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The thermal convection of dielectric fluid in an alternating electric field is investigated
by the linear stability theory. We consider fluid layers confined in parallel plate capacitors
without any externally imposed temperature difference. Only the internal heating by
dielectric loss generates temperature gradients. The thermal variation of fluid permittivity
induces electrical heterogeneity in the fluid and results in the dielectrophoretic (DEP) force,
which can drive the convective motion of fluid. Assuming electric fields of high frequency,
we develop a theoretical model to describe the flow dynamics under dielectric heating. For
simplicity, the capacitor is placed either in microgravity environments or in a horizontal
configuration on the earth. We determine the critical conditions for the DEP force to
overcome stabilizing diffusion effects for convection generation. All the analyses are per-
formed in the light of the similarity between the DEP force and the thermal Archimedean
buoyancy, introducing an effective electric gravity. Examining energy transfer processes
to convection flow, we confirm that the driving mechanism of convection in microgravity
is similar to the ordinary thermal convection but in an electric effective gravity except for
a stabilizing thermoelectric feedback effect. In the horizontal configuration, we show that
the competition of the electric gravity with the earth’s gravity affects the critical conditions
and enriches the flow patterns of the resulting convection.

DOI: 10.1103/PhysRevFluids.5.113503

I. INTRODUCTION

Flows induced by electrohydrodynamic (EHD) effects have been investigated widely to generate
and control the motion of dielectric and electrically poorly conducting fluids [1,2]. Different flow
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generation mechanisms have been explored to enhance mass, momentum, and heat transport by
applying electric fields [3]. Coulomb forces on free charges in fluid are used to generate fluid motion
for EHD mixing devices and electroosmotic pumps [2]. Forces resulting from polarization of fluid
molecules are also used to drive fluid motion. Differential polarization of fluid leads to a net body
force. The dielectrophoresis, which is a technique to transport polarizable particles in dielectric
fluid, explores this effect [4]. A dielectrophoretic (DEP) micromixer was proposed [5], in which
dielectric microparticles suspended in fluid are agitated by an electric field to enhance mixing. Even
in the absence of suspended particles, the dielectrophoretic effect can induce motion in a pure fluid.
For example, the thermal variation of fluid permittivity results in a DEP force aligned with the
temperature gradient to generate a thermal convection, called thermoelectrohydrodynamic (TEHD)
convection [3].

The EHD force per unit volume is given by

fEHD = ρeE − ∇
[
ρ

2

(
∂ε

∂ρ

)
T

E2

]
− E2

2
∇ε, (1)

for an isotropic linear dielectric fluid, where E is the electric field, ρe is the density of free charges,
ρ and ε are the mass density and permittivity of fluid, and T denotes the temperature of fluid
[6]. The first and second terms on the right-hand side are the Coulomb force on free charges
and the electrostrictive force component, respectively. The third term represents dielectrophoretic
effects and will be denoted by fD. For a small temperature deviation θ from a reference Tref, i.e.,
θ = T − Tref, the permittivity of a fluid of uniform chemical composition can be modeled by a
linear equation of state:

ε = εref(1 − eθ ), (2)

with a thermal coefficient e, which takes a value of order 10−2 to 10−3K−1 typically [7,8]. The
permittivity at the reference temperature Tref has been denoted by εref.

The TEHD convection has been investigated since the late 1960s [9,10], motivated particularly
by the analogy of dynamical effects of fD and those of the thermal Archimedean buoyancy force fAr.
The latter is given by fAr = −ρrefαθg for small temperature deviations, where ρref is the density of
fluid at the reference temperature and α is the coefficient of thermal expansion. In fact, the rate of
vorticity generation by the DEP force is ∇ × fD = ∇ × [−(E2/2)∇ε] = εref e∇(E2/2) × ∇θ . This
result is the same as the vorticity generation rate by the Archimedean force, ∇ × fAr = ρrefαg × ∇θ ,
once the earth’s gravitational acceleration g is replaced by the following effective gravity,

ge = e

ρrefα
∇

(
εrefE2

2

)
. (3)

The effects of fD on flow generation in incompressible fluids can therefore be understood intuitively
by regarding the force fD as a thermal buoyancy force in the electric effective gravity ge. Thermal
convection inside planets, e.g., the mantle convection in the earth, could be simulated by the TEHD
convection in a central effective gravity ge realized in either spherical or cylindrical capacitors
[11,12].

Experiments on the TEHD convection have been performed in curved geometries because of
geophysical interests [8,11,13,14] rather than in plane geometries [10]. In TEHD experiments,
microgravity conditions are often used to avoid the effects of the thermal Archimedean buoyancy.
An early experiment in a hemispherical capacitor was performed during the SpaceLab 3 mission
in 1986 [13]. A series of experiments in a spherical capacitor have been carried out recently on
board the International Space Station [8,15] during the GeoFlow mission. Complex structures of the
convective flow in the central force field have been revealed through flow visualization by Wollaston
prism shearing interferometry [16]. The results were compared with numerical simulations [17,18].
Further experimental investigations by a similar apparatus are planned in the scope of the AtmoFlow
experiment [19]. Experiments were also performed in cylindrical capacitors subject to a radial
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temperature gradient on the ground [11] and in microgravity environments during parabolic flight
campaigns [14,20]. The latter experiments have revealed convection cells generated by the DEP
force fD.

Results of investigations on the TEHD convection are often described in terms of a Rayleigh
number L based on the electric gravity because of the analogy:

L = α�T ‖ge‖ l3

νκ
, (4)

where �T and l are the characteristic temperature difference and the characteristic length of a given
fluid system. The kinematic viscosity and the thermal diffusivity of fluid have been denoted by
ν and κ , respectively. For stationary dielectric fluid-filling parallel plate capacitors subject to an
externally imposed temperature difference �T , the linear stability theory predicts convective flows
when L exceeds a critical value of Lc = 2128.7 [7,9,10,21]. As shown by a detailed theoretical
analysis [21], the generation mechanism of the TEHD convection is similar to that of the natural
convection except for a stabilizing thermoelectric feedback effect. The critical Rayleigh number of
the TEHD instability larger than that of the Rayleigh-Bénard instability (1708) is explained from
this stabilizing effect.

All the existing theoretical and numerical investigations on the TEHD convection, however, con-
sider perfect dielectric fluids and neglect dielectric loss except recent numerical studies in spherical
geometries [22–24]. This assumption would be a good approximation for nonpolar dielectrics that
have a small loss tangent (tan δ) under typical experimental conditions. For polar fluids, however,
the polarization occurs with a phase delay. The displacement current jD = ∂D/∂t then produces
thermal energy inside fluid, where D is the electric displacement field and t denotes the time. Its
power is given by

PD = jD · E = ωε′′E2, (5)

per unit volume, where ω is the angular frequency of field. The coefficient ε′′ is the imaginary
part of the complex permittivity ε̂ = ε′ − iε′′ and is related to the real part ε′ by the loss tangent,
ε′′ = ε′ tan δ. The overline stands for the average over an oscillation period of electric field:
(•) = (ω/2π )

∫ t+2π/ω

t (•) dt . The significance of heat generation on fluid temperature fields can
be estimated by a dimensionless number Y comparing the heat generation with the diffusion of
thermal energy [12], Y = ωε′ tan δE2l2/λ�T , wherein E is a characteristic value of the electric
field and λ is the thermal conductivity of fluid. Silicone oils less viscous than 10−4 m2/s are often
used in experimental investigations. The loss tangents of these oils are of the order 10−4 in a
frequency range of 102 to 107 Hz. The number Y takes a value of the order 10−2 when E ∼ 106 V/m,
ω/2π ∼ 102 Hz, �T ∼ 1 K, and l ∼ 10−2 m. It justifies the assumption of perfect dielectrics. In
some polar fluids, the dielectric tangent takes large values. For 1-nonanol, which was used in a
GeoFlow experiment [25], tan δ = 0.06 and Y ∼ 2 under the same thermal and electrical conditions.
The dielectric heating will then affect the flow dynamics. Indeed, Zaussinger et al. [22] demonstrate
by a numerical simulation that TEHD convection develops due to dielectric heating in 1-nonanol
without any externally applied temperature gradient.

In the present work, we investigate the TEHD instability in fluids heated internally due to
dielectric loss. We develop a theoretical model to include the effects of dielectric heating on the flow
dynamics. To focus on the instability provoked by internal heating, we consider the stability problem
in parallel plate capacitors with an infinite lateral extension and without any external source of the
temperature gradient (Fig. 1). In Sec. II, a theoretical model is presented and its validity conditions
are discussed. The quiescent state of fluid is determined from the model. We then introduce a set
of dimensionless numbers, nondimensionalizing the governing equations. A linear stability analysis
is performed for this base state in Sec. III. Obtained results are presented in Secs. IV and V, first
for capacitors in microgravity environments and then for horizontal capacitors. For each of these
configurations the energy transfer mechanism from the base to perturbation flows is examined. The
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FIG. 1. Geometrical configuration of the problem.

results on the stability are confronted with thermal instabilities in superposed immiscible fluid layers
and in internally heated single layers in Sec. VI. Concluding remarks are given in Sec. VII.

II. THEORETICAL MODEL

The TEHD convection can be generated only when alternating electric fields of high frequencies
are applied to fluids of small electrical conductivity. Otherwise, the Coulomb forces on free charges
have dominant effects over flow dynamics even in initially electroneutral fluids. In fact, the accu-
mulation of free charges can occur inside fluids under low-frequency fields to induce fluid motion,
as observed in Melcher-Taylor pumping [26,27]. For the forces on free charges to be negligible, the
frequency of the field should be high compared to the reciprocals of the timescales of the momentum
and thermal diffusion processes and the timescales characterizing the motion of free charges [28]:

ω � τ−1
ν , τ−1

κ , τ−1
e , τ−1

m , τ−1
d , (6)

where τν = d2/ν is the viscous time and τκ = d2/κ is the thermal diffusion time. The timescales τe,
τm, and τd are of the charge relaxation, migration, and diffusion processes, respectively. Under the
condition (6), the electric field oscillation is much faster than the temporal evolution of the velocity
and temperature fields and of the electric charge distribution. The Coulomb forces on free charges
then cancel out over a period of electric field [3]. Only the time-averaged component of the DEP
force, fD, and the averaged dielectric heating, PD, can affect the fluid motion and the temperature
field. Most of existing theoretical and numerical studies on the TEHD convection suppose the
high-frequency condition (6) to model the dynamics of dielectric fluids only with time-averaged
EHD effects [7,9,10,21,29]. Smorodin and Velarde examine the parametric excitation of dielectric
fluid by time-varying DEP force [30]. Their results confirm that the use of time-averaged EHD
forces in the analysis of the TEHD instability is valid when ωτν � 100. In the experimental studies
[8,10,11,13,14], electric fields of a frequency of ∼102–104 Hz were applied to dielectric fluid layer
for fulfilling the condition (6).

A. Governing equations

For small temperature variation, fluids are effectively incompressible and the flow dynamics
can be modeled by the Oberbeck-Boussinesq approximation for EHD flows [10]. The governing
equations then consist of the mass, momentum, and heat-conduction equations and of the Faraday
and Gauss laws for electricity:

∇ · u = 0, (7a)

ρref

(
∂u
∂t

+ u · ∇u
)

= −∇pr + ρrefν∇2u − ρrefαθg + fD, (7b)

ρrefC

(
∂θ

∂t
+ u · ∇θ

)
= λ∇2θ + PD, (7c)

∇ × Ê = 0, (7d)

∇ · [(ε′ − iε′′)Ê] = 0, (7e)
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where u is the velocity field and pr is a reduced pressure: pr = p + ρgz + ρ(∂ε/∂ρ)T E2/2. The
specific heat of fluid at constant pressure is denoted by C. The complex electric field Ê defined as
E = Re[

√
2 Ê(t, r)eiωt ] has been introduced. The symbol Re[ · ] means the real part of a complex

number. The time dependence of Ê represents the variation of the electric field via the temporal
evolution of temperature θ , which will occur over a timescale much larger than the period of electric
field oscillation (2π/ω) according to the high-frequency hypothesis (6). The equation of state (2)
reads as follows for the complex permittivity ε̂ = ε′ − iε′′:

ε′ = ε′
ref (1 − e′θ ), ε′′ = ε′′

ref (1 − e′′θ ), (8)

where e′ and e′′ are the coefficients of thermal permittivity variation. We refer to the latter coefficient
as er e′ rather than as e′′ itself, introducing the ratio of the two coefficients er = e′′/e′.

The DEP force fD in Eq. (7b) is calculated from the complex electric field Ê (see Appendix A):

fD = − 1
2 {(Ê · Ê∗)∇ε′ + iε′′[(∇Ê∗) · Ê − (∇Ê) · Ê∗]}, (9)

where an asterisk means the complex conjugate. Substituting the equations of state (8) in Eq. (9),
we obtain the following expression of DEP force:

fD = ∇
(

ε′
refÊ · Ê∗

2
e′θ

)
− ρrefαθGe + fR, (10a)

with

Ge = ε′
refe

′

2ρref α
{∇(Ê · Ê∗) − ier tan δ[(∇Ê∗) · Ê − (∇Ê) · Ê∗]}, (10b)

fR = − iε′
ref tan δ

2
[(∇Ê∗) · Ê − (∇Ê) · Ê∗]. (10c)

The first term on the right-hand side of Eq. (10a) is a potential force and has no dynamical effect on
flow generation inside incompressible fluids. The second term is the thermoelectric buoyancy force,
which is the analog to the thermal Archimedean buoyancy force. The generalized electric gravity
Ge retrieves Eq. (3) in the limit of vanishing tan δ. The third term fR is a residual component of the
DEP force. The dynamical effects of fR cannot be assimilated as a thermal buoyancy force in an
effective gravity field.

Equations (7) and (10) give a set of governing equations describing fully the dynamics of
dielectric fluid flows subjected to dielectric heating, once completed by the following dielectric
heating formula derived from Eq. (5):

PD = ωε′′
ref(1 − ere′θ )Ê · Ê∗. (11)

To handle electric fields, however, it is convenient to introduce the electric potentials φ and ψ ,
allowed by the Faraday law [Eq. (7d)], and to transform the Gauss law [Eq. (7e)] into another form.
The potentials are both real functions and related to the complex electric field by Ê = −(∇φ +
i∇ψ ). Making use of these potentials and separating the real and imaginary parts of Eq. (7e), we
obtain

(1 − 2e′F+θ )∇2φ − e′F+∇θ · ∇φ + e′F−∇θ · ∇ψ = 0, (12a)

(1 − 2e′F+θ )∇2ψ − e′F−∇θ · ∇φ − e′F+∇θ · ∇ψ = 0, (12b)

where F+ = (1 + er tan2 δ)/(1 + tan2 δ) and F− = (1 − er ) tan δ/(1 + tan2 δ) have been introduced
for brevity. We use this set of equations in the place of Eq. (7e) to determine electric fields.

B. Base quiescent state

We apply the theoretical model presented in Sec. II A to a parallel plate capacitor (Fig. 1) either
in microgravity environments or in a horizontal configuration. A high-frequency alternating electric
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voltage
√

2 �0 cos ωt is imposed on the capacitor. To focus on flows induced by dielectric heating
we consider a capacitor without any externally imposed temperature gradient. Both electrodes are
then maintained at the same temperature Tref. For simplicity the lateral extension of the capacitor is
assumed to be large enough to neglect any perturbation induced by lateral walls.

This fluid system is invariant with respect to rotation around any axis perpendicular to the
electrodes and to translation in any direction parallel to the electrodes. When the applied electric
voltage is small, the fluid system will respect these symmetries and be in a quiescent state, u = 0.
The temperature and electric fields vary only in the perpendicular direction: u = 0, θ = θb(z),
φ = φb(z), and ψ = ψb(z). The heat conduction equation (7c) and the Gauss law (12) read as
follows:

λ
d2θb

dz2
+ ωε′′

ref(1 − ere′θb)

[(
dφb

dz

)2

+
(

dψb

dz

)2]
= 0, (13a)

(1 − 2e′F+θb)
d2φb

dz2
− e′F+

dθb

dz

dφb

dz
+ e′F−

dθb

dz

dψb

dz
= 0, (13b)

(1 − 2e′F+θb)
d2ψb

dz2
− e′F−

dθb

dz

dφb

dz
− e′F+

dθb

dz

dψb

dz
= 0. (13c)

The solution of this set of equations should satisfy the following boundary conditions:

θb = 0, φb = �0, ψb = 0, at z = d

2
, (14a)

θb = 0, φb = 0, ψb = 0, at z = −d

2
. (14b)

The temperature increase �T due to dielectric heating is determined by the equilibrium between
the heating power (∼ε′

ref tan δ�2
0/d2) and the thermal diffusion (∼λ�T/d2) according to Eq. (13a).

As shown later [see Eq. (17a)], the increase can be estimated by

�T = ε′
ref ω�2

0 tan δ

8λ
. (15)

The relative variation of permittivity, γe = (ε/εref ) − 1, is thus given by

γe = e′�T = e′ε′
ref ω�2

0 tan δ

8λ
. (16)

We call this dimensionless number γe thermoelectric parameter, which represents the significance
of thermoelectric coupling [21]. The present study is concerned only with small γe for the validity
of the equations of state (8). A purely thermal instability, known as thermal breakdown of dielectrics
[31], will not occur under this assumption (Appendix C).

When the imposed electric voltage is small, the temperature increase and the permittivity
variation are both small. The electric field and the dielectric heating are then uniform so that the
temperature profile will be parabolic. Indeed, for vanishing γe the solution of Eqs. (13a)–(13c)
subject to the boundary conditions (14a) and (14b) is given by

θb = ε′
ref ω�2

0 tan δ

8λ

(
1 − 4z2

d2

){
1 + γe

3

[
F+

(
1 − 4z2

d2

)
− er

2

(
5 − 4z2

d2

)]}
, (17a)

φb = �0

[
1

2
+ z

d
+ γeF+z

3d

(
1 − 4z2

d2

)]
, (17b)

ψb = �0
γeF−z

3d

(
1 − 4z2

d2

)
. (17c)
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FIG. 2. Base states for some values of the thermoelectric parameter γe [Eq. (16)]. Profiles of (a) the
temperature θb; (b) the real part of electric field, −dφb/dz; (c) the imaginary part of electric field, −dψb/dz; and
(d) the electric gravity ge,b = −Ge,bez. The loss tangent is fixed at tan δ = 0.05. The temperature, the electric
fields, and the electric gravity have been normalized by �T , �0/d , and Ge,0, respectively. See Eqs. (15) and
(19) for the definitions of �T and Ge,0.

Any term of an order higher than γ 2
e has been omitted. The electric gravity Ge,b in the base state is

given by

Ge,b = −Ge,b(z) ez, with Ge,b = 8e′ε′
ref�

2
0 γe

(
1 + e2

r tan2 δ
)

z

ρref αd4 (1 + tan2 δ)
, (18)

at the leading order. So, the base state is composed of two immobile fluid sublayers of a thickness
d/2, in each of which the electric gravity is oriented toward the hot core of the capacitor. The density
stratification is thus unstable against the thermoelectric buoyancy in each sublayer.

Basic fields for finite values of γe are computed from Eqs. (13a)–(13c) by the Chebyshev
collocation method (Fig. 2). The fields (θb, φb, ψb) are symmetric with respect to the midgap plane
z = 0, while the acceleration field Ge,b has an antisymmetric profile. The profiles of these fields
are more deflected for larger γe, deviating from the analytical expressions (17). The qualitative
relationship between the temperature gradient and the electric gravity is the same as in the case of
vanishing γe. Both are directed toward the capacitor core. The density stratification in each sublayer
is thus unstable against the thermoelectric buoyancy.

C. Dimensionless governing equations

In the present section we introduce dimensionless numbers characterizing the considered fluid
system and summarize the governing equations (7) in concise nondimensionalized form. The
primary control parameter of the TEHD instability is the electric Rayleigh number L constructed as
in Eq. (4). In the present problem, the averaged electric gravity is estimated as

Ge,0 = 2

d

∫ d/2

0
Ge,b dz = 2e′ε′

ref�
2
0γe

ρrefαd3
, (19)

based on Ge,b given by Eq. (18). We adopt this Ge,0 as a characteristic value of electric gravity. The
definition (4) of L then reads

L = α�T Ge,0

νκ

(
d

2

)3

= ε′
refε

′′2
refe

′2ω2�6
0

256 ρνκλ2
. (20)

Half the gap width d/2 has been regarded as the characteristic length scale, since the temperature
variation �T occurs over this length in the capacitor.

In the horizontal configuration of capacitor, the Archimedean thermal buoyancy affects the
dynamics of fluid and brings about destabilizing effects. The significance of these effects is
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characterized by the Rayleigh number Ra defined by

Ra = α�T g

νκ

(
d

2

)3

= αε′
ref tan δgd3ω�2

0

64νκλ
. (21)

For a dimensionless description of the problem, these two Rayleigh numbers are supplemented by
the thermoelectric parameter γe and by other three dimensionless numbers characterizing fluid prop-
erties: the Prandtl number Pr = ν/κ , the loss tangent tan δ, and the ratio er of the two coefficients
of thermal permittivity variation. For 1-nonanol, the latter three dimensionless numbers take the
values Pr = 181, tan δ = 0.0606, and er = −1.08 at 20 ◦C. The parameter er is fixed at er = −1
throughout the present work for simplicity.

Adopting the scales d of length, d2/κ of time, κ/d of velocity, �0 of electric potential, and �T
of temperature, we nondimensionalize the governing equations (7a)–(7e) to obtain

∇ · u = 0, (22a)

1

Pr

(
∂u
∂t

+ u · ∇u
)

= −∇π + ∇2u − LθGe + fR,+Raθez, (22b)

∂θ

∂t
+ u · ∇θ = ∇2θ + 8(1 − erγeθ )[(∇φ)2 + (∇ψ )2], (22c)

∇2φ − 2γeF+θ∇2φ − γeF+∇θ · ∇φ + γeF−∇θ · ∇ψ = 0, (22d)

∇2ψ − 2γeF+θ∇2ψ − γeF−∇θ · ∇φ − γeF+∇θ · ∇ψ = 0. (22e)

The boundary conditions read as follows:

u = 0, θ = 0, φ = 1, ψ = 0, at z = 1

2
, (23a)

u = 0, θ = 0, φ = 0, ψ = 0, at z = −1

2
. (23b)

For the momentum equation (22b), the gradient force component of fD has been lumped with the
reduced pressure pr to constitute a scalar π = pr − ε′

refÊ · Ê∗e′θ/2. It has been nondimensionalized
by ρref(κ/d )2. The dimensionless electric gravity Ge is calculated from potentials (see Appendix A
for detail),

Ge = 1

γe
{∇[(∇φ)2 + (∇ψ )2] + 2er tan δ[(∇2φ)∇ψ − (∇2ψ )∇φ + ∇ × (∇φ × ∇ψ )]}. (24)

This expression has been obtained by substituting Ê = −∇(φ + iψ ) in Eq. (10b) and nondimen-
sionalizing the result by the electric gravity scale Ge,0. The component fR of the DEP force is
calculated as

fR = 2L tan δ

γ 2
e

[(∇2φ)∇ψ − (∇2ψ )∇φ + ∇ × (∇φ × ∇ψ )]. (25)

III. LINEAR STABILITY THEORY

When the applied electric field exceeds a critical value, the base quiescent state becomes unstable
and a convective flow develops in the cavity as in the Rayleigh-Bénard convection. To determine
instability thresholds and the nature of growing flows, we consider a perturbed state,

u = ũ, π = πb + π̃ , θ = θb + θ̃ , φ = φb + φ̃, ψ = ψb + ψ̃, (26)
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where perturbation fields are indicated by tildes. Linearizing Eqs. (22) around the base state (ub, πb,
θb, φb, ψb), we obtain the following equations governing the linear dynamics of the system:

∇ · ũ = 0, (27a)

1

Pr

∂ũ
∂t

= −∇π̃ + ∇2ũ + Ra θ̃ez + L θ̃Ge,bez − LθbG̃e + f̃R, (27b)

∂θ̃

∂t
= −dθb

dz
w̃ +

[
∇2 − erγe

(
dφb

dz

)2

− erγe

(
dψb

dz

)2]
θ̃

+ 16(1 − erγeθb)

(
dφb

dz

∂φ̃

∂z
+ dψb

dz

∂ψ̃

∂z

)
, (27c)

(
−2F+

d2φb

dz2
− F+

dφb

dz

∂

∂z
+ F−

dψb

dz

∂

∂z

)
θ̃ +

(
1

γe
∇2 − 2F+θb∇2 − F+

dθb

dz

∂

∂z

)
φ̃ + F−

dθb

dz

∂ψ̃

∂z

= 0, (27d)

(
−2F+

d2ψb

dz2
− F−

dφb

dz

∂

∂z
− F+

dψb

dz

∂

∂z

)
θ̃ − F−

dθb

dz

∂φ̃

∂z
+

(
1

γe
∇2 − 2F+θb∇2 − F+

dθb

dz

∂

∂z

)
ψ̃

= 0. (27e)

The perturbation component G̃e of the electric gravity arises from thermoelectric feedback: distur-
bances in temperature fields give rise to a perturbation in permittivity to modify the electric field
through the Gauss law. The component f̃R is a linear combination of θ̃ , φ̃, and ψ̃ with coefficients
involving the base field (θb, φb, ψb). Explicit expressions of G̃e and f̃R are given in Appendix B. The
solution is subject to homogeneous boundary conditions

ũ = 0, θ̃ = φ̃ = ψ̃ = 0, at z = ± 1
2 . (28)

We solve the complete set of linearized governing equations (27) under the boundary conditions
(28) to determine the stability of the base state. This stability problem can be written formally in the
following matrix representation,

A(L, tan δ, γe) X̃ = B(Pr)
∂X̃
∂t

, (29)

where X̃ = (ũ π̃ θ̃ φ̃ ψ̃ )
tr
. The linear operator A consists of the partial derivatives with

respect to the coordinates (x, y, z) and of the base flow fields (θb, φb, ψb). It involves parameters
tan δ, γe, and L. The linear operator B is constant and depends only on the Prandtl number Pr.

We perform a modal analysis to determine the temporal evolution of X̃. Since the considered
capacitor system is invariant with respect to the rotation around any axis perpendicular to the
electrodes, we assume a normal mode in the x-z plane: X̃ = X̂(z) est+ikx, without any loss of
generality. We then compute the eigenvalue s = sr + isi by applying the Chebyshev collocation
method to Eq. (29). The growth rate sr is obtained in function of the wave number k and the
parameters L, Ra, Pr, tan δ, and γe. We vary k and the electric Rayleigh number L and determine
the marginal stability curve sr (k, L) = 0, keeping the other parameters constant. Seeking the value
kc of the wave number at which L on the curve attains the global minimum, we obtain the critical
condition (kc, Lc) for a given set of Ra, Pr, tan δ, and γe. When L exceeds the critical electric number
Lc, disturbances of the critical wave number kc grow exponentially.
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FIG. 3. The stability of the base quiescent states in microgravity environments (Ra = 0). (a) Marginal
stability curves for some values of the thermoelectric parameter γe for tan δ = 0.05. (b) Critical electric
Rayleigh number Lc. (c) Critical wave number kc.

IV. RESULTS IN MICROGRAVITY ENVIRONMENTS

In the present section, we examine the convection generation by thermoelectric buoyancy only,
assuming microgravity environments. The Rayleigh number Ra is fixed at Ra = 0. The stability
depends only on the four dimensionless numbers (L, γe, Pr, tan δ). The analysis shows that marginal
modes are stationary (si = 0). This implies that marginal stability curves and critical parameters
are independent of Pr, as the Prandtl number appears only in coefficients of ∂t X in the eigenvalue
problem (29). The marginal and critical conditions thus vary only as functions of the thermoelectric
parameter γe and the loss tangent tan δ. Increase of γe lowers marginal stability curves [Fig. 3(a)].
The critical Rayleigh and wave numbers take the values Lc = 1047.0 and kc = 4.39 at vanishing γe.
They decrease with γe when γe > 0.01 [Figs. 3(b) and 3(c)]. This decrease is less significant for a
large loss tangent. Critical eigenmodes consist of two arrays of convection rolls (Fig. 4). Each roll
occupies only half the capacitor gap. The velocity and temperature fields are symmetric with respect
to the midgap plane with hot fluid flowing toward the electrodes.

The observed four-roll structure per wavelength of eigenmodes is explained from the electric
gravity field ge,b = −Ge,bez and the temperature field θb in the base state. As discussed in Sec. II B,
the base state consists of two fluid sublayers. In each of these sublayers, the density stratification is
potentially unstable against the electric gravity, which changes the direction at the midgap plane of
capacitor [Fig. 2(d)]. Once the thermoelectric buoyancy overcomes stabilizing diffusion effects, hot

-0.5
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 0  0.5  1  1.5  2  2.5  3

z

x

 0

Hot

Cold

θ

FIG. 4. The critical mode in microgravity for γe = 0.044 and tan δ = 0.05. The critical wave number and
the electric Rayleigh number are kc = 4.306 and Lc = 844.5.
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FIG. 5. Powers of different energy transfer mechanisms to perturbation flows at critical conditions [see
Eq. (30)]. All the powers have been normalized by twice the flow kinetic energy K . (a) Variation of powers as
a function of the thermoelectric parameter γe. The loss tangent is fixed at tan δ = 0.05. (b) Variation of powers
as a function of tan δ. The parameter γe is fixed at γe = 0.1.

fluid “rises” against the electric gravity in each of the sublayers. Convection flow separated at the
midgap plane thus develops.

The qualitative explanation of the instability mechanism in the light of the electric effective
gravity can be substantiated by a consideration on energy transfer processes from the base to
perturbation flows. By taking the inner product of Eq. (27b) with the perturbation flow velocity ũ
and integrating the resulting equation in x over a wavelength and in z over the whole layer thickness,
we obtain the Reynolds-Orr energy equation for the linear dynamics of perturbation flows:

1

Pr

dK

dt
= WBEG + WPEG + WR − DV , (30)

where K is the kinetic energy of perturbation flow. The first three terms on the right-hand side are
the powers of different components of the DEP force: WBEG of the thermoelectric buoyancy due to
the base electric gravity ge,b, WPEG of the buoyancy associated with the perturbation electric gravity
G̃e, and WR of the DEP force component fR. The rate of viscous energy dissipation is denoted by
DV . The explicit definitions of these terms are

K =
〈

ũ2

2

〉
, WBEG = L〈θ̃w̃Ge,b〉, WPEG = −L〈θbũ · G̃e〉, WR = 〈ũ · f̃R〉,

DV = 〈∇ũ : (∇ũ)tr〉. (31)

The angular brackets stand for the following double integral operation:

〈 • 〉 =
∫ 1/2

−1/2

∫ 2π/k

0
• dx dz. (32)

For the instability predicted by the linear stability theory, the thermoelectric buoyancy due
to the base electric gravity drives thermal convection [Fig. 5(a)]. The contribution WPEG of the
themoelectric feedback is always stabilizing, as observed in the previous work [21,32] on the TEHD
instability in perfect dielectric fluids. The power associated with the component f̃R of the DEP
force is negligible in energy transfer (WR ≈ 0). The increase of the loss tangent does not alter the
relative importance of the different energy transfer mechanisms [Fig. 5(b)]. The instability can thus
be regarded as the “natural” convection in an effective electric gravity Ge,b but with significant
stabilizing effects of the thermoelectric feedback.

V. RESULTS IN HORIZONTAL CAPACITORS

On the earth, the coupling of the DEP force with the thermal Archimedean buoyancy force will
occur and the instability thresholds will be affected by the latter. We consider the system depicted in
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FIG. 6. Critical parameters and critical modes in a horizontal capacitor for a given loss tangent and
thermoelectric parameter, tan δ = 0.05 and γe = 0.001. (a) Critical electric number Lc as a function of the
Rayleigh number Ra. (b) Critical wave number kc as a function of Ra. (c)–(e) Critical modes for different
Ra: (c) Ra = 12.167, Lc = 1032.5, and kc = 4.440; (d) Ra = 79.507, Lc = 931.2, and kc = 4.588; and (e)
Ra = 569.72, Lc = 0, and kc = 3.978.

Fig. 1 in a horizontal configuration. The thermal and electrical conditions imposed on the capacitor
are the same as those in Sec. IV, i.e., Eq. (23).

The stability of the base quiescent state could now depend on six dimensionless numbers (L, Ra,
γe, Pr, tan δ, er). Stability analysis shows, however, that marginally stable modes are all stationary,
so that the thresholds and critical conditions are independent of the Prandtl number as in the
microgravity case. The critical electric Rayleigh number Lc decreases with the Rayleigh number
Ra for Ra � 10 [Fig. 6(a)]. It is vanishing as Ra approaches a value of 569.7. The variation of
the critical wave number kc is nonmonotonic [Fig. 6(b)]. It is accompanied by qualitative changes
in eigenfunctions [Figs. 6(c)–6(e)]. With increasing Ra, convection rolls inside the lower half
layer become weak and disappear at large Ra. This morphological change is expected from the
competition between the thermoelectric and thermal Archimedean buoyancies. In the upper half
layer of fluid, both the electric gravity and the earth’s gravity are oriented from the top electrode to
the hot core of the capacitor. So, the thermal Archimedean buoyancy provides further driving force
to convection in addition to the thermoelectric buoyancy. In the lower half layer, in contrast, the
earth’s gravity is now directed from the hot capacitor core to the lower electrode, and the resulting
thermal buoyancy impedes the convection generation. At large Ra, the stabilizing Archimedean
buoyancy is dominant and the fluid motion in the lower layer is driven only by the viscous shear
exerted by the convection flow developed in the upper layer.

To examine the competition between the thermoelectric and thermal Archimedean buoyancy
effects quantitatively, we invoke the Reynolds-Orr equation (30) with its right-hand side completed
by the power of the thermal Archimedean buoyancy force WG = Ra 〈w̃θ̃〉. At small Ra (�10),
where the critical parameters (Lc, kc) remain constant, the thermoelectric buoyancy WBEG provides
energy to perturbation flows as in microgravity environments (Fig. 7). The contribution WPEG of the

113503-12



THERMOELECTROHYDRODYNAMIC CONVECTION IN …

-100

-50

 0

 50

 100

10-1 100 101 102 103

En
er

gy
 tr

an
sf

er

Ra

WBEG

WPEG

WR

DV

WG

FIG. 7. Powers of different energy transfer mechanisms to perturbation flows under critical conditions in a
horizontal capacitor. All the powers have been normalized by twice the flow kinetic energy K . The loss tangent
and thermoelectric parameters are fixed at tan δ = 0.05 and γe = 0.001.

perturbation electric gravity brings about stabilizing effects. The power WR of the force fR remains
negligible. At Ra > 10, where Lc and kc start decreasing, the Archimedean buoyancy effect is no
longer negligible. For Ra > 102, the Archimedean buoyancy is significant. It becomes finally the
dominant destabilizing mechanism when Ra is larger than 350. At Ra = 569.72 the instability is
driven purely by the Archimedean buoyancy force.

VI. DISCUSSION

The dielectric-heating-driven TEHD instability occurs in microgravity when the electric
Rayleigh number exceeds a critical value Lc with a critical eigenmode consisting of two arrays
of counter-rotating convection rolls (Fig. 4). At the vanishing thermoelectric parameter γe, the
value Lc is 1047.0 (Sec. IV), which is 2.0 times smaller than in the TEHD instability in perfect
dielectric fluids in parallel plate capacitors subject to an externally imposed temperature gradient
(Lc = 2129) [21]. This marked contrast can be explained by critical eigenfunctions. As seen in
Fig. 4, the perturbation temperature has the same sign at both sides of the midgap plane separating
two arrays of convection rolls. The transversal velocity gradient vanishes at the midgap plane. In
this regard, this eigenmode is similar to the thermally coupled mode in the thermal convection in
superposed two immiscible fluid layers [33]. This mode can develop only when two fluids have
similar physical properties and similar thicknesses. Each convection roll in the double-layer system
then grows under shear-free conditions at the immiscible interface. The absence of viscous shear
at one side of the rolls leads to less viscous energy dissipation than in convection rolls bounded by
two solid walls. For the thermally coupled mode, as a consequence, the thermal instability occurs
with a critical Rayleigh number of 1101, which is identical to the value predicted for the thermal
convection in a liquid layer with a nondeformable free surface [34]. This critical value is 1.6 times
smaller than that of the Rayleigh-Bénard instability (1708). The reduction rate 2129/1047 ≈ 2.0 of
Lc larger than 1.6 would be explained by the nonuniformity of the electric gravity in the capacitor
and by the thermoelectric feedback.

In the earth’s gravity environment, significant variations of the critical parameters and eigenfunc-
tions were observed with increasing Ra (Sec. V). These variations were due to the transition from
a regime dominated by the thermoelectric buoyancy to another regime dominated by the thermal
Archimedean buoyancy. The results in the latter regime should agree with those reported in the liter-
ature on the thermal convection in horizontal fluid layers with internal heat generation. This problem
has been studied by many researchers because of particular interests in industrial applications and in
astrophysics, e.g., penetrative convection in stellar systems (see a recent review by Goluskin [35]).
A particular case where the convection develops between two plates of equal temperatures has also
been investigated [36,37]. In these investigations, the internal Rayleigh number Raheat based on the
power density of the internal heating P is often used [38]. Kulacki and Goldstein [39] performed
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linear stability analyses for different boundary conditions and reported the critical values in the
internal Rayleigh number Raheat = gαP (d/2)5/2λκν, which is identical to the Rayleigh number
Ra defined in Eq. (21). For uniformly heated layers between two isothermal rigid boundaries, the
critical parameters reported by Kulacki and Goldstein [39] are (kc, Raheat ) = (4.00, 583.20). In the
present study, we obtain the critical parameters (kc, Ra) = (3.977, 569.7) for the convection driven
purely by the thermal Archimedean buoyancy. This result agrees quantitatively with the results of
Kulacki and Goldstein [39]. Slight differences of a few percent arise from the nonuniformity of heat
generation in the present problem.

VII. CONCLUSION

We investigated the stability of stationary dielectric fluid layers subject to transversal electric
fields in microgravity and in a horizontal configuration by a linear stability analysis as well as by an
energetic analysis on the instability mechanism. It was shown that internal heating due to dielectric
loss is able to induce convective motion in both gravitational environments. In microgravity, the
convection is driven by the thermoelectric buoyancy and develops when the Rayleigh number L
based on the electric effective gravity ge [Eq. (10b)] exceeds a critical value Lc. The values of Lc

and of the critical wave number kc are Lc = 1047 and kc = 4.39 for the vanishing thermoelectric
parameter γe. The critical conditions depend on γe and on the loss tangent tan δ, while they are
independent of the Prandtl number Pr. The critical mode is stationary and consists of two arrays of
counter-rotating convection rolls, which share common features with the thermally coupled mode
in the thermal convection in horizontal double layers of immiscible fluids. That the value Lc is
significantly smaller than the critical value of the TEHD instability in perfect dielectric fluids is
explained by less viscous energy dissipation in convection cells arranged in two arrays. In the
horizontal configuration, the critical condition varies significantly with the variation of the Rayleigh
number Ra because of the competition of the electric gravity and the earth’s gravity. With increasing
Ra, the structure of critical modes also changes from two to single arrays of convection rolls because
of increasing stabilizing effects of earth’s gravity in the lower half layer of fluid. In the limit of
Ra → 569.7, the convection is driven purely by the thermal Archimedean buoyancy force. The
critical conditions agree well with the result reported in the literature on the thermal instability of
an internally heated horizontal fluid layer.
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APPENDIX A: DIFFERENT EXPRESSIONS OF THE TIME-AVERAGED DEP FORCE

To derive Eq. (9), we introduce the unit vectors el (l = x, y, z) in the Cartesian coordinate system
and write the electric field and the displacement vector as E = El el and D = Dl el , respectively.
The Einstein’s summation convection has been invoked. We define the complex amplitude D̂ of
the displacement vector by D = Re[

√
2 D̂eiωt ]. It is related to the amplitude of the electric field as

D̂ = (ε′ − iε′′)Ê or, in terms of their components, D̂l = (ε′ − iε′′)Êl .
Making use of these relationships, we calculate the DEP force fD = −(E2/2)∇ε as follows:

fD = −ElEl

2

∂ε

∂xm
em = − ∂

∂xm

⎛
⎝εElEl

2

⎞
⎠em + ε

2

∂ (ElEl )

∂xm
em = − ∂

∂xm

⎛
⎝DlEl

2

⎞
⎠em + Dl

∂El

∂xm
em,
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where we have invoked ∂ (ElEl )/∂xm = 2El (∂El/∂xm) for the last term. The time averages of the
product DlEl over an oscillation period of electric field is calculated as

DlEl = Re[
√

2Dleiωt ]Re[
√

2Eleiωt ] = 1
2 (

√
2D̂leiωt + c.c.) 1

2 (
√

2Êl eiωt + c.c.)

= 1
2 (D̂l Ê∗

l + c.c.) + 1
2 (D̂l Êl ei2ωt + c.c.) = 1

2 (D̂l Ê
∗
l + c.c.)

= 1
2 [(ε′ − iε′′)Êl Ê

∗
l + c.c.] = ε′Êl Ê

∗
l ,

where c.c. means the complex conjugate of the preceding term. A similar calculation gives

Dl
∂El

∂xm
= 1

2

(
D̂l

∂Ê∗
l

∂xm
+ c.c.

)
= 1

2

(
(ε′ − iε′′)Êl

∂Ê∗
l

∂xm
+ c.c.

)

= ε′

2

∂
(
Êl Ê∗

l

)
∂xm

− i
ε′′

2

(
∂Ê∗

l

∂xm
Êl − ∂Êl

∂xm
Ê∗

l

)
.

The time-averaged DEP force is thus given by

fD = − ∂

∂xm

(
DlEl

2

)
em + Dl

∂El

∂xm
em

= − ∂

∂xm

(
ε′

2
Êl Ê

∗
l

)
em + ε′

2

∂
(
Êl Ê∗

l

)
∂xm

em − i
ε′′

2

(
∂Ê∗

l

∂xm
Êl − ∂Êl

∂xm
Ê∗

l

)
em

= − Êl Ê∗
l

2

∂ε′

∂xm
em − i

ε′′

2

(
∂Ê∗

l

∂xm
Êl − ∂Êl

∂xm
Ê∗

l

)
em. (A1)

The last line is identical to Eq. (9).
The expression of fD in terms of potentials can be obtained by substituting Ê = −(∇φ + i∇ψ )

in Eq. (A1). After some algebraic manipulations, we have

fD = −1

2

(
∂φ

∂xl

∂φ

∂xl
+ ∂ψ

∂xl

∂ψ

∂xl

)
∂ε′

∂xm
em + ε′′

(
∂2φ

∂xl∂xm

∂ψ

∂xl
− ∂2ψ

∂xl∂xm

∂φ

∂xl

)
em

= −1

2
[(∇φ)2 + (∇ψ )2]∇ε′ + ε′′[(∇∇φ) · ∇ψ − (∇∇ψ ) · ∇φ]. (A2)

In the last line, ∇∇ is a tensorial operator ∇∇ = (∂2/∂xl∂xm) elem. Making use of a mathematical
identity ∇ × (∇φ × ∇ψ ) = ∇2ψ∇φ − ∇2φ∇ψ + (∇∇φ) · ∇ψ − (∇∇ψ ) · ∇φ, we obtain

fD = − 1
2 [(∇φ)2 + (∇ψ )2]∇ε′ + ε′′[∇2φ∇ψ − ∇2ψ∇φ + ∇ × (∇φ × ∇ψ )].

APPENDIX B: PERTURBATION COMPONENTS OF Ge AND fD

The perturbation components G̃e and f̃R of electric gravity and the residual DEP force component
are given in terms of the base states (θb, φb, ψb) and the perturbation fields (θ̃ , φ̃, ψ̃):

G̃e = 2

γe

{
∇

(
dφb

dz

∂φ̃

∂z
+ dψb

dz

∂ψ̃

∂z

)
+ er tan δ

[
dψb

dz
∇

(
∂φ̃

∂z

)
− dφb

dz
∇

(
∂ψ̃

∂z

)

+
(

d2φb

dz2

∂ψ̃

∂z
− d2ψb

dz2

∂φ̃

∂z

)
ez

]}
,

f̃R = 2L tan δ

γ 2
e

[
dψb

dz
∇

(
∂φ̃

∂z

)
− dφb

dz
∇

(
∂ψ̃

∂z

)
+

(
d2φb

dz2

∂ψ̃

∂z
− d2ψb

dz2

∂φ̃

∂z

)
ez

]
.

These expressions have been nondimensionalized according to the scales presented in Sec. II C.
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APPENDIX C: SCALE ANALYSIS ON THERMAL BREAKDOWN

The thermal breakdown of dielectrics occurs when the internal heat generation overcomes
thermal diffusion effects. This breakdown would not occur in the systems modeled in the present
work, where the thermal variations of permittivities, |e′�T | and |e′′�T |, are assumed to be small
for the validity of Eq. (8). The present Appendix aims to clarify this point.

For a perturbation in temperature δθ , corresponding perturbations in the heat generation density
and in the thermal diffusion are

δPD ∼ δ(ωε′′E2) ∼ ωε′′E2

(
δε′′

ε′′ + 2δE

E

)
∼ ωE2δε′′ ∼ −ωE2ε′′

refe
′′δθ, (C1)

δ
(
λ∇2T

) ∼ λ
δθ

d2
, (C2)

where the symbol δ is used to indicate the perturbation of the succeeding term. The scaling
relationship δE/E ∼ δε′′/ε′′, derived from Gauss’ law, and Eq. (8) have been invoked. The criterion
of the thermal breakdown δPD � δ(λ∇2T ) then reads

δPD

δ(λ∇2T )
∼ |e′′| ωε′′

refE
2d2

λ
∼ |e′′|�T � 1, (C3)

where we have made use of the relationship ωε′′
refE

2d2/λ�T ≈ 1 (see Sec. II B). The criterion (C3)
is never satisfied by systems considered in the present work.
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