguably the most relevant study to that of the present paper is that of Stellmach
and Hansen [17], who carried out a range of convective dynamo simulations at low Ek (down to
Ek = 5 × 10−7). The level of convective driving in such systems is often quantified in terms of the
Rayleigh number, Ra, which is a dimensionless measure of buoyancy effects relative to diffusion.
Stellmach and Hansen focused primarily upon a weakly supercritical regime in which the Rayleigh
number was only 15-20% above its critical value at the nonmagnetic convective onset under the
influence of rotation (denoted Rac). They found efficient dynamos, characterised by an initial phase
of exponential growth in the magnetic energy, followed by a brief period of super-exponential
growth as the magnetic field becomes strong enough to influence the flow (also accompanied by a
similar growth in the kinetic energy). The dynamo then saturates, reaching a statistically steady state
in which the magnetic energy typically exceeds the kinetic energy of the system. We can gain some
insight into the mechanisms responsible for this phase of super-exponential growth by considering
related magnetoconvection studies [20,21]. Like rotation, imposed magnetic fields tend to have
a stabilising effect upon convection in electrically conducting fluids, raising the corresponding
critical Rayleigh number for the onset of convection. However, when magnetic fields are applied
across rapidly rotating domains, the Lorentz force can relax some of the rotational constraints,
thus facilitating convection rather than impeding it (of course, this depends crucially upon the field
strength; the Lorentz force and the Coriolis force must be of comparable magnitudes at a certain
lengthscale). In these dynamo calculations, phases of super-exponential growth are indicative of a
similar effect, with the dynamo-generated magnetic field becoming locally strong enough to break
some of the rotational constraints. The field that is produced significantly perturbs the flow, allowing
the dynamo to reach a balanced state in which the magnetic field plays an important dynamical role
in the nonlinear dynamo. Low Ekman number dynamos that are able to sustain sufficiently strong
magnetic fields that play an important dynamical role are relevant for astrophysical systems such as
the geodynamo [22], but remain largely unexplored due to the difficulty in performing numerical
simulations in this regime. The case described in Stellmach and Hansen is an important example of
such a dynamo, which we explore further in the present paper.

One of the most interesting findings of Stellmach and Hansen (see also the related study of St
Pierre [14]) was the fact that it is possible to follow dynamo solution branches into the subcritical
regime, which is characterised by a Rayleigh number that is less than Rac. This branch tracking
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is achieved by taking a supercritical dynamo solution as an initial condition and then gradually
lowering the Rayleigh number. The existence of this subcritical behavior is a direct consequence
of the field having changed the flow geometry. If the magnetic field were to be removed, then the
system would gradually relax back to a hydrostatic state; to put this another way, these subcritical
solutions exhibit bistability with the trivial conducting state. Examples of subcritical dynamo action
have also been found in rotating spherical shells [23–25], but there the subcriticality is less extreme:
nonlinear dynamo solutions can be found below the critical Rayleigh number for the onset of
dynamo action, but not below the critical Rayleigh number for the onset of convection. It is worth
emphasising that the existence of subcritical dynamos is more than simply a mathematical curiosity:
It has been suggested that the comparatively rapid cessation of the Martian dynamo could have
been a direct consequence of the Martian dynamo reaching the end of a subcritical dynamo branch
[26,27].

There has not yet been a systematic study of the parametric dependence of subcritical convec-
tively driven dynamos in rapidly rotating Cartesian domains. While individual examples of such
subcritical dynamos have been presented [14,17], it is not clear what the optimal parameter regime
is for the existence of these solutions. The primary aim of this paper is to address this issue. In
the next section, we begin by presenting the governing equations and defining the output quantities
used for the analysis of the data. Section III presents the results of our study, beginning with an
analysis of near-onset supercritical dynamo action before decreasing the Rayleigh number below the
linear onset of convection to explore subcritical dynamos. Finally, we summarize our key findings
in Sec. IV.

II. MODEL

A. Governing equations and boundary conditions

We study dynamo action driven by rotating Boussinesq convection in a three-dimensional planar
model. The computational domain has depth d in the vertical direction and width λd in each of the
horizontal directions. The gravitational acceleration is g = −gez, where ez is the unit vector in the z
direction. The layer rotates about the vertical axis at constant rotation rate �. A vertical temperature
difference �T is imposed across the layer such that the fluid is uniformly heated from below. The
fluid has constant kinematic viscosity ν, thermal diffusivity κ , magnetic diffusivity η, density ρ,
thermal expansion coefficient α, and magnetic permeability μ0. The system of governing equations
is solved in dimensionless form. We scale lengths with d , times with d2/κ (the thermal diffusion
timescale), velocities with κ/d , temperature with �T and magnetic field with (μ0ρ)1/2κ/d . The
nondimensional governing equations are

∂u
∂t

+ u · ∇u + Pr

Ek
ez × u = −∇p + Pr∇2u + PrRaθez + j × B, (1)

∇ · u = 0, (2)

∂θ

∂t
+ u · ∇θ = uz + ∇2θ, (3)

∂B
∂t

+ u · ∇B − B · ∇u = Pr

Pm
∇2B, (4)

∇ · B = 0, (5)

where u is the velocity, p the pressure, B the magnetic field, θ the temperature fluctuation from the
linear background profile, and j = ∇ × B the current density. The dimensionless parameters that
appear in the governing equations are the Prandtl number Pr, magnetic Prandtl number Pm, Ekman
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number Ek, and Rayleigh number Ra, which are defined as

Pr = ν

κ
, Pm = ν

η
, Ek = ν

2�d2
, Ra = αg�T d3

κν
. (6)

To avoid the numerical challenges of solving viscous boundary layers in the low Ekman number
regime we choose the lower and upper boundaries to be stress-free. Furthermore this allows us
to compare our results directly with those of previous studies such as Stellmach and Hansen
[17]. The lower and upper boundaries are also impermeable and perfect thermal and electrical
conductors, i.e.,

θ = uz = ∂ux

∂z
= ∂uy

∂z
= Bz = ∂Bx

∂z
= ∂By

∂z
= 0 at z = {0, 1}, (7)

with periodic boundaries in the x and y directions. Simulations are initiated by a weak small-scale
temperature pertubation to the trivial conducting state in the presence of a weak imposed small-scale
horizontal magnetic field with zero net flux.

The governing equations are solved using the pseudospectral code described in Cattaneo et al.
[28], where more details about the numerical scheme can be found.

B. Definition of the output quantities

The magnetic Reynolds number, Rm, gives an estimate of the ratio of magnetic induction to
magnetic diffusion. Rm is based on the layer depth and the root mean square (r.m.s.) velocity
amplitude. In terms of our dimensionless variables,

Rm = Pm

Pr
U∗, (8)

where U∗ =
√

〈u2〉V . Throughout this paper we denote volume averages as 〈(...)〉V with V the
volume of the computational domain, and horizontal averages over x and y as (...). The ratio of
magnetic to kinetic energy is

M = B2
∗

U 2∗
, (9)

with B∗ =
√

〈B2〉V .
As previously noted, one of the key balances in this system is the comparison between Coriolis

effects and the Lorentz force to determine the influence of the magnetic field on the dynamics of
the system. In particular, we are interested in the ability of the magnetic field to loosen some of
the rotational constraints which inhibit convection. Motivated by these considerations, we therefore
use the Elsasser number, �, which measures the ratio of the Lorentz force to Coriolis forces, as the
primary measure of the magnetic field strength. In these dimensionless units,

� = PmEk

Pr2 B2
∗. (10)

Given that these dynamos produce a nonnegligible mean magnetic field (in a horizontally averaged
sense), it is also of interest to consider an alternative definition of the Elsasser number that is based
upon this mean field,

� = PmEk

Pr2 B
2
∗, (11)

where B∗ =
√
〈B2〉V is the r.m.s. amplitude of the horizontally averaged magnetic field. These

definitions of the Elsasser number are based on the standard formulation for this quantity, which
assumes (in dimensional terms) that d is a possible appropriate lengthscale for the dynamo and
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that η/d is an appropriate velocity scale (equivalently this assumes that the appropriate timescale
is ohmic, based on the layer depth). Another important lengthscale for the magnetic field is the
magnetic dissipation lengthscale, b, defined by

2
b = 〈B2〉V

〈|∇ × B|2〉V
. (12)

Having introduced appropriate lengthscales for the magnetic field, it is natural to do the same for
the flow. Recalling that the convective cells near onset are long and thin, the vertical scale is roughly
unity in these units. Our estimate for the typical flow lengthscale in the horizontal direction is based
on the vertical velocity,

u =

∑
kx, ky, kz

[ûz(kx, ky, kz )]2

∑
kx, ky, kz

√
k2

x + k2
y [ûz(kx, ky, kz )]2

, (13)

where ûz denotes the three-dimensional Fourier transform of the vertical velocity, while kx, ky and
kz are the wave numbers in the x, y, and z directions, respectively [29]. A similar estimate can be

made for the vertical flow lengthscale, replacing
√

k2
x + k2

y with kz.
The efficiency of convective heat transport produced by the flow is quantified via the ratio of total

heat flux to conductive heat flux in the absence of motions, known as the Nusselt number,

Nu = 1 + 〈|∇θ |2〉V . (14)

Arguably the most natural timescale to use for dynamo calculations is the magnetic diffusion
(ohmic) timescale, tη, based on the depth of the domain. In dimensional terms, tη = d2/η, which
is a factor of Pm/ Pr longer than our characteristic timescale (based on the thermal diffusion time).
This estimate for the relevant dynamo timescale is likely to be an overestimate, as it is based on the
molecular magnetic diffusivity as opposed to the turbulent magnetic diffusivity. Following Cattaneo
et al. [30], we define an alternative characteristic timescale, te, which is an estimate for the decay
time of the large-scale field due to turbulent diffusion. In dimensional terms,

te =
(

d

u

)2 〈B2〉V

η〈|∇ × B|2〉V
. (15)

In dimensionless form, te = (Pm/ Pr)(2
b/

2
u). Cattaneo et al. [30] argue that a dynamo exists only

if the field survives for times much longer than te; all of the successful dynamo calculations that are
reported in this paper satisfy this condition.

Finally, in dynamos driven by spherical rotating convection, Sreenivasan and Jones [24] show that
dipolar magnetic fields lead to an increase in helicity due to feedback on the flow. This enhancement
in the helicity then leads to subcritical behavior in their simulations. In this Cartesian domain, the
kinetic helicity at each depth is given by

H = u · ∇ × u. (16)

The relative kinetic helicity normalizes the helicity relative to the flow intensity. At each depth this
is then given by

Hrel = u · ∇ × u

(u2)1/2[(∇ × u)2]1/2
, (17)

where |Hrel| � 1. Maximally helical flows produce a relative kinetic helicity of Hrel = ±1.
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TABLE I. Summary of the input and output quantities in the numerical simulations. Nx , Ny and Nz are the
numerical resolution in x, y and z. tr is the total run time in units of a thermal diffusion timescale, tκ = d2/κ . te

is a characteristic timescale for the decay of the large-scale field due to turbulent diffusion from Cattaneo et al.
[30]. In all cases the Prandtl number is kept constant at Pr = 1. The asterisk next to the case number denotes the
simulations performed in Stellmach and Hansen [17] for comparison. The output quantities (defined in §II B)
are time averaged during the saturated phase.

Case Ek Ra Ra/Rac Pm λ Nx × Ny × Nz tr tr/te Rm b u � � M

A1 3.16 × 10−4 4.8934 × 105 1.18 5 2 1283 17.28 198.0 123 ± 11 0.044 0.33 0.30 ± 0.13 0.030 0.31

A2 3.16 × 10−4 4.0640 × 105 0.98 5 2 1283 1.30 − − − − − − −

B1* 1 × 10−4 2.2345 × 106 1.18 2.5 1 1283 9.84 133.2 108 ± 18 0.041 0.24 0.30 ± 0.14 0.061 0.63

B2 1 × 10−4 1.8619 × 106 0.98 2.5 1 1283 6.56 72.4 71 ± 15 0.048 0.25 0.26 ± 0.13 0.079 1.25

B3 1 × 10−4 1.8201 × 106 0.96 2.5 1 1283 1.34 − − − − − − −

C1* 5 × 10−5 5.6050 × 106 1.18 2.5 1 1283 4.51 58.4 141 ± 24 0.035 0.20 0.36 ± 0.11 0.068 0.93

C2 5 × 10−5 4.6628 × 106 0.98 2.5 1 1283 4.92 52.5 91 ± 18 0.041 0.21 0.30 ± 0.10 0.080 1.80

C3 5 × 10−5 4.5201 × 106 0.95 2.5 1 1283 4.10 41.4 84 ± 19 0.042 0.21 0.27 ± 0.10 0.077 1.95

C4 5 × 10−5 4.4250 × 106 0.93 2.5 1 1283 4.92 47.6 81 ± 17 0.043 0.21 0.27 ± 0.09 0.078 2.09

C5 5 × 10−5 4.3298 × 106 0.91 2.5 1 1283 3.28 − − − − − − −

D1* 2.5 × 10−5 1.4081 × 107 1.18 2.5 1 1283 1.64 19.7 170 ± 35 0.030 0.16 0.39 ± 0.11 0.068 1.39

D2 2.5 × 10−5 1.1715 × 107 0.98 2.5 1 1283 3.28 31.9 110 ± 23 0.036 0.17 0.30 ± 0.09 0.074 2.51

D3 2.5 × 10−5 1.1357 × 107 0.95 2.5 1 1283 4.10 37.2 101 ± 23 0.037 0.17 0.27 ± 0.10 0.071 2.71

D4 2.5 × 10−5 1.1118 × 107 0.93 2.5 1 1283 3.28 28.9 96 ± 23 0.037 0.18 0.27 ± 0.09 0.072 2.95

D5 2.5 × 10−5 1.0640 × 107 0.91 2.5 1 1283 2.73 25.0 86 ± 21 0.039 0.18 0.23 ± 0.09 0.070 3.25

D6 2.5 × 10−5 1.0520 × 107 0.88 2.5 1 1283 3.55 28.7 81 ± 22 0.039 0.17 0.21 ± 0.10 0.059 3.23

D7 2.5 × 10−5 1.0161 × 107 0.85 2.5 1 1283 1.04 − − − − − − −

E1 1 × 10−5 4.7712 × 107 1.18 5 1 1283 0.98 7.0 340 ± 87 0.020 0.12 0.41 ± 0.11 0.042 1.93

E2 1 × 10−5 3.9660 × 107 0.98 5 1 1283 1.15 4.9 166 ± 74 0.027 0.13 0.25 ± 0.14 0.048 5.46

E3 1 × 10−5 3.8447 × 107 0.95 5 1 1283 1.15 4.8 143 ± 50 0.028 0.13 0.22 ± 0.11 0.049 5.84

E4 1 × 10−5 3.7672 × 107 0.93 5 1 1283 1.15 5.1 145 ± 44 0.027 0.13 0.23 ± 0.09 0.049 5.82

E5 1 × 10−5 3.6810 × 107 0.91 5 1 1283 7.22 28.9 129 ± 46 0.029 0.13 0.21 ± 0.10 0.045 6.68

E6 1 × 10−5 3.6019 × 107 0.89 5 1 1283 1.31 − − − − − − −

F1* 1 × 10−5 4.7712 × 107 1.18 2.5 1 1283 1.80 16.4 196 ± 42 0.025 0.12 0.31 ± 0.07 0.057 2.11

F2 1 × 10−5 3.9660 × 107 0.98 2.5 1 1283 1.05 8.3 129 ± 29 0.030 0.13 0.24 ± 0.07 0.060 3.76

F3 1 × 10−5 3.8447 × 107 0.95 2.5 1 1283 2.59 20.2 125 ± 30 0.030 0.13 0.22 ± 0.08 0.055 3.72

F4 1 × 10−5 3.7672 × 107 0.93 2.5 1 1283 2.07 15.6 116 ± 26 0.031 0.13 0.21 ± 0.07 0.055 4.05

F5 1 × 10−5 3.6810 × 107 0.91 2.5 1 1283 2.13 15.7 111 ± 28 0.031 0.13 0.20 ± 0.07 0.049 4.16

F6 1 × 10−5 3.6019 × 107 0.89 2.5 1 1283 3.17 21.6 103 ± 23 0.031 0.13 0.19 ± 0.06 0.051 4.44

F7 1 × 10−5 3.5209 × 107 0.87 2.5 1 1283 3.28 21.9 97 ± 26 0.032 0.13 0.18 ± 0.08 0.044 4.80

F8 1 × 10−5 3.4400 × 107 0.85 2.5 1 1283 0.82 − − − − − − −

G1 1 × 10−5 4.7712 × 107 1.18 1 1 1283 1.64 26.1 108 ± 16 0.033 0.13 0.22 ± 0.04 0.068 1.90

G2 1 × 10−5 3.9660 × 107 0.98 1 1 1283 1.31 18.5 81 ± 13 0.036 0.14 0.16 ± 0.04 0.059 2.46

G3 1 × 10−5 3.8447 × 107 0.95 1 1 1283 1.48 20.4 76 ± 12 0.037 0.14 0.15 ± 0.04 0.058 2.63

G4 1 × 10−5 3.7672 × 107 0.93 1 1 1283 1.31 17.1 70 ± 15 0.037 0.13 0.13 ± 0.05 0.053 2.65

G5 1 × 10−5 3.6810 × 107 0.91 1 1 1283 1.48 19.6 68 ± 11 0.037 0.14 0.12 ± 0.03 0.053 2.66

G6 1 × 10−5 3.6019 × 107 0.89 1 1 1283 2.62 33.6 65 ± 12 0.038 0.13 0.11 ± 0.04 0.051 2.70

G7 1 × 10−5 3.5209 × 107 0.87 1 1 1283 0.16 − − − − − − −

H1* 5 × 10−6 1.2000 × 108 1.18 2.5 1 1283 1.16 8.8 217 ± 55 0.022 0.10 0.25 ± 0.07 0.049 2.89

H2 5 × 10−6 1.0000 × 108 0.98 2.5 1 1283 1.56 10.7 150 ± 37 0.026 0.11 0.20 ± 0.06 0.048 4.70

H3 5 × 10−6 9.5000 × 107 0.93 2.5 1 1283 2.25 17.2 132 ± 34 0.027 0.11 0.18 ± 0.07 0.047 5.43

H4 5 × 10−6 9.3000 × 107 0.91 2.5 1 1283 1.21 8.2 120 ± 24 0.028 0.11 0.17 ± 0.05 0.046 5.93
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TABLE I. (Continued.)

Case Ek Ra Ra/Rac Pm λ Nx × Ny × Nz tr tr/te Rm b u � � M

H5 5 × 10−6 9.0673 × 107 0.89 2.5 1 1283 3.28 20.3 121 ± 24 0.027 0.11 0.16 ± 0.05 0.046 5.70

H6 5 × 10−6 8.8636 × 107 0.87 2.5 1 1283 3.36 − − − − − − −

I1* 5 × 10−6 1.2000 × 108 1.18 1 1 1283 1.72 25.9 131 ± 20 0.028 0.11 0.20 ± 0.04 0.057 2.41

I2* 5 × 10−6 1.0000 × 108 0.98 1 1 1283 1.64 21.1 99 ± 16 0.031 0.11 0.15 ± 0.04 0.051 3.08

I3 5 × 10−6 9.5000 × 107 0.93 1 1 1283 2.18 27.9 90 ± 18 0.031 0.11 0.13 ± 0.05 0.050 3.25

I4 5 × 10−6 9.3000 × 107 0.91 1 1 1283 1.64 20.2 88 ± 18 0.032 0.11 0.13 ± 0.05 0.048 3.34

I5* 5 × 10−6 9.0673 × 107 0.89 1 1 1283 2.28 − − − − − − −

J1 5 × 10−7 2.5866 × 109 1.18 1 0.25 642 × 256 0.14 0.85 149 ± 97 0.024 0.058 0.11 ± 0.12 0.039 9.71

J2 5 × 10−7 2.0824 × 109 0.98 1 0.25 642 × 256 0.12 0.74 211 ± 189 0.027 0.067 0.29 ± 0.39 0.084 24.63

J3 5 × 10−7 2.0385 × 109 0.95 1 0.25 642 × 256 0.11 1.62 218 ± 155 0.024 0.089 0.28 ± 0.29 0.033 15.66

J4 5 × 10−7 1.9947 × 109 0.91 1 0.25 642 × 256 0.02 − − − − − − −

III. RESULTS

Table I summarizes the input and output quantities of the numerical simulations reported in this
paper. The Ekman number is varied in the range Ek ∈ [5 × 10−7, 3.16 × 10−4] and the magnetic
Prandtl number is in the range Pm ∈ [1, 5]. In rotating convection studies, the Taylor number Ta =
1/Ek2 is often used as an alternative to the Ekman number; our upper limit of Ek = 3.16 × 10−4

corresponds to Ta = 1 × 107. We focus on dynamos generated near the onset of convection and the
Rayleigh number is varied between 0.85Rac and 1.18Rac, where Rac is the critical Rayleigh number
at the linear onset of rotating convection calculated from the analytical study of Chandrasekhar [20].
The standard Prandtl number is fixed to be Pr = 1 in all cases.

0.85 0.90 0.95 1.00 1.05 1.10 1.15
Ra /Ra c

10−7

10−6

10−5

10−4

10−3

Ek

Pm = 5

Pm = 2.5

Pm = 1

FIG. 1. Location of the simulations in the parameter space Ek-Ra/Rac. Filled symbols represent cases
where a dynamo is sustained and the open symbols represent cases where the dynamo fails. The marker color
denotes Ek and the marker shape Pm. For Ek = 10−5 and Ek = 5 × 10−6, points with different Pm have been
shifted vertically for visibility. It should be noted that an infinite time series would be required to conclusively
state the existence of a subcritical dynamo. The majority of the cases presented here persist for long integrations
(for a period of time much greater than te), however cases at Ek = 5 × 10−7 were only run for a comparatively
short time (see Table I).
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FIG. 2. Time series of the Elsasser number � and magnetic Reynolds number Rm for Case I1. The gray
area indicates the super-exponential growth phase.

Figure 1 shows the location of the dynamo simulations in the parameter space Ek-Ra/Rac, where
simulations with different magnetic Prandtl numbers are indicated by different marker shapes. The
behavior of the dynamo changes drastically at the lowest Ekman number that we calculated (Ek =
5 × 10−7), so the regimes with moderate Ekman numbers where Ek � 5 × 10−6 (Secs. III A and
III B) and with small Ekman numbers where Ek = 5 × 10−7(Sec. III C) are presented separately. To
benchmark some of our results, we have reproduced the dynamo results of Stellmach and Hansen
[17] (hereafter SH04). The benchmarked cases are indicated by an asterisk in Table I. Values of Rm
and � are in agreement with the results of SH04 within 5%.

A. Supercritical dynamos at moderate Ekman numbers

We first examine dynamo action in the supercritical range, that is for Ra > Rac. The main
characteristics of the flow and magnetic field in this system were previously described in SH04.
Here we briefly recall some of these characteristics and identify the important ingredients for the
subcritical behavior (at Ra < Rac) that we will explore in the next section. Additionally, we present
the generation mechanism of the coherent horizontally averaged field, which we call the mean
field. In this section, we focus primarily on a representative simulation at Ek = 5 × 10−6, Pm = 1,
Ra = 1.2 × 108 = 1.18Rac, and λ = 1 (Case I1 in Table I), which is typical of these supercritical
dynamo calculations.

1. Modification of the convection by the magnetic field

For Case I1, the time evolution of the Elsasser number � and magnetic Reynolds number Rm are
shown in Fig. 2. During the kinematic phase, where the magnetic energy grows exponentially and
the Lorentz force does not significantly affect the flow, Rm takes an average value of 80. Around t =
0.5 in dimensionless units, the magnetic energy undergoes a short super-exponential growth phase.
This phase occurs when the magnetic field reaches a sufficiently strong amplitude to alter the flow,
leading to an amplification of the magnetic Reynolds number (and equivalently the kinetic energy),
which is accompanied by an increasing growth rate of the magnetic energy due to the favourable
effect on the dynamo action. Saturation then occurs and the magnetic field amplitude reaches an
average value corresponding to � ≈ 0.2. During the saturated phase, the magnetic Reynolds number
exhibits greater fluctuations than in the kinematic phase and its average value is approximately
130, which shows that the flow is significantly altered by the magnetic field. The ratio of magnetic
to kinetic energies, M, is approximately 2–3 in the saturated phase. Values of M > 1 and � <
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FIG. 3. Snapshots in the (a–c) kinematic phase and (d–f) saturated phase of (a, d) uz in a horizontal slice,
(b, e) 3D isosurfaces of uz, and (c, f) the absolute value of the magnetic field, |B|, in a horizontal slice for Case
I1. The horizontal slices are taken at z = 0.92. The isosurfaces correspond to ±50% of the maximum at that
time.

1 are typical of our saturated dynamos. For comparison, small-scale dynamos in rotating planar
convection are typically characterised by a moderate reduction in Rm as the dynamo saturates and
M ∼ O(0.1) [31]. Some recent studies [e.g., Refs. 25,32] have adopted an alternative definition of
the Elsasser number that is based on the typical velocity scale, U∗, and the magnetic dissipation
scale, b. In all cases, the modified Elsasser number, �′ = (Ek/Pr2)B2

∗/U∗b, is small, of the order
of 10−2.

Changes in the flow between the kinematic and saturated phases can be observed in Fig. 3,
which shows horizontal slices and 3D isosurfaces of the vertical velocity. In the kinematic phase,
the convection takes the form of tall and narrow columns that fill the space homogeneously.
In the saturated phase, the convection becomes localized in a small number of large amplitude
patches. The flow is still columnar but the columns appear fatter. This is confirmed by calculations
of the horizontal flow lengthscale, which increases from a mean value of 0.08 to 0.11. In the
kinematic phase, the vertical flow lengthscale is approximately box-sized (i.e., close to unity) but
decreases by approximately 20% in the saturated phase, suggesting a weakening of the rotational
constraints. This indicates that the convective columns become less depth-invariant as the dynamo
saturates. The increase in the column width and the amplitude of the vertical velocity leads to
an improved efficiency of the convective heat transport with an increase in the Nusselt number
of 40%.

To observe the change in lengthscales as the dynamo saturates, Fig. 4 shows the power spectra
of the kinetic and magnetic energies in the two phases as a function of the horizontal wave number,
kh = (k2

x + k2
y )1/2. The spectra are calculated at each depth and then averaged in z. They are
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FIG. 4. Power spectra (calculated from representative snapshots) of the magnetic energy and kinetic energy
as a function of the horizontal wave number, kh = (k2

x + k2
y )1/2, during (a) the kinematic and (b) the saturated

phases for Case I1. To include the contribution from the mean magnetic field (for which kh = 0) on the
logarithmic scale, the horizontal wave numbers are shifted to kh + 1.

calculated from data snapshots but are a good representation of each phase. The peak in the kinetic
energy spectrum shifts from a horizontal wave number kh ≈ 12 to kh ≈ 8, consistent with the change
in the flow lengthscale. The peak is less pronounced in the saturated phase as a broad range of
wave numbers have significant energy. The magnetic field in the kinematic phase is dominated by
the mean field (corresponding to kh = 0). A secondary peak is also visible around the convection
scale. In the saturated phase, the mean field is still dominant and contributes to approximately a
quarter of the magnetic energy. The magnetic spectrum of the saturated phase is fairly flat from
kh = 1 down to the convective scale. Figure 3(a) shows that the fluctuating magnetic field (i.e., the
field corresponding to kh � 1) is mainly concentrated in the regions of localized convection.

2. The mean magnetic field

Focusing again upon Case I1, Fig. 5 shows the temporal evolution of the two horizontal compo-
nents of the mean magnetic field alongside a snapshot of their vertical profiles in the saturated phase.
In both the kinematic and the saturated phases, the mean field oscillates in time, generating the
spiral staircase structure seen in SH04. Throughout its temporal evolution, the mean field remains
approximately antisymmetric about the mid-plane (z = 0.5) with a well-defined phase lag between

FIG. 5. (a) Time series of the x and y components of the mean magnetic field at z = 0.85 and (b) snapshots
of their vertical profile during the saturated phase for Case I1.
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FIG. 6. Spectral contributions to the depth-averaged horizontal mean e.m.f., 〈Eh〉z = 〈(E2
x + E2

y )1/2〉z, taken
from representative snapshots in (a) the kinematic phase and (b) the saturated phase of Case I1. Here 〈...〉z

denotes averaging in z.

the two horizontal components. The time period of oscillation is influenced by the parameters
chosen. The magnetic Prandtl number has little effect on the time period of the mean field but
higher Pm results in larger fluctuations, whereas at lower Ek the time period of oscillation decreases
with increasing rotation rate.

In the plane layer dynamo model of Childress and Soward [11], the dynamo operates as a two-
scale mechanism, where the two scales involved are the box-size and the small horizontal scale
that is associated with the near-onset convective flows. A small-scale magnetic field is produced by
the distortion of a box-size (mean) field by the small-scale flow; the mean field is then produced
by the mean electromotive force (e.m.f.) generated by the coherent interaction of small-scale field
and flow. This dynamo process is thought to operate efficiently only close to the dynamo onset,
where the Rayleigh number is small enough so that the convective motions are sufficiently laminar
to cooperate in the production of the mean e.m.f. [33–35].

We want to establish whether the dynamo in these simulations operates along the same principle
as the two-scale dynamo in the saturated phase. We anticipate that the picture might be more com-
plicated in our simulations because: (i) although the kinetic energy spectra has a fairly well defined
convective scale kh ≈ 8 [Fig. 4(b)], the intermediate scales (i.e., the scales between the box size and
the convective scale) have significant energy; (ii) the magnetic energy spectrum tends to be flat at the
intermediate scales, without a clear peak at the convective scale. Following Bushby et al. [36], we
study the contributions to the mean e.m.f., which is responsible for the generation of the mean field,
E = u × B. To investigate the contributions of different scales of motion to this mean e.m.f., we
can filter the velocity field in Fourier space into contributions from each mode. Note that any flow
filtering is done post-processing from representative data snapshots, so the dynamo calculation is not
affected by the filtering process. We study the respective contributions from individual horizontal

wave numbers to the mean horizontal e.m.f., Eh. We calculate Eh = (E2
x + E2

y )1/2 as a function of
depth, from these filtered flows, before depth-averaging this quantity. This depth-averaged value
is then plotted in Fig. 6. In the kinematic phase, we observe a dominant contribution to the mean
e.m.f. produced by kh ∼ 12 with little contribution from lower or higher wave numbers, indicating
a two-scale mechanism. These “active” wave numbers (i.e., those producing the largest spectral
contributions) shift to lower values in the saturated phase and approximately corresponds to the
dominant convective scale. A wider range of active wave numbers exist in the saturated phase.
Figure 7 shows the unfiltered and filtered versions of the x component of the mean e.m.f., Ex,
where we consider the depth-dependence of the mean e.m.f. produced by low, active and high wave
numbers. In the kinematic phase, the mean e.m.f. is almost entirely produced by contributions from
the convective scales at 10 � kh � 14 with little contribution from lower or higher wave number. In
the saturated phase, the mean e.m.f is mostly produced by motions at wave numbers 6 � kh � 11,
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FIG. 7. Vertical profile of the unfiltered and filtered versions of Ex in (a) the kinematic phase and (b) the
saturated phase (snapshot) for Case I1 where contributions from kh = k f are kept and other wave numbers are
filtered out.

although the contribution from lower wave numbers is more sizable in this phase. These results
suggest that the production of the coherent mean e.m.f. is dominated by motions at the convective
scale, especially in the kinematic phase. Therefore the dynamo does indeed operate as a two-scale
process.

3. Variation in the dominant force balances

The dominant force balances involved in dynamo action at low Ek are a source of wide specula-
tion due to numerical restrictions on simulations [e.g., Refs. 37,38]. Here we compare the strength
of the different terms in the vorticity equation at different horizontal lengthscales to understand how
the field modifies the flow and the relevant force balances, including any variations in these balances
across different scales. Using the vorticity equation is a convenient way to eliminate the pressure
terms which form a geostrophic balance with part of the Coriolis force. In dimensionless form, the
vorticity equation is

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u − Pr

Ek

∂u
∂z

= Pr∇2ω + PrRa∇ × (θez ) + ∇ × ( j × B). (18)

The spectral distribution of each term in either the x or z components of the vorticity equation, as a
function of the horizontal wave number, is given in Fig. 8. Here we show representative snapshots
of the x component of the vorticity, however analysis in the y direction yields similar results.
Each term is calculated from a snapshot of the velocity, magnetic field and temperature, which is
then transformed into Fourier space at each depth, before being squared and then averaged along z.
To determine the effects of the mean and fluctuating parts of the magnetic field separately, the term
corresponding to the curl of the Lorentz force is separated into the contributions from the fluctuating
field only (i.e., the modes kh � 1, which we denote by a prime) L′ = ∇ × ( j′ × B′), and the
contributions involving the mean field L = ∇ × ( j × B + j × B′ + j′ × B). The remaining terms
are the nonlinear inertial terms I = (u · ∇)ω − (ω · ∇)u, the contribution from the Coriolis force
C = (Pr/Ek)∂zu, the viscous term V = Pr∇2ω, and the term due to buoyancy B = PrRa∇ × (θez ).

In the kinematic phase, the main balance for the horizontal vorticity is between the buoyancy
term and the Coriolis term at the convective scale, with a smaller contribution from the viscous
term. A similar balance is also observed at larger scales. The inertial terms are significantly smaller,
but not completely negligible even though Ra is only just above Rac. There is no buoyancy source
for the vertical vorticity, so the Coriolis term is balanced by the viscous term at the convective scale.
This picture is similar to the force balance expected at the linear onset of nonmagnetic rotating
convection [20]. After comparing the force balances of multiple snapshots during the temporal
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FIG. 8. Spectral distributions of the terms generating the (left) horizontal and (right) vertical vorticity as a
function of the horizontal wave number for representative snapshots of Case I1 in the (a, b) kinematic and (c,
d) saturated phases. The nonlinear inertial terms are denoted by I = (u · ∇)ω − (ω · ∇)u, the Coriolis term
by C = (Pr/Ek)∂zu, the viscous term by V = Pr∇2ω, the buoyancy term by B = PrRa∇ × (θez ), the Lorentz
force term involving the mean field by L, and the Lorentz force term involving the fluctuating field only by L′.

evolution, this particular snapshot is a good representation of the dynamics during this phase. In
the saturated phase, the main balance for the horizontal vorticity is still between the buoyancy and
Coriolis terms. In the vertical vorticity equation, the Coriolis term is now mostly balanced by the
Lorentz term involving the interactions of the fluctuating field. This balance occurs at a larger wave
number, where the viscous term is smaller. This picture differs somewhat from the force balances
expected in linear rotating magnetoconvection [20,21], where it is the linear Lorentz forces (i.e.,
the interaction between the mean and fluctuating fields) that balances the pressure gradient and the
Coriolis force. Nevertheless, the presence of a coherent mean field is crucial for the flow changes
that we observe because the values of the magnetic Reynolds numbers obtained in these near-onset
dynamos are not large enough to produce small-scale dynamo action [34,39]. The generation of the
fluctuating field therefore relies on the presence of the mean field. The mean field does not need
to be particularly strong in terms of an Elsasser number: values of � ≈ 0.05 are sufficient. The
threshold value of � for which flow changes are significant will be explored in Sec. III B.

B. Subcritical dynamos at moderate Ekman numbers

Subcritical behavior, where convection and dynamo action are sustained for Ra < Rac, is made
possible in this system due to the significant changes in the flow that are induced by the presence of a
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FIG. 9. (a) Time series of the x and y components of the mean magnetic field at z = 0.85 and (b) snapshot
of its vertical profile in the Case G5 at Ra/Rac = 0.91.

nonnegligible magnetic field. Indeed, SH04 have already obtained a probable subcritical dynamo for
a slightly subcritical Rayleigh number, Ra/Rac = 0.98 for Ek = 5 × 10−6 and Pm = 1 (Case I2).
However, as they pointed out, an infinitely long simulation would be needed to categorically prove
the persistence of the subcritical behavior in direct numerical simulations. For practical reasons,
these simulations cannot be performed for more than a few magnetic diffusion timescales, but
persistent magnetic field generation for the duration of a long calculation is strongly indicative
of a subcritical dynamo. The running time tr is given in Table I. As times are scaled with d2/κ ,
trPr/Pm gives the running time in units of the ohmic decay time, tη = d2/η. The subcritical cases
are run for somewhere between tη and 2tη; in terms of te, which is the equivalent timescale that is
based on the turbulent magnetic diffusivity (which is probably the most relevant timescale for these
dynamos), the most subcritical cases are run for longer than 20te.

We reproduced the subcritical dynamo simulation of SH04 over a running time of 1.64tη or 21te.
The simulation was initialised by a snapshot from Ra = 1.18Rac (Case I1). Pushing the Rayleigh
number towards smaller values, SH04 found that the dynamo did not survive for Ra/Rac = 0.89 (a
result that we also recover, Case I5). This suggests that the subcriticality remains confined to a small
range of Ra near Rac.

Similarly to the supercritical case, the horizontally averaged mean field oscillates over time as
shown in Fig. 9(a). However, in the subcritical regime the time period of oscillation tends to be
larger in comparison to the supercritical time period. The mean field is therefore oscillating more
slowly below the onset of convection. Figure 9(b) shows that the mid-plane antisymmetry, phase
lag and spiral staircase structure observed in the supercritical case and SH04 remain. The dominant
force balances observed are also similar to those in the supercritical saturated phase. At least in
qualitative terms, these subcritical dynamos are very similar to their supercritical counterparts in
terms of their behavior.

We explore the parameter space where the subcritical behavior occurs to study the dependence
on the Ekman number, which is varied between 3.16 × 10−4 and 5 × 10−6 for these simulations.
For a given series of simulations at fixed Ek and Pm, the subcritical behavior is studied by branch
tracking, where the initial condition at a given Ra is taken from a data snapshot at a slightly
larger Ra. Figure 10 shows the time series of Rm and � for two representative cases: Case H5,
where the dynamo is sustained for the whole duration of the simulation (which lasts 1.31tη), and
Case H6, where the magnetic field eventually decays. The collapse in this case occurs suddenly,
after the magnetic field was sustained for approximately 1.34tη. This collapse is likely due to
a strong fluctuation that caused the system to transition to the nondynamo (and nonconvective)
state. Pinpointing precisely the end point of the subcritical branch (i.e., the lowest Ra/Rac where
dynamo occurs) would require multiple numerical realisations at the same parameters to examine
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FIG. 10. Time series of the Elsasser number, �, and magnetic Reynolds number, Rm, for (a) Case H5
(Ra = 0.89Rac) and (b) H6 (Ra = 0.87Rac).

the transition statistics [e.g., Ref. 40]. This technique would have a considerable computational
cost for the resolutions required here. Consequently, we are only able to determine the approximate
end point of each branch, with a possible dependence of their location on the running times of
the simulations and on the aspect ratio of the computational domain. Indeed, the system might be
more sensitive to fluctuations, and hence prone to a dynamo collapse, when the scale separation
between the box size and horizontal convective scale is small. To test the impact of smaller
aspect ratio, we reproduced Cases I1-I5 at Ek = 5 × 10−6 and Pm = 1, reducing the computational
domain to λ = 0.5 and again to λ = 0.25 with the horizontal resolution accordingly rescaled to
642 and 322 respectively and with similar run time. At λ = 0.5 the dynamo behaved similarly,
with global output quantities approximately unchanged on average but experiencing larger fluc-
tuations. Subcritical dynamo action was sustained as far as 0.93Rac. At λ = 0.25 fluctuations in
the global output quantities were severe and resulted in the dynamo decaying at 0.98Rac. For this
set of parameters, reducing the aspect ratio has therefore decreased the depth of the subcritical
branch.

Figure 1 shows the location of the failed and sustained dynamo simulations for each series. The
range of Ra where subcritical dynamos are maintained deepens when Ek decreases in the moderate
Ekman number regime. The effect of increasing Pm is not monotonic: the subcritical range deepens
when Pm increases from 1 to 2.5, but shrinks when Pm is increased further (the generally stronger
fluctuations at higher Pm are more likely to cause the solution to drop off the dynamo branch).
To understand the dependence of the subcritical range on Ek and Pm, we consider the necessary
conditions for the existence of subcritical dynamos. At least two conditions must be met: (i) a
dynamo producing a coherent mean field must be operating, and (ii) the mean magnetic field must
be of sufficiently large amplitude to alter the convective flows. The first condition is quantified
by the existence of a threshold magnetic Reynolds number, Rmt , and the second condition by a
threshold Elsasser number, �t . A dynamo can only survive in the subcritical range if Rm > Rmt and
� > �t . Violating one of these conditions would lead to a dynamo collapse and can possibly mark
the location of the end point of the subcritical branch. In practice, determining whether the transition
Rm ≈ Rmt or � ≈ �t corresponds to the end points might prove difficult if the threshold values
depend on Ek and Pm and because of the approximate location of the end points from the numerical
results. Determining a precise threshold at which dynamo action can no longer be sustained is clearly
difficult as we cannot accurately determine whether a fluctuation is sufficiently strong enough to
cause the dynamo to decay, especially considering that fluctuations are local events which may not
accurately be captured by a globally averaged quantity such as � or Rm.

With these caveats in mind, we plot Rm as a function of Ra/Rac in Fig. 11(a). The end points
of each series are located around Rm ≈ 70–100, although some dispersion exists due to the large
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FIG. 11. The dependence of some of the global output quantities as a function of Ra/Rac: (a) Rm, (b) �, (c)
�Ek−1/3, and (d) �Ek−1/3. The horizontal dotted line in (c, d) represents the switch-over value �swEk−1/3 =
1.14. As in Fig. 1, each color corresponds to a different value of Ek, as indicated in (a), while the different
symbols correspond to different choices of Pm, as indicated in (c).

temporal fluctuations of Rm. Overall, our simulations are in broad agreement with the idea that the
dynamo collapse occurs when Rm ≈ Rmt . For a given Pm at fixed Ra/Rac, Rm increases when
Ek decreases, which is consistent with the deepening of the subcritical range in this case. For fixed
Ek and Ra/Rac, increasing Pm leads to a increase of the mean value of Rm, which is favourable
for the subcriticality up to a point, but it also leads to an increase of the temporal fluctuations of
Rm (see the standard deviation values in Table I for the series E, F, and G for instance), which
is detrimental for subcritical dynamo action because of the higher chances of pushing the system
towards the nondynamo state. These two competing effects lead to an optimal value of Pm, which
here is around Pm ≈ 2.5.

Figure 11(b) shows � as a function of Ra/Rac. For Ek < 10−4, � decreases with Ek for a
fixed Ra/Rac and Pm. The subcritical branch terminates when � < 0.27 for Ek = 5 × 10−5 and
when � < 0.17 for Ek = 5 × 10−6 at Pm = 2.5, so the dependence of the threshold value of � is
weakly dependent on Ek. Eltayeb [21] studied linear magnetoconvection in the presence of rotation
(with the rotation axis aligned with the direction of gravity) and an imposed uniform horizontal
magnetic field. Similarly to the case with imposed uniform vertical field [20], three dynamically
distinct regimes exist at a given Ekman number depending on the value of the Elsasser number that
controls the strength of the imposed field, �0: a rotation-dominated regime for �0 < O(Ek1/3),
a magnetically dominated regime for �0 > O(1), and an intermediate regime, where Coriolis
and Lorentz forces are of equal importance. The critical Rayleigh number in the intermediate
regime is always smaller than in the rotation-dominated regime for low Ek, so the presence of
an imposed horizontal field favours convection in this regime. The switch-over value of �0 that
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FIG. 12. Critical Rayleigh number at the linear onset of rotating magnetoconvection [from Ref. 21]
normalized by the critical Rayleigh number in the nonmagnetic case as a function of �0Ek−1/3, where �0

is the Elsasser number based on the imposed field strength, in the case where the rotation axis is aligned with
gravity and the imposed field is uniform and horizontal. The boundary conditions are the same as in equation
(7). The vertical dashed line corresponds to the switch-over value �swEk−1/3 = 1.14. The red area corresponds
to the approximate values of �Ek−1/3 in our subcritical simulations.

marks the transition from the rotation-dominated regime and the intermediate regime occurs for
�sw = 1.14Ek1/3 for the same boundary conditions as the ones considered here [Eq. (7)]. Although
the mean field generated in our fully nonlinear dynamo simulations is not uniform, �sw could be
regarded as a lower bound for the threshold value �t required for the existence of magnetically
modified convection and subcritical dynamos. Figure 11(c) shows �Ek−1/3 as a function of Ra/Rac

in our simulations. The subcritical branches terminate for �Ek−1/3 ≈ 8–10 when Ek < 10−4 and
are always located above the theoretical switch-over value �swEk−1/3 = 1.14. This is consistent
with �sw being a lower bound for �t . Since it is mainly the mean magnetic field that alters the
convection, considering �Ek−1/3, where � is based on the mean field amplitude only, might be
more suitable. The evolution of �Ek−1/3 as a function of Ra/Rac plotted in Fig. 11(d) shows
that �Ek−1/3 takes values around 2 − 4 in the subcritical range and is, again, always above the
theoretical switch-over value. The only Ekman number for which we did not observe a subcritical
behavior (Ek = 3.16 × 10−4) has a supercritical dynamo which produces values of �Ek−1/3 below
the theoretical switch-over value.

If the magnetoconvection setup of Eltayeb [21] is a suitable simplified model to explain the
results of our nonlinear simulations near the onset of convection, then a third condition exists for the
depth of the subcritical range at fixed Ek: Ra must be greater than the theoretical critical Rayleigh
number for convective onset at a given �, denoted by Rac(�). Rac(�) is the smallest possible
Ra where subcritical dynamos might occur. Figure 12 shows Rac(�0) normalized by Rac(�0 = 0)
as a function of �0Ek−1/3 in the rotation-dominated regime (�0 < �sw) and in the intermediate
regime (�0 > �sw) based on the results of Eltayeb [21] in the same configuration as described
earlier. The minimum values of �Ek−1/3 obtained in our subcritical dynamos are around 2–4, which
corresponds to values of Rac(�0)/Rac(�0 = 0) around 0.3–0.6. The subcritical range found in
our simulations, which is always above Ra = 0.85Rac(�0 = 0), is consistent with these theoretical
lower values. The quantity �Ek−1/3 tends to increase when Ek decreases (for a fixed Pm), although
this dependence is relatively small. This suggests that the possible subcritical range might extend
slowly below 0.3–0.6Rac(�0 = 0) for dynamos at lower Ek and Pm = O(1).

To conclude this section, we study the role of the kinetic helicity in our subcritical dynamos.
In a study of dynamos driven by spherical rotating convection, Sreenivasan and Jones [24] found
that dipolar magnetic fields feedback on the flow such that they enhance the kinetic helicity.
As kinetic helicity is often thought to be an important ingredient for large-scale dynamo action
[e.g., Ref. 41], its enhancement might lead to the subcritical behavior observed in the simula-
tions of Sreenivasan and Jones. To test whether a similar idea applies in our planar dynamos,

113702-17



COOPER, BUSHBY, AND GUERVILLY

FIG. 13. Time series of the Elsasser number � and magnetic Reynolds number Rm for Case J1 (Ra/Rac =
1.18) and Case J2 (Ra/Rac = 0.98). The gray lines indicate the locations of the snapshots presented in Fig. 14.

we have compared the vertical profiles of the horizontally averaged kinetic helicity H in the
kinematic and saturated phases of the supercritical Case I1 (not shown). The comparison of the
two phases is not entirely straightforward because the flow is more vigorous in the saturated
phase, so we have also compared the profiles of the relative kinetic helicity Hrel. The profiles
are approximately sinusoidal (antisymmetric about the mid-plane), which is typical of planar
rotating convection at low Ra [e.g., Ref. 42]. The maxima of H increase by approximately 20%
in the saturated phase, but the maxima of Hrel decrease by approximately 30%. The increase of
H that we observe here is very small compared with the increase measured by Sreenivasan and
Jones in the presence of a dipolar magnetic field, suggesting that the enhancement of the helicity
by the action of the magnetic field is probably not responsible for subcritical behavior in our
system.

C. Intermittent dynamos at small Ekman numbers

At Ek = 5 × 10−7, the behavior of the supercritical dynamo in the saturated phase changes,
as shown in Fig. 13(a), which shows the time series of � and Rm in Case J1 (λ = 0.25) for
Ra/Rac = 1.18 and Pm = 1. Note that for this low Ekman number, the computational domain is
restricted to small aspect ratios to ensure that the convective motions can be resolved without using
substantially more grid points for the simulations. For λ = 0.25, there are approximately seven
convective cells across the domain in the purely hydrodynamical case near the convective onset, so
the scale separation between the box and convective scale is modest, but still probably sufficient to
study large-scale dynamo action [43]. The presence of large-scale motions may however result in
some box-sized dependence on the dynamo. It is also possible that subcritical dynamos in smaller
domains will be more prone to disruption by fluctuations at lower Ek. However, this reduction in
domain size is a pragmatic choice that allows the lower Ek regime to be explored.

In Case J1, we observe an intermittent behavior: once the magnetic field reaches a sufficiently
large amplitude, corresponding to � ≈ 10−0.5, the kinetic energy decays under the influence of the
magnetic field, which (in turn) leads to a decay of the magnetic energy. Once � is sufficiently
small, of the order of 10−2.5, the kinetic energy starts to increase again as the convection recovers.
This is followed by a subsequent growth of the magnetic energy and the cycle continues. SH04
demonstrated a similar intermittent behavior for a slightly less supercritical case (Ra/Rac = 1.09)
for the same aspect ratio. This intermittency is due to drastic changes in the flow during the phases
of larger (� ≈ 10−0.5) and weaker (� ≈ 10−2.5) field strength. Horizontal slices of the vertical
velocity at different times are shown in Fig. 14. At times corresponding to high values of �,
the flow takes the form of a (near) box-sized mode. This large-scale mode is associated with an
enhanced vertical velocity and temperature perturbation, and is thus efficient at transporting heat
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FIG. 14. Snapshots of the horizontal distribution of the vertical velocity (at z = 0.92) for Case J1 in (a) the
kinematic phase, (b) near the peak of �, and (c) during the decaying phase. The bottom row shows the
corresponding power spectra for the magnetic energy (blue) and the kinetic energy (red), as a function of
the horizontal wave number for (d) the kinematic phase, (e) near the peak in �, and (f) during the decaying
phase. The locations of each of these snapshots are represented by gray lines in Fig. 13(a). The box-size mode
corresponds to kh = 4 for this aspect ratio.

across the layer (corresponding to an increase in the Nusselt number of 180% compared with
the purely hydrodynamical state). The emergence of this large-scale convection mode is a much
more dramatic indication of the dynamical importance of the Lorentz forces than the fat localized
convection columns observed in Fig. 3 during the saturated phase of the dynamos at more moderate
Ek (Sec. III A). The collapse of the magnetic energy following the emergence of the large-scale
mode indicates that this type of flow is inefficient at driving the dynamo necessary to maintain a
sufficiently strong magnetic field. The kinetic energy spectra in Fig. 14 show that the small-scale
convection is suppressed when the field is strong; as these scales of motion are the dominant
contributors to the mean e.m.f., this inhibits the dynamo. As the magnetically driven large-scale
mode decays with the magnetic field, the small-scale convection re-emerges, which allows the
dynamo to recover.

While the Elsasser number for given Ra/Rac and Pm decreases with Ek in our (more mod-
erately rotating) dynamo calculations [Fig. 11(b)], the important parameter for the transition to
magnetically modified convection is �Ek−1/3, which increases when Ek decreases [Fig. 11(c)]. For
Ek = 5 × 10−7, �Ek−1/3 ≈ 10 at the peak of the magnetic energy, so the system enters more deeply
into the intermediate regime described earlier than the cases at moderate Ek, which remain on its
margins with �Ek−1/3 ≈ 2–4 (Fig. 12). The intermittent behavior is therefore due to the ability
of the small-scale convection to sustain magnetic fields of relatively stronger amplitude at low
Ekman numbers, and then the apparent inability of the subsequent magnetically driven large-scale
convection mode to sustain the dynamo.

Figure 13(b) shows the time series of � and Rm in Case J2 (λ = 0.25) for Ra/Rac = 0.98 and
Pm = 1. This is in the weakly subcritical regime, and has only been evolved for a short period
of time. However, it exhibits similar intermittent behavior to its supercritical counterpart. This
exploration of the subcritical regime will be continued in future work, but these preliminary results
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(albeit at low aspect ratio) suggest that it should still be possible to find convincing candidates for
subcritical dynamo action in this low Ek regime, at least over a limited range of Rayleigh numbers
(Fig. 1).

IV. CONCLUSION

We have studied dynamo action driven by rotating convection in a planar geometry, exploring a
subcritical region of parameter space (below the nonmagnetic convective onset) where dynamically
significant magnetic fields can be sustained for multiple magnetic diffusion times. These are
therefore likely examples of subcritical dynamo action. In previous studies modeling this system,
subcritical dynamo action was observed for either a fraction of a magnetic diffusion time [14]
or at a single Ekman number [17]. Here we have investigated the subcritical range for various
Ekman numbers (smaller than 3.16 × 10−4) and magnetic Prandtl numbers (greater than, or equal
to, unity) to determine the conditions required for this behavior. It is worth noting that in our dynamo
simulations, where the sustained magnetic field has a marked effect on the convective flow, the
magnetic energy is always larger than the kinetic energy in the saturated phase, while the Elsasser
number (obtained either from the standard definition based on the box-size ohmic timescale or from
the modified definition based on the dynamical timescale, Sec. II B) is always smaller than 1. The
magnetic field visibly affects the convection when the standard Elsasser number based on the mean
magnetic field, �, becomes order Ek1/3, in agreement with results from linear magnetoconvection
analysis [20,21]. We find that the behavior of the nonlinear dynamo is different at moderate Ekman
numbers where Ek � 5 × 10−6 and small Ekman numbers where Ek = 5 × 10−7.

At moderate Ekman numbers, the flow in the saturated phase of the dynamo clearly differs from
the flow in the kinematic phase: it still takes the form of columnar cells aligned with the rotation axis,
but with a larger horizontal lengthscale and a localized pattern. In this regime, Lorentz and Coriolis
forces are of equal importance. We found that this magnetically modified convection generates a
coherent mean magnetic field according to a dynamo process similar to the two-scale mechanism of
Childress and Soward [11], which operates in the kinematic phase from the small-scale convection.
This dynamo mechanism thus requires a sufficient scale separation between the box size and the
convective roll size. The solutions first obtained in the supercritical regime near the onset are
then tracked into the subcritical regime by gradually decreasing the Rayleigh number. Some of
the subcritical branches extend down to Ra = 0.87Rac, with the dynamo and convection collapsing
for smaller Ra. We identified two necessary conditions for subcritical dynamos: (i) the magnetic
Reynolds number must be larger than approximately 70–100 to produce a coherent mean magnetic
field; (ii) � must be of order Ek1/3, so that the Lorentz and Coriolis forces are of equal importance
at the convective scale. For a given ratio Ra/Rac, these two conditions are more easily met at lower
Ek and larger Pm, so small Ek and large Pm favour subcriticality. However, larger values of Pm, and
hence Rm, are also associated with larger fluctuations in the velocity, which can push the system
away from the dynamo branch and towards the trivial state. We therefore find optimal values of Ek
and Pm for the subcritical range, which are approximately Ek = 10−5 and Pm = 2.5.

At small Ekman numbers, we obtain an intermittent dynamo in the saturated phase due to the
emergence of a (near) box-size convection mode. This large-scale mode is produced in the regime
where Lorentz and Coriolis forces are of equal importance when � 
 O(Ek1/3), a situation that
arises for Ek = 5 × 10−7 in our simulations with Pm = 1. The large-scale mode is unable to sustain
the large-scale dynamo, unlike the magnetically modified convection at larger Ek, and so this leads
to cycles of growth and decay of the magnetic field. Surprisingly, despite this intermittent behavior
it appears that we are able to sustain dynamo action below the onset of convection, albeit only
just below Rac. In the subcritical cases, we still observe intermittent behavior although it should be
noted that these cases have not been run for long (approximately 10% of a thermal diffusion time),
so further study of this regime is needed.

Few examples of numerical dynamo simulations producing coherent large-scale magnetic fields
exist in rapidly rotating planar convection, except for the dynamos operating near the convective
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onset. Another example of an intermittent dynamo in this system is the large-scale-vortex dynamo
that occurs for moderate supercritical values of the Rayleigh number (typically Ra > 3Rac) [39].
This dynamo relies on the presence of the large-scale vortices that form spontaneously in non-
magnetic rotating convection when the small-scale convective flow is both sufficiently turbulent
(hence the condition that Ra > 3Rac) and anisotropic due to the rapid rotation [29,44,45]. The
large-scale vortices play a crucial part in the dynamo mechanism, but tend to be disrupted when
the magnetic field reaches a critical strength, leading to an intermittent behavior. The key difference
between the near-onset intermittent dynamo described here and the large-scale-vortex dynamo is
that the large-scale mode of the near-onset dynamo is magnetically driven and is unable to maintain
dynamo action, while the large-scale vortices at larger Ra are hydrodynamically driven and play an
active role in the magnetic field generation. A stable (i.e., not intermittent) large-scale dynamo
also exists for similar parameters as the large-scale-vortex dynamo [36,46]. This dynamo also
requires the presence of the large-scale vortices during the kinematic phase, but the dynamo then
persists without the regeneration of the large-scale vortices. However, it only works when vertical
field boundary conditions are used [36] or when convectively stable layers are included above or
below the convective layer [47], which permit the magnetic flux to escape from the convective
domain. Dynamo simulations using perfectly conducting magnetic boundary conditions outside of
the parameter windows where near-onset dynamos and large-scale-vortex dynamos operate produce
only small-scale magnetic fields with no coherent large-scale fields [e.g., Refs. 34,42,48]. It is
plausible that stable large-scale dynamos (which could display subcritical behavior) exist at low
Ekman numbers near the convective onset for magnetic Prandtl numbers smaller than unity, such
that the Elsasser number remains sufficiently small (of order Ek1/3) to avoid the emergence of
the magnetically driven large-scale convection mode. We will explore this small-Pm pathway to
large-scale dynamo action at low Ekman numbers in a forthcoming study.
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