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As predicted by D’yakov [Shock wave stability, Zh. Eksp. Teor. Fiz. 27, 288 (1954)]
and Kontorovich [On the shock waves stability, Zh. Eksp. Teor. Fiz. 33, 1525 (1957)], an
initially disturbed shock front may exhibit different asymptotic behaviors, depending on
the slope of the Rankine-Hugoniot curve. Adiabatic and isolated planar shocks traveling
steadily through ideal gases are stable in the sense that any perturbation on the shock front
decays in time with the power t−3/2 (or t−1/2 in the strong-shock limit). While some gases
whose equations of state cannot be modeled as a perfect gas, as those governed by van der
Waals forces, may induce constant-amplitude oscillations to the shock front in the long-
time regime, fully unstable behaviors are seldom to occur due to the unlikely conditions
that the equation of state must meet. In this paper, it has been found that unstable conditions
might be found when the gas undergoes an endothermic or exothermic transformation
behind the shock. In particular, it is reported that constant-amplitude oscillations can occur
when the amount of energy release is positively correlated to the shock strength and, if
this correlation is sufficiently strong, the shock turns to be fully unstable. The opposite
highly damped oscillating regime may occur in negatively correlated configurations. The
mathematical description then adds two independent parameters to the regular adiabatic
index γ and shock Mach number M1, namely, the total energy added/removed and its
sensitivity with the shock strength. The formulation in terms of endothermic or exothermic
effects is extended but not restricted to include effects associated to ionization, dissociation,
thermal radiation, and thermonuclear transformations, so long as the time associated to
these effects is a much shorter time than the acoustic time.
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I. INTRODUCTION

Motivated by the dominant role of shock waves in different areas, as may be high-speed aerody-
namics, inertial confinement fusion, and astrophysics, there exists an exhaustive work accumulated
on shock theory [1–19] since the pioneering works of D’yakov [20] and Kontorovich [21] on the
shock stability. The literature accumulated on the Richtmyer-Meshkov instability [22–30] deserves
special recognition. By way of contrast, nonadiabatic waves have received considerably less atten-
tion, with regular detonations standing among any other type of supersonic reactive front due to
its applicability in propulsion engines and safety issues [31–38]. Further examples of nonadiabatic
supersonic fronts are found in shocks that can induce a phase change [39–42], ionization [6,7],
dissociation [6,8], and radiation [43].

In the astrophysical context, nonadiabatic shocks can develop in a wide range of phenomena,
including thermonuclear detonations formed in thermonuclear supernovae [44–48]. Further exam-
ples can be found in the so-called core-collapse supernovae (CCSNe), a type of supernova powered
by stellar core collapse. The shock wave evolves through a phase of accretion shock, in which it
becomes endothermic due to the nuclear dissociation process taking place across the shock [49–52],
a pivotal stage for determining the parameters of the supernova explosion [53–57]. A distinctive
common feature of these two fronts is that energy variations (either exothermic and endothermic)
may likely depend on thermodynamical absolute values and thus on the shock intensity. A clear
example is found in the energy lost by radiation in the so-called radiative shocks (RSs) [43,58–64].

In most cases, based on the different scales associated to the shock thickness and the postshock
transformation zone, the phenomena occurring in the supersonic front can be split into the precursor
shock wave and the attached reacting layer. For situations where the transformation right behind the
shock does not modify the mass and momentum fluxes, the Rayleigh-Michelson line remains
the same regardless of the nonadiabatic transformation occurring behind the precursor shock. Then,
the final equilibrium state must lie at some point along this line. For the case addressed here,
attention will be paid to the global structure only, where net changes (shock plus nonadiabatic
transformation) are included in the nonadiabatic shock, thereby being considered a pure disconti-
nuity. Classical D’yakov-Kontorovich (DK) theory states that, in certain conditions related to the
Rankine-Hugoniot (RH) slope, the shock oscillates permanently with the corresponding generation
of entropic and rotational perturbations downstream, as well as the emission of constant-amplitude
sonic waves, the latter being commonly referred to as spontaneous acoustic emission (SAE). Beyond
a certain limit, the shock may behave in a fully unstable manner, with any perturbation growing
exponentially with time. This long-time dynamics, which can be investigated via normal-mode
analysis, will be studied here by means of the Laplace transform method, as it provides information
of the transient evolution. The function that governs the shock dynamics is the DK parameter, here
written as

�s = p2 − p1

V1 − V2

dV

d p

∣∣∣∣
2

= tan βRM

tan βRH
, (1)

directly relates with the slopes of the RH curve in the final state, tan βRH, and the slope of Rayleigh-
Michelson line, tan βRM (see sketch in Fig. 1). Subscripts 2 and 1 in Eq. (1) identify downstream
and upstream properties, respectively, and the functions p and V define the dimensional pressure
and the specific volume, respectively.

When a shock moves steadily and is isolated from pistonlike coupling effects, linear theory
dictates that any perturbation to the isolated shock surface decays on a long timescale in accordance
with the power law t−3/2 [2]. However, shock moving through gases that obey nonideal equations of
state can oscillate with constant amplitude, as shown by Bates and Montgomery [8,9] and Wouchuk
and Cavada [12], who predicted the possibility of DK instability in gases governed by van der Waals
forces. Further examples are associated to ionization [6–8] and relativistic effects [18]. In a recent
work [38], it was shown that permanent oscillations and SAE can also occur in strength-sensitive
detonations while highly damped oscillations have also been associated to nonideal gases [11] and
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FIG. 1. Sketch of the Rankine-Hugoniot curve and the Rayleigh-Michelson line for a nonadiabatic shock.
Different processes will place the final postshock state (orange point) in a different position.

shocks that induce endothermic transformation in the gas state [52]. In this paper, as well as in the
references mentioned in this paragraph, the base flow is taken to be uniform and the shock isolated.
Consequently, the instability thresholds should be adequately modified in more realistic conditions
resulting from unsteadiness [65,66] and/or acoustic coupling with the supporter mechanism needed
in nonexothermic scenarios [16].

The objective of this paper is to extend, with a unified formulation, the analysis of the stability
of nonadiabatic shocks traveling in a perfect gas when endothermic or exothermic transformations
take place, thereby complementing the previous work on planar exothermic reactive shocks [38].
The formulation employed in this paper, unlike that in Ref. [38], allows for including further
effects beyond chemical heat release. The name nonadiabatic comprises any type of energy gain
or loss across the shock, e.g., reactive, dissociating, radiating, or ionizing, along with the associated
molecule structure changes. The resolution, presented in a self-contained form, is based on the
Laplace transform to facilitate the analysis for both long-time and transient regimes. The methodol-
ogy employs linear perturbation analysis in the thin-shock limit, where the perturbation wavelength
2π/k is much larger than the shock thickness �, which comprises the precursor adiabatic shock
and the following nonadiabatic transformation layer. Since the DK instability parameters ultimately
depend on the RH curve slope in the final state, the analysis can be simplified by accounting for
the shock strength (propagating Mach number), adiabatic index, energy added/subtracted per unit
mass (either positive or negative), and the variation of energy release/taken with the shock strength.
Hence, results do not depend on the inner thermodynamic profiles but on the final equilibrium
properties, on the condition that the propagating wave does not exhibit any unstable behavior as a
result of the inner structure. This condition excludes, for example, reacting waves with very sharp
inner profiles as are self-sustained gaseous detonations with a very high activation energy [31–36].

For convenience, the outline of the paper is stated in the following. First, the formulation of
the problem is presented in Sec. II in terms of one-dimensional steady properties. The effect of
energy variations across the shock and the limits of interest are discussed in detail. It follows
the mathematical details of the linear model in terms of the Laplace transform. Both long-time
asymptotic expressions and the transient formulas are given for the shock-front evolution. Theory is
later applied, in Sec. III, to cases of interest in high-energy-density physics. They include ionization,
dissociation, radiative, and nuclear-transformation shocks. A short summary of outcomes is offered
in Sec. IV. Appendices A–D provide the derivation of the nonadiabatic phenomena used in Sec. III.
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II. LINEAR THEORY FOR THE SHOCK FRONT EVOLUTION

A. Base flow equations

An isolated shock is defined whose relative speed with respect to the upstream and downstream
flow is u1 and u2, respectively. Subscripts 1 and 2 will refer to upstream and downstream flow
variables, respectively, which are identified with a prime in dimensional form. They include velocity
u, density ρ, pressure p, and enthalpy h. The conservation equations read

ρ1u1 = ρ2u2, (2)

p1 + ρ1u2
1 = p2 + ρ2u2

2, (3)

h1 + u2
1

2
+ q = h2 + u2

2

2
, (4)

where the factor q defines the energy per unit mass delivered to the fluid particles in case of
considering exothermic effects (q > 0) or the energy per unit mass subtracted to the fluid parti-
cles when endothermic effects are considered (q < 0). The definition of the enthalpy coefficient
g = h/e = h/(h − p/ρ), where h and e are the specific enthalpy and internal energy, respectively,
allows the energy equation to be written,

g1

g1 − 1

p1

ρ1
+ u2

1

2
+ q = g2

g2 − 1

p2

ρ2
+ u2

2

2
, (5)

which renders (
ρ2

ρ1

)−1

= u2

u1
= (g1 − κ )M2

1 + 1

(g1 + 1)M2
1

(6)

as the specific volume variation of the fluid particles, where

κ =
√(M2

1 − 1

M2
1

)2

− 2(g1 + 1)

g1M2
1

[
(g1 − 1)

ρ1

p1
q + g2 − g1

g2 − 1

p2ρ1

p1ρ2

]
(7)

is an auxiliary function and where M1 = u1/(g1 p1/ρ1)1/2 is the scaled propagation speed. Notice
that no assertion has been done on the equation of state, which means that Eq. (6) is generally
valid for any type of gas. In general, the possibility exists of having three different functions for
the first adiabatic exponent gad = (∂lnp)/(∂lnρ)ad, the ratio of the specific heats γ = cp/cv , and the
enthalpy coefficient g, as occurs in partially dissociated or ionized gases [67,68]. It is readily seen
that for a perfect gas with gad = g1 = γ1, the function M1 = u1/a1 reduces to the upstream Mach
number, since enthalpy reduces to h(γ − 1)ρ = γ p and the speed of sound becomes a2 = γ p/ρ.

From Eq. (6), it is immediate to see that κ = 0 corresponds to the maximum energy gained
for a given propagation speed, akin to Chapman-Jouget (CJ) condition in detonation waves, and
κ = g1 + M−2

1 give the maximum energy taken from the bulk for a given propagation speed that
leaves a quasistatic flow (infinite density) downstream. While the former is an achievable limit, the
latter is just a theoretical bound that could be approached in extreme overdensification. Regular RH
jump conditions are retrieved for κ = 1 − M−2

1 that corresponds to q = 0 and g1 = g2 = gad = γ .
Assuming the mass compression ratio Rs = ρ2/ρ1 given in Eq. (6) is known, the pressure ratio
across the shock is determined by the Rayleigh-Michelson line,

Ps = p2

p1
= 1 + g1M2

1

(
1 − R−1

s

)
, (8)

which can be used to compute the effecitve postshock Mach number:

M2 = u2√
g2 p2/ρ2

= M1√
PsRs

√
g1

g2
. (9)
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The temperature jump across the shock, written as a function of the density and pressure ratios,
involves the corresponding equations of state, yielding

Ts = T2

T1
= Ps

Rs

1

1 + α
, (10)

where α refers to the relative variation of the number of particles by ionization or dissociation
phenomena (see next section for details) through p2 = (1 + α)RgT2ρ2, where Rg is the gas constant
in the upstream flow. Clearly, these equations call for complementary constitutive relations to couple
the variation of the postshock variables with the functions q, g2, and α. In fact, since α(Ts) is a
nonlinear function of temperature, the model can easily extrapolate more complex equations of
state.

The density ratio shown in Eq. (6) resembles that given by Sedov, see Eq. (2.14) in Ref. [69],
for a perfect gas with different adiabatic indexes g1 = γ1 �= g2 = γ2. He stated that the adiabatic
energy equation for γ1 �= γ2 can be transformed into an analogous non-adiabatic equation. The
same conclusion was withdrawn by Barenblatt in Ref. [70]. It suggests that changes in the molecule
structure and nonadiabatic processes can be treated collectively. The analysis presented in this sec-
tion, based on this property, unifies and extends further the classical theory shown in Refs. [69,70]
by considering the enthalpy coefficient, which may not necessarily be similar to the adiabatic index.
Thus, the effect associated to the change in g and the corresponding endothermic or exothermic
phenomena taking place across the shock are conveniently gathered together as

Q = ρ1
(
g2

1 − 1
)

2g1 p1
q + (g1 + 1)

2g1(g2 − 1)

Ps

Rs
�g (11)

to compute the “effective” order-of-unity energy change. The term �g = g2 − g1 is equivalent to an
endothermic (exothermic) process when g2 < g1 (g2 > g1). This makes it possible to get effective
adiabatic conditions (Q = 0) when existing exothermic transformations q > 0 but �g < 0, and vice
versa.

When upstream gas conditions do not differ significantly from standard conditions, the assump-
tion gad = γ = g is fully justified and the variations in the adiabatic index, as occur in thermally
perfect gases, are included in the definition of g2. The deviation of the regular RH curve can be
computed through the balance term Q in the energy equation, yielding

Rs = ρ2

ρ1
= u1

u2
= (γ + 1)M2

1

γM2
1 + 1 −

√(
M2

1 − 1
)2 − 4QM2

1

(12)

for the mass compression ratio, from which the rest of the variables can be determined. Although
the analysis is still applicable for g1 �= γ , the formulation is presented in terms of γ and M1 as the
upstream Mach number because these factors are more easily recognizable.

When the factor Q does not depend on the shock properties, the above expressions can be
used to set the limits of the shock conditions in both exothermic and endothermic scenarios. For
instance, it is known that in the absence of external influences, the minimum propagation velocity
of a exothermic shock (detonation) is the so-called CJ condition that occurs when M2 = 1, namely,

M1 = Mcj = √
1 + Q + √

Q. (13)

Alternatively, it can be written in terms of maximum energy release for a given propagation Mach
number. Another limit appears in the opposite endothermic case, which is associated to an infinite
mass compression ratio and a zero velocity u2 = 0. Then the theoretical limits for the energy release
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are given by Qmin � Q � Qmax, where

Qmin = −γ + 1

4

[
(γ − 1)M2

1 + 2
]

(14)

refers to the minimum value of Q (maximum energy subtracted) and

Qmax =
(
M2

1 − 1
)2

4M2
1

(15)

to the maximum value of Q released to the fluid particles. These cases correspond to κ = 1 and
κ = 0, respectively. Notice that Qmin < −(γ + 1)2/4 for M1 > 1.

When the factor Q depends on the shock intensity, the amount of energy delivered or taken
from the fluid should be modeled according to the particular phenomenon taking place, thereby
depending on two state functions. It is found, for example, that accretion shocks formed in CCSNe
are able to break heavy nuclei and the energy employed in this nuclear dissociation scales with the
upstream energy flux [49,50]. Further examples of the same sort can found in supersonic fronts
that induce phase change [39,40]. Likewise, detonations moving through reactive mixtures made of
air and sprays exhibit a shock-dependent behavior as the amount of fuel actually available would
depend on the shock evaporation capacity [41]. Thermonuclear detonations also depend on the
shock intensity, as the amount of nuclei fused depends on temperature and density [44,46,47]. It is
clear that Q is a shock-dependent function when �g �= 0, even if the process is strictly adiabatic
Q = 0. In such a case, the above limiting expressions Eqs. (14) and (15) still hold but considering
the corresponding functions Qmin(M1) and Qmax(M1), respectively.

In general, how energy variations scale with the flow properties will depend on the particular
phenomenon, but the stability thresholds are given by the RH slope in the postshock state. This
reduces the parametric domain to three main gas properties (four if accounting for the adiabatic
index γ ): the shock Mach number M1, the dimensionless energy release Q, and the local variation
of the energy with the shock strength ε = (dQ)/(dM1), defined as the energy-sensitivity parameter.
Therefore, when the factor Q depends on local properties, postshock values cannot be generally
given in terms of independent expressions as a function of the shock strength but rather as a
nonlinear combination of them. For example, let’s take temperature as the dominant parameter
affecting the variation of energy in the form Q ∼ Ts. Thus, postshock conditions are governed by
an implicit relationship that can be used to determine Ts(M1) and then Q(M1) as a function of
the shock Mach number. The density ratio, pressure change, and postshock Mach number can be
derived through Eqs. (8)–(12). More complicated functions for Q are necessary to describe, as seen
later, dissociation and ionization processes. Irrespective of the functional dependence that describes
the variation of energy in the gas, it can ultimately be related (either numerically or analytically) to
shock Mach number M1, as well as the DK parameter �s, conveniently rewritten as

�s = γM2
1

R2
s

(
∂Ps

∂Rs

)−1

=
M2

1(1 + 2Q) − 1 − εM3
1 +

√(
M2

1 − 1
)2 − 4M2

1Q

M2
1

(
M2

1 − 1 − 2Q
) − εM3

1 + M2
1

√(
M2

1 − 1
)2 − 4M2

1Q
, (16)

where the factor ε accounts for the sensitivity of the energy release with the shock strength. Notice
that this function does not depend on γ explicitly, as it is absorbed in the definition of Q. For a
given shock with strength M1 moving through a gas defined by the adiabatic index γ , the slope of
the Rayleigh-Michelson line is explicitly given by tan βRM = γM2

1, which is always greater than
unity. It is the energy changes that determine the slope of the RH equation, tan βRH = γM2

1/�s and,
therefore, what settles the instability limits.

Figure 2 shows the DK parameter �s as a function of the dimensionless energy Q for a strong
shock (M1 = 10) in air (γ = 1.4), and for different values of energy-change sensitivities ε. The
angle βRH is qualitatively represented on the right-hand side. It is observed that ranging ε between
−10 and 10 suffices to find the most distinguished scenarios. To begin with the well-known adiabatic
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FIG. 2. DK parameter �s as a function of the dimensionless energy Q for a strong shock M1 = 10 and
γ = 1.4, and for different values of energy sensitivities ε and qualitative representation of βRH.

shock, the DK parameter for Q = ε = 0, M1 = 10 and γ = 1.4 is �s = 0.01, a small positive value
that yields βRH < π/2. This is readily seen as the crossing point with �s = 0 (orange circles) that
occurs before. In the adiabatic strong-shock limit, M1 � 1, the value of �s tends to zero and
the slope approaches βRH ∼ π/2. The effect of constant energy release can be evaluated from
the ε = 0 curve. Exothermicity increases the value �s and decreases βRH. On the other hand,
exothermic shocks may exhibit a reversion in the RH curve, as the value of �s may become negative.
This effect is amplified when ε > 0 and reduced for ε < 0. Moreover, the possibility of finding
a fully horizontal RH slope would occur for large values of q and ε. Endothermic shocks can
also display a positive RH curve slope, as found in ionization and dissociation shocks [6–8,10].
When taking ε as a purely independent parameter, it is necessary to explore the values related to
distinguished transformations behind the shock. For example, the value of βRH approaches π/2
when the numerator in Eq. (16) gets closer to zero, and βRH ∼ π when the denominator gets closer
to zero.

For the CJ condition, or Q = Qmax, the corresponding energy sensitivities are the same and equal
to (M1 − M−3

1 )/2. For such conditions, both numerator and denominator approach zero with the
same trend, thereby providing a finite value for the RH slope, which is widely known to be the slope
of the Rayleigh-Michelson line βRH = βRM. This value critical value, which corresponds to ∼M1/2
in the strong shock limit, is represented with a cyan circle in Fig. 2.

B. Shock transient evolution and stability limits

1. Shock transient evolution by the Laplace transform technique

To study the evolution of the planar shock, it is assumed an initial ripple of the form ψs(y, t =
0) = ψs0 cos(ky), with ψs0 being the initial amplitude, k its perturbation wave number, and y the
coordinate transverse to the shock direction, namely, x (see sketch in Fig. 3). The wave number is
employed to scale the spatial and temporal variables, x̂ = kx, ŷ = ky, and τ = a2kt . The functions
of interest are linearized by expanding them around the small factor ψs0k to yield

p̂(x̂, ŷ, τ ) = 1

ψs0k

p(x̂, ŷ, τ ) − p2

ρ2a2
2

, (17)
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FIG. 3. Sketch of the perturbed shock wave and the perturbation variables in the shock reference frame,
with � � ψs0 � 2π/k.

ρ̂(x̂, ŷ, τ ) = 1

ψs0k

ρ(x̂, ŷ, τ ) − ρ2

ρ2
, (18)

û(x̂, ŷ, τ ) = 1

ψs0k

u(x̂, ŷ, τ ) − (u1 − u2)

a2
, (19)

v̂(x̂, ŷ, τ ) = 1

ψs0k

v(x̂, ŷ, τ )

a2
(20)

for pressure, density, longitudinal velocity, and transverse velocity, respectively. The functions iden-
tified with the hat symbol are order-of-unity variables. Similarly, the dimensionless order-of-unity
shock ripple is defined as ξs = ψs/ψs0.

The dimensionless order-of-unity functions are used to write

∂ρ̂

∂τ
+ ∂ û

∂x
+ v̂ = 0, (21)

∂ û

∂τ
+ ∂ p̂

∂x
= 0, (22)

∂ v̂

∂τ
− p̂ = 0, (23)

∂ p̂

∂τ
− ∂ρ̂

∂τ
= 0 (24)

for the dimensionless conservation equations for mass, x momentum, y momentum, and energy,
provided that p̂ and v̂ are always proportional to cos(y) and sin(y), respectively.

One boundary condition is given by the values at the shock position, namely, xs = M2τ , which
are determined by linearized RH equations,

dξs(τ )

dτ
= Rs

Rs − 1

1 − �s

2M2
p̂s(τ ), (25)

ûs(τ ) = 1 + �s

2M2
p̂s(τ ), (26)

ρ̂s(τ ) = �s

M2
2

p̂s(τ ), (27)

v̂s(τ ) = M2(Rs − 1)ξs(τ ), (28)

with use made of ξs ∼ cos(y) in Eq. (28). The subscript s stands for the shock values and the function
�s, associated to the slope of the RH curve, and has been previously given in Eq. (16).

113403-8



ACOUSTIC STABILITY OF NONADIABATIC HIGH- …

The other boundary condition is provided by the isolated-shock assumption, which translates
into not considering the effect of the acoustic waves reaching the shock front from behind. For this
condition to be true, the shock must be sufficiently far from driving conditions, i.e., τ � M−1

2 − 1,
a condition met when M1/Mcj ∼ 1. Besides, the linear theory and the thin-shock assumptions set
the following limits of validity: � � ψs0 � k−1.

Following the analysis shown in Ref. [38], omitted here for the sake of conciseness, the most
relevant information relative to the asymptotic behavior can be inferred from the Laplace transform
of the shock ripple amplitude, namely,

�s(s) =
∫ ∞

0
ξs(r)e−srdr =

√
s2 + 1 + σbs

s
√

s2 + 1 + σbs2 + σc

(29)

applied over the variable r = τ

√
1 − M2

2, with the auxiliary factors defined as

σb = 1 + �s

2M2
and σc = RsM2

1 − M2
2

1 − �s

2
. (30)

It is found that σb < −1 is associated to an exponential unstable growth of the shock ripple
amplitude. For −1 < σb < σc, the shock oscillates with constant amplitude, with the associated
emission of constant-amplitude acoustic waves (SAE). For values of σb = σc, the characteristic
asymptotic decay rate of the shock-oscillation amplitude is proportional to τ−1/2. For σc < σb <

σc + 1/(4σc), the shock front oscillates toward the asymptotic planar solution with an amplitude
that decays in time with the power law τ−3/2, and for σc + 1/(4σc) < σb < −1 the approach toward
the asymptotic decay rate occurs faster than that occurring in regular conditions, although with the
same power law τ−3/2.

A simple way to evaluate the approach toward the asymptotic regime of the disturbed shock
evolution is the use of Bessel functions, written in the form

�s(s) =
∞∑

ν=0

Dν

e−ν sinh−1(s)

√
s2 + 1

(31)

in the Laplace variable s. The coefficients Dν , obtained with the aid of Eq. (29), are given by the
following recurrence relation:

D2ν = D2ν−4
1 − σb

1 + σb
+ D2ν−2

2σb − 4σc

1 + σb
, (32)

which calls for the first values

D0 = 1, D2 = 2

1 + σb
+ 2

σb − 2σc

1 + σb
, and D4 = 2(1 − σb)

1 + σb
+ 2

σb − 2σc

1 + σb
D2 (33)

to be initiated, with the odd values for D2ν+1 being found to be null.
The temporal evolution, given by

ξs(τ ) =
∞∑

ν=0

DνJν

(
r = τ

√
1 − M2

2

)
, (34)

is computed in Fig. 4 for M1 = 10, γ = 1.4, and Q = 15, and some distinguished values of ε.
Computations correspond to the triangle markers placed along the gray-dashed line in Fig. 5 and
the color-code employed to identify the regimes is the same as in Fig. 5. The energy-sensitivity
parameter ranges from −10 to 10, passing through all distinguished regimes. The points correspond
to the instant value of the shock ripple amplitude (chosen at arbitrary maxima for the oscillating
cases) and the lines refer to the asymptotic trends. For stable cases, including the constant-oscillating
case, it is observed how the temporal evolution of the shock front approaches the long-time
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FIG. 4. Asymptotic temporal evolution of the shock ripple amplitude ξs(τ ) for γ = 1.4, M1 = 10, Q = 15
and different values of the energy sensitivity parameter ε. Dashed lines correspond to asymptotic regression
trends.

asymptotic trends in ten times the characteristic time k/a2. The unstable case, on the other hand,
rapidly follows the asymptotic exponential trend, as seen in the log-scale inset.

When the shock ripple grows exponentially, i.e., for σb < −1, the long-time expression for the
shock-ripple amplitude is

ξs(τ � 1) = ξ 0
s exp

(√
1 − M2

2 σ τ
)
, (35)

where the pre-exponential factor and the asymptotic growth rate are determined by

ξ 0
s = m − 1

4m
+ σc(σc − σb)

m
√

2[1 + 2σc(σc − σb) + m]
(36)

and

σ =
√

1 − 2σcσb + m

2
(
σ 2

b − 1
) , (37)

respectively, with m = √
1 + 4σc(σc − σb). For the case considered in Fig. 4 (γ = 1.4, M1 = 10,

Q = 15), the growth rate renders σ

√
1 − M2

2 = 8.744, which agrees fairly well with the regression
line computed in Fig. 4.

On the other hand, when the shock evolves with constant-amplitude oscillations in the long-time
regime (−1 < σb < σc), the asymptotic behavior is directly given by the function

ξs(τ � 1) = ξ∞
s cos

(√
1 − M2

2 ω τ
)
, (38)
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FIG. 5. Left: Stability regions as a function of the energy release q and DK parameter �s. Isocurves of ε as
shown in Fig. 2. Triangles correspond to the computations in Fig. 4. Right: Sketch of the distinguished regimes
for both �s and σb parameters.

where the amplitude and the frequency are given by

ξ∞
s = m − 1

2m
+ σc

m

√
m − 1 − 2σb(σc − σb)

2
(
1 − σ 2

b

) (39)

and

ω =
√

2σbσc − 1

2
(
1 − σ 2

b

)(
m

2σbσc − 1
− 1

)
, (40)

respectively. The value of the asymptotic amplitude is ξ∞
s = 0.207 for the case considered in Fig. 4,

which presents perfect agreement with the long-time amplitudes given by the equation describing
the transient evolution Eq. (34). From Eqs. (39) and (40), the transition towards the unstable case
previously shown is seen, as they become singular for σb = −1.

2. Stability limits

The stability limits can be also derived by the corresponding normal-mode analysis, as done in
pioneering Refs. [20,21]. In particular, the unstable, sonic radiating, and highly damped regimes are
delimited by the condition �s = ϕuns, ϕrad, or ϕdam, where

ϕuns = −(
1 + 2M2

2

)
, (41)

ϕrad = 1 − M2
2(Rs + 1)

1 + M2
2(Rs − 1)

, (42)

ϕdam = RsM2
2 − (

1 − M2
2

)3/2√
1 − R−1

s

RsM2
2 + 1 − M2

2

, (43)

respectively. It can be seen that ϕuns, ϕrad, and ϕdam depend on the global jump conditions, that
is, they do not depend on the local slope of the RH curve. In addition, the dependence with the
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adiabatic index is implicit in the functions Rs and M2. For the sake of clarity, a sketch is depicted
in Fig. 5 along with the isocurves for ε shown previously in Fig. 2. On the right side, there is a bar
indicating the stability limits in terms of the traditional nomenclature (ϕ) and that naturally given
by the Laplace transform (σ ).

It is readily seen that, for the unstable region to be reached (zone in red), the value of �s must
be negative (reverse RH curve), a widely known result. In terms of the energy sensitivity, for this to
happen the value of ε must be positive and above (M1 − M−3

1 )/2. That is, ε must be of the same
order as M1. On the other hand, the radiating condition (zone in orange), conditions for the energy
sensitivity are much less restrictive, with small values being sufficient to enter into the nondecaying
region. Regular shocks, here defined by Q = ε = 0, lie in the green zone. For this case, as the
computation in Fig. 5 is made for a strong shock in air with γ = 1.4 = constant and M1 = 10, the
corresponding value of the DK-parameter �s � ϕrad. It is for negative vales of Q or ε when the shock
may enter into the highly damped regime (zone in blue). It is observed that curves �s = ϕrad and
�s = ϕdam collapse toward unity in the CJ condition, given at Q = Qmax. It highlights the fact that
the sonic condition downstream M2 = 1 is a distinctive regime, where transverse acoustic waves
do not have effective time to move along the shock surface.

Once defined, the distinctive limits, the associated critical values of ε can be given, provided that
�s is defined in Eq. (16). For example, the unstable threshold �s = ϕuns gives

εuns = −
ϕuns

R2
s

γM2
1

∂Ps
∂M1

− ∂Rs
∂M1

ϕuns
R2

s

γM2
1

∂Ps
∂Q − ∂Rs

∂Q

(44)

that admits, for the simple case g1 = g2 = γ , a simple expression in the strong-shock limit, namely,

εuns(M1 � Mcj ) = 2 + √
2γ (γ − 1)

γ + 1
M1 + O

(
M−1

1

)
. (45)

It dictates that εuns must be of the order of M1 for the strong shock to be fully unstable. Similarly,
when the value of the energy variations are dominant, either for Q = Qmin or Q = Qmax, the value
of ϕuns turns −1 and −3, respectively, which renders

εuns(Qmin) = (γ 2 − 2γ − 3 − 4Qmin)
√

γ + 1

2
√

2(γ − 1)(−2Qmin − γ − 1)
= (γ + 1)

M2
1 + 1

2M1
(46)

and

εuns(Qmax) = 2
√
Qmax[1 +

√
Qmax(1 −

√
Qmax + 1)] = M4

1 − 1

2M3
1

, (47)

which also places the critical energy sensitivity of the order of M1.
The function εuns is computed in Fig. 6 as a function of Q for γ = 1.4 (left) and γ = 1.01 (right)

and for different values of the shock Mach number M1. The corresponding limits for εuns(Qmin) and
εuns(Qmax) are also plotted (dashed lines). While the latter does not change with the adiabatic index,
the former is highly affected, as evidenced from Eq. (46), which shows a pole for Qmin = −(γ +
1)/2, but this condition is never achieved since Qmin < −(γ + 1)2/4 for M1 > 1. As predicted
through the asymptotic values shown in Eqs. (46) and (47), the fully unstable regime calls for very
high values of ε.

Similarly, the critical value of energy sensitivity for the radiation condition is

εrad = −
ϕrad

R2
s

γM2
1

∂Ps
∂M1

− ∂Rs
∂M1

ϕrad
R2

s

γM2
1

∂Ps
∂Q − ∂Rs

∂Q

=
M2

1 − 1 +
√(

M2
1 − 1

)2 + 4QM2
1

2M3
1

, (48)
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FIG. 6. Function εuns as a function of Q for γ = 1.4 (left) and γ = 1.01 (right) and for different values of
the shock Mach number M1.

which does not depend on the adiabatic index on the condition that g1 = g2 = γ . It is also instructive
to evaluate εrad in the strong-shock limit, i.e.,

εrad(M1 � Mcj ) = 1

M1
− 1 + Q

M3
1

+ O
(
M−4

1

)
, (49)

where it is found that the radiation condition is rather feasible for strong shocks, it requires very
small values of ε as it scales with M−1

1 in this limit. This trend does not change in the limits
Q = Qmax and Q = Qmin, since

εrad(Qmax) =
√
Qmax

(
√
Qmax + √

1 + Qmax)2
= M2

1 − 1

2M3
1

, (50)

εrad(Qmin) = (γ + 1)
√

γ 2 − 1

2
√

2
√−2Qmin − γ − 1

= γ + 1

2M1
. (51)

To complete the asymptotic analysis, the critical value of energy sensitivity for the highly damped
condition is found to be

εdam = −
ϕdam

R2
s

γM2
1

∂Ps
∂M1

− ∂Rs
∂M1

ϕdam
R2

s

γM2
1

∂Ps
∂Q − ∂Rs

∂Q

, (52)

which does not admit a simple expression, except for the strong limit that reads

εdam(M1 � Mcj ) = 2
√

γ − 1√
γ + 1

M1 + O
(
M−1

1

)
, (53)

provided that g1 = g2 = γ , and for the limiting cases for Q = Qmax,

εdam(Qmax) = −2
√
Qmax(

√
1 + Qmax −

√
Qmax) = −

(
M2

1 − 1
)2

2M3
1

, (54)

and Q = Qmin, the latter being the same as the radiating condition εdam(Qmin) = εrad(Qmin).
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FIG. 7. Critical values of energy change sensitivity, εrad and εdam, as a function of Q for different propaga-
tion Mach numbers M1 and for γ = 1.4 (left) and γ = 1.01 (right).

The values of εrad and εdam are computed in Fig. 7 as a function of the energy release Q for
different propagation Mach numbers M1 and for γ = 1.4 (left) and γ = 1.01 (right), where the
longitudinal domain covers Qmin < Q < Qmax. In solid lines, the curves associated to the DK limit
are displayed, εrad, while the values of εdam are shown by dashed lines. It is readily seen that the
region in between the solid and dashed lines refer to regular decay of the shock oscillations. This
region collapses for Q = Qmin, since εrad = εdam in this limit. The solid-line curves associated to
�s = ϕrad do not depend on the adiabatic index, as seen in Eq. (48), so the only difference between
the left and right panels is the stretching of the longitudinal domain given by the dependence of Qmin

with γ , since Qmax only depends on the shock strength. For each value of M1, the region above the
limit �s = ϕrad corresponds to the permanent-oscillations regime. The dashed-line curves associated
to �s = ϕdam do depend on the adiabatic index and the region below them for each Mach number is
assigned to highly damped oscillations. The end point on the right of each curve corresponds to the
associated CJ value, Q = Qmax =

√
M2

1 − 1 +
√
M2

1.
Qualitatively, the preferred region to get permanent oscillations in the first quadrant is observed

for Q > 0 and ε > 0. Contrarily, the most likely configuration to get oscillations that decay very
fast is when Q < 0 and ε < 0, although these criteria are not necessarily true, as depicted in Fig. 7.
As for the fully unstable conditions shown in Fig. 6, they are restricted to very high positive-energy
sensitivities with the shock strength. It must be noticed that, although the general theory is applicable
for processes that include changes in the adiabatic index, the previous asymptotic expressions
have been obtained for g1 = g2 = γ , as the postshock Mach number involves the two adiabatic
indexes. Since the variation of the adiabatic index is expected to be small, Eq. (9) dictates that
M2 = M1[1 − δγ /(2γ )]/

√
PsRs, thereby indicating a small error in the first approximation.

III. APPLICATION TO HIGH-ENERGY-DENSITY SHOCKS

The analysis presented in the preceding section is applicable under the following assumptions:
the nonadiabatic transformations of the fluid particles occur in a very thin layer right behind the
shock for the whole supersonic front to be considered a fluid discontinuity. This transformation is
allowed to depend on the local properties and, therefore, on the shock Mach number. In addition,
pressure, density, and temperature are related through the perfect gas equation of state in the
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perturbation variables in the equilibrium states, but ad hoc nonideal thermodynamic changes can
be incorporated across the RH equations, on the condition that they become negligible in the
equilibrium state downstream.

One example of this type is a gaseous detonation [38]. In this case, although the heat-release
rate is mainly affected by local properties behind the precursor shock wave, the overall heat
released also depends on the thermodynamic conditions once equilibrium conditions are reached.
Sufficiently strong changes in pressure or temperature could promote the formation of different
radicals, in which case the global thermodynamic equilibrium involving a combination of different
species could affect the overall amount of heat released. When the detonation is driven by reactions
that depend on local thermodynamic functions, the heat released depends on the shock strength.
Certainly, any particular case would call for a specific model to compute the variations in the
global heat released with the shock intensity. However, because pressure and temperature scale with
the shock strength squared for sufficiently strong shocks, such as those expected in detonations,
variations of the global heat released with the thermodynamic variables can be collected as term
Q = Q0(1 + δQM2

1), where δQ accounts for the dimensionless variation of heat release with two
independent thermodynamic functions.

The aim of this section is to find and analyze more examples where the above-mentioned hypoth-
esis are fulfilled with sufficient accuracy. The goal is to characterize flow transformations that may
appear in strong-shock conditions in terms of the governing parameters: upstream adiabatic index
γ , shock Mach number M1, dimensionless energy change Q (that accounts for changes in the gas
molecular structure), and energy sensitivity with the shock strength ε. They include excitation of the
vibrational degrees of freedom, molecular dissociation, ionization, and electromagnetic radiation.
A discussion of nuclear transformations is also included. For the sake of clearness, the dominant
effects that distinguish any of these phenomena are studied independently, although some of them
may likely coexist in real conditions. For the sake of generality and to place the focus on the energy
variations, a perfect-gas equation of state is assumed, admitting that this may not be accurate for
some high-energy-density scenarios [71].

A. Energy function for ionization, dissociation, radiation, and nuclear reactions

1. Ionization of monotomic gases

When a shock is sufficiently strong to ionize the gas, assumed monatomic, part of the electron
shell is removed from the atom electronic cloud. This is an endothermic effect that requires some
energy to be accomplished. Therefore, due to the nonmonotonic behavior of the shock adiabatic, it
is sensible to wonder if ionizing shocks could generate SAE. In fact, Glass et al. detected density
and electrons’ concentration perturbations far behind strong shocks traveling in inert argon [72]
and krypton [73]. In their shock-tube experiments, they observed that such patterns appeared if
the shocks were sufficiently strong. The theoretical explanation was offered by Mond et al. [7],
who demonstrated that ionization by electron-atom collisions and thermal nonequilibrium between
the electrons and heavy particles were indispensable to get SAE. Like in this paper, they reduce
the gas-dynamical shock together with the relaxation zone to an effective surface of discontinuity,
called ionizing shock, a robust approximation for gas-dynamical shocks that is not appropriate when
the characteristic length of the perturbations k−1 is of the same order (or smaller) than the ionizing
shock thickness, i.e., k� � 1. The characteristic length scale of the relaxation layer is proportional
to the mean-free path for ion-ion scattering in average conditions [74]. It must then be assumed that
the wavelengths of the emitted acoustic waves are much larger than the width of the relaxation zone
where magnitudes change continuously due to the inelastic processes taking place. High-frequency
perturbations may induce changes in the relaxation layer, so two-dimensional unsteady variations
in the ionization degree can be generated. Besides, perturbations may affect electron temperature
and ions temperature differently, and this difference increases when the period of the acoustic
oscillations is less than the characteristic time of the energy exchange between the heavy particles
and the electrons. The limit k� � 1 is addressed in Ref. [6] via WKB approximation.
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FIG. 8. Energy removed by ionization Q, associated energy sensitivity ε, and degree of ionization αi as a
function of the Mach number M1 for argon. Triangle: value of αi according to Ref. [72].

For this case, Q is restricted to the energy per unit mass subtracted to the fluid particles because
of single ionization in monatomic gases. The excitation of electronic levels are neglected since
they barely affect the bulk-flow properties and the stability limits [7]. The parameter I1

i defines
the minimum amount of energy required to remove the most loosely bound electron of an isolated
neutral gaseous atom. As it depends on the number of electrons removed, a general form to express
the nth ionization is X (n−1)+ + In

i → X n+ + e−, where X (n−1) is any atom capable of ionization,
X n+ is that atom with the nth electron removed, and e− is the removed electron. As detailed
in Appendix A, the energy employed to ionize the gas can be written in terms of the following
dimensionless variables:

Q = −αi
γ 2 − 1

2γ
φi, (55)

which is found to be proportional to the ionization degree αi and the dimensionless energy parameter
φi = I1

i /(kBT1), where kB is the Boltzmann constant. The problem formulation is closed, for a given
Mach number M1 and adiabatic index γ , with the aid of Eqs. (12), (8), (10) (for α = αi), and (55),
and the corresponding Saha equation for the dissociation degree Eq. (A2). They form a system of
five equations for Rs, Ps, Ts, Q, and αi. The equation of state depends on the ionization degree as a
result of the contribution of the partial electron pressure to the total pressure of the ionized plasma
[75], on the condition that thermal equilibrium is reached.

To establish a connection with the shock stability theory presented before, it is necessary to eval-
uate the value of Q(M1) along with the value of the energy change sensitivity ε = (dQ)/(dM1).
Figure 8 shows the energy removed by ionization Q, associated energy sensitivity parameter ε,
and degree of ionization αi as a function of the Mach number M1 for argon. As expected, the
function αi approaches unity for high Mach numbers, and the parameter Q follows the same trend
but multiplied by the factor ∼325 given by Eq. (55). Complete ionization is found to happen for
M1 ∼ 37 as shown in Fig. 12 and highlighted in the inset. However, this is found to occur for very
strong shocks, for which the shocked gas may undergo subsequent ionization and photoionization
processes [76]. Such a multiple ionization might result in the appearance of a sequence of maxima
in the function Rs(Ps) shown in Fig. 12. The parameter ε reaches a nearly plateau region at
intermediate shock intensities after which it rapidly drops as the Q becomes constant. For this case,
ionization and thermal equilibrium are established at each time during the perturbation. However,
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FIG. 9. Energy removed by dissociation Q, associated energy sensitivity ε, and degree of dissociation αd

as a function of the Mach number M1 for N2 [10].

thermal equilibrium between electrons and the heavy particles may not be achieved during one
period of the perturbation when the oscillation frequency is sufficiently high.

2. Dissociation of diatomic gases

In standard conditions, diatomic gases are characterized by γ = 7/5 as two rotational plus three
translational degrees of freedom enter into play. For very low temperatures, the gas behaves as
it were monotonic as molecules stop rotating, thereby yielding γ = 5/3. By way of contrast, if
temperature increases (∼ 3000 K for H2), the two-atom molecule behaves as a pure oscillator and the
idealized vibrational mode should be included by adding two degrees of freedom. They correspond
to potential and kinetic energy components. In total, there exist seven degrees of freedom that render
γ = 9/7 for high-temperature conditions. At some point, interatom vibrations are sufficiently strong
to split apart the two atoms of the molecule, a process that is called dissociation. If all molecules
have been dissociated, the gas becomes monatomic and γ = 5/3 is recovered.

For this case, the dimensionless energy per unit of mass subtracted to the fluid particles,

Q = −12

35

[
αd

(Ts

2
+ φd

)
+ (1 − αd )

φv

eφv/Ts − 1

]
, (56)

is not simply proportional to the degree of dissociation αd as postshock properties enter into play
through the factor Ts. The dimensionless factors φd and φv refer to the corresponding dissociation
and vibrational potentials, as shown in Appendix B. In obtaining Eq. (56), it has been made use
of γ1 = 7/5 (upstream), γ2 = 7/5 (downstream nondissociated gas) and γ3 = 5/3 (downstream
dissociated gas). The assumption of γ2 = 7/5 stems from the fact that vibrational degrees of
freedom are neglected. The problem formulation is closed, for a given Mach number and the
adiabatic indices, with the aid of Eqs. (12), (8), (10) (for α = αd ), (56), and (B2), which comprise a
system of five equations for Rs, Ps, Ts, Q, and αd .

Figure 9 shows the energy removed by dissociation Q, associated energy sensitivity ε, and degree
of dissociation αd as a function of the Mach number M1 for N2 [10]. Unlike previous ionization
process, the endothermic process does not cease when gas runs out of diatomic molecules αd = 1
since there exists a term proportional to Ts in Eq. (56) as a result of the change in the adiabatic
index. This effect would be modified if the change in the adiabatic index as as result of potential
vibrations is accounted for, i.e., γ2 = 9/7 or, more accurately, a temperature-dependent function is
employed to describe γ2(Ts).
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Both in ionization and dissociation shocks, the acoustic time is assumed to be much greater than
the transit time in the relaxation layer behind the adiabatic shock. This assumption, which strongly
depends on upstream conditions, is more effective when ion-ion collision frequency is sufficiently
high as occurs in dense plasma.

3. Electromagnetic radiation

Several astrophysical phenomena involve rRSs with various physical characteristics regarding
their spatial structure or their dynamics [43,58–64]. As an example, they occur in supernovae, either
in core-collapse or thermonuclear [45]. For gravitational or CCSNe, the RS is nearly adiabatic at
the early time of the propagation of the shock after bounce [77] and once it is recognized that the
adiabatic coefficient γ of a fluid with matter and photons is γ = 4/3, the material compression,
Rs ≡ ρ2/ρ1, at the shock front is close to the value Rs = (γ + 1)/(γ − 1) = 7 [43,77]. In contrast,
thermonuclear supernovae (SNe) experience a thermonuclear detonation (see next subsection) with
energy release behind and at the shock front, making the adiabatic approximation not valid anymore
for the modeling of the propagation of the RS. Nevertheless, in both cases, radiation plays a
significant role and the energy and pressure of the photons should be taken into account in the
momentum and energy balances.

RSs are also of great importance in the evolution of the interstellar medium. In that case, the
radiative energy (respectively, radiation pressure) is, however, negligible compared to the thermal
energy (respectively, to the thermal pressure). Indeed, since the Interstellar medium (ISM) is mostly
optically thin, photons leave the downstream flow but, at the same time, they produce a cooling
in the bulk of the fluid. As a consequence, a compression above Rs ∼ 100 can be achieved in
the shocked material although the shock front is adiabatic with a compression Rs ∼ 4 (the ISM
has γ = 5/3) [78]. This cooling can be described by an energy loss per unit mass, Q, at the shock
discontinuity. Barenblatt et al. [70,79] have accounted for such an effect in a phenomenological way
by choosing a linear dependence q(T2) ∝ T2 and by taking an effective adiabatic coefficient, γeff , at
the discontinuity smaller than γ . With such a free parameter, the authors evidence analytically the
high densification of the material at the shock front due to cooling and they show that for γeff → 1,
one gets Rs � 1. This linear approximation for Q is, however, not relevant for an actual RS where
the losses at the density jump should be described by the radiation flux Fr = − f σT 4

2 , where σ is
the Stefan–Boltzmann constant and where f is a positive numerical factor (the minus sign accounts
for the energy leaving the downstream flow).

The structure of optically thick RSs can be very complex according to the value of the Mach
number M1 but a detailed description can be found in Ref. [43]. The structure of an optically thin RS
has been studied by Draine and McKee [78] (see Fig. 1) and it is shown that radiation modifies both
the downstream and the upstream flows. In the thermalized zone, far behind the discontinuity (the
distance should be much larger than the photon mean-free path λ), the temperature has decreased as
a consequence of radiation losses and, consequently, the material is highly compressed. Ahead of
the jump, a fraction of the photons coming from behind are absorbed over distances larger than λ. In
this region, the upstream material is therefore heated, giving rise to the so-called radiative precursor.
In the precursor, the pressure gradient is small enough so the fluid remains almost at rest and the
density profile is not modified. Certainly, this property is no longer valid in optically thick RSs.
In this analysis, the precursor and a large fraction of the flow behind the shock are collapsed into a
single discontinuity with zero extension. Therefore, ahead of this discontinuity, the flow corresponds
to the unmodified, uniform, upstream flow and behind the discontinuity the flow is described as in
Ref. [78]. This limit excludes perturbations whose characteristic size is comparable or smaller than
the inner RS structure. On the other hand, and for the sake of clarity, the radiation energy and the
radiation pressure will be neglected compared to the thermal energy and the thermal pressure of the
gas, respectively.

For an optically thick material, the photon distribution obeys the black body law and f = 1, and
for an optically thin fluid, L/λ � 1 where L is the longitudinal extension of the downstream flow
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FIG. 10. Energy loss by radiation Q and the associated energy sensitivity ε as a function of the Mach
number M1 for γ = 5/3.

[59,63]. As derived in Appendix C, the dimensionless energy loss is

Q = −φ
γ 2 − 1

4M1
T 4

s , (57)

where φ = 2 f σT 4
1 /(ρ1a3

1). In the strong-shock limit, the radiative flux scale as Fr (M1 � 1) =
−ρ1a3

1 M3
1/2. Replacing the Mach number by its expression gives Fr (M1) = ρ1u3

1/2, which is
equivalent as saying that all kinetic energy of the incoming material is radiated away from the
downstream flow. The high value of the temperature behind the shock front then results from both
the strong compression of the material and the thermal energy of the upstream gas. On the other side,
the radiative dimensionless energy Q(M1 � 1) = −(γ 2 − 1)M2

1/4 shows an interesting behavior,
as it does not depend on φ and it equals Qmin in Eq. (14) in the limit M1 � 1. That is, the energy
radiated is the maximum energy the fluid particles can lose. In this condition, pressure remains finite
(by Rayleigh line) p2 = p1(1 + γM2

1) but velocity remains stagnant in the shock reference frame
as a result of the density unbounded rise. Consequently, the energy sensitivity is ε(M1 � 1) =
−(γ 2 − 1)M1/2, which is always negative, thereby anticipating a decaying regime for the shock
oscillations.

Figure 10 shows the energy loss by radiation Q and the associated energy sensitivity ε. It is
clearly identified to distinguished regimes. The relatively low Mach number regime for which en-
ergy release is very small and consequently, postshock flow variables remains effectively unaltered,
and the latter associated to the maximum compression ratio determined by Q(M1 � 1) = Qmin.
The transition occurs for shock intensities of the order of M1 ∼ φ−1/5.

4. Thermonuclear transformations

At the end of their lives, massive stars develop central cores made of iron nuclei and generate
electrons. The iron core becomes unstable when it accumulates more than ∼1.4 solar masses, a
limit set by the maximum pressure that the degenerate electrons can provide. A rapid collapse to a
protoneutron star ensues, launching a strong shock into the stellar envelope. As it ventures outward,
the shock has to break up iron nuclei, exhausting its energy and quickly turning into a stagnant
accretion shock. To produce a supernova, known as CCSNe, the shock has to revive in less than a
second and then expel the stellar envelope. Despite decades of effort, the exact details of how to
revive the shock is not fully understood. Heating by neutrinos emitted by the protoneutron star and
the interaction of the shock with multidimensional hydrodynamic phenomena, such as turbulence
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and standing accretion shock instability, are expected to play a major role in its revival (see, e.g.,
Refs. [55–57] for recent reviews). As a first approach, the breaking of the heavy nuclei can be
incorporated into the nonadiabatic shock model akin to the molecular dissociation presented before.
For this reason, this effect is not computed in this section, although further details can be found in
Appendix D.

Unlike CCSNe, thermonuclear supernovae develop as a the nuclear ignition temperature is
achieved inside white dwarf stars composed primarily of C and O nuclei and detached degen-
erate electrons [45,47]. At high temperatures, thermonuclear subproducts may endothermically
dissociate with the corresponding energy subtractions. Therefore, the net energy balance across
the thermonuclear SNe must account for both the coupled endothermic and exothermic processes
coexisting behind the shock. In addition, in realistic situations, the nuclear fuel does not undergo
full burning at the shock, an effect that can be modeled by means of an ad hoc contribution
∼ exp(−φeff/Ts), which converges to unity with temperature as 1 − φeff/Ts. This is roughly sim-
ilar to solving the associated Saha equation. Low values of φeff are associated with efficient
burning rates even at low temperatures, while the contrary applies for high values of φeff, which
demands very high temperatures to get order-of-unity values of the fuel mass fraction consump-
tion. A rough estimate for this factor in the strong-shock limit is φeff ∼ M2

1, which leads to
partial burning in the whole domain but takes into account the temperature-dependent character
of the process. This is used (see Appendix D for details) to write the net dimensionless energy
release as

Q = γ 2 − 1

2γ
exp

(
−φeff

Ts

)
(φtn − Xαφnd ), (58)

where φtn is the dimensionless contribution of the exothermic thermonuclear reactions and φnd

measures the energy subtracted by dissociation processes, on condition that Xα � 1. There exists
a positive correlation between the amount of heat release and shock intensity, on the condition that
Xα is small. As found in gaseous detonations [38], this may lead to constant-amplitude oscillations
of the perturbed shock.

Akin to chemical-driven detonations, thermonuclear detonations may exhibit unstable behavior
as a result of the high sensitivity of inner structure with temperature. Then, the decrease of the
activation energy in the reactive mixture tends to stabilize the gaseous detonation. The general
tendency of thermonuclear detonations in white dwarfs is that the smaller the density of the
degenerate fuel, the smaller the reduced activation energy is and the more stable the thermonuclear
detonation travels [80]. It must be noted that heat is dominantly transported via diffusive effects in
reactive gases, a much slower process than the characteristic acoustic transmission given by ions
collisions. This makes the shock be the forefront of the wave and the inner structure be dominated
by acoustic and chemical kinetics only. In thermonuclear detonations, however, high-temperature
ionized plasma can convey heat via electron and photon collisions and the characteristic velocity
of these processes can be higher than the speed of sound, thereby invalidating the shock-precursor
scheme and the acoustically dominated flow downstream. For the present analysis to be applicable,
in addition, the compressed gas must be in thermal equilibrium.

B. Stability limits for ionization, dissociation, radiation, and nuclear reactions

Figure 11 shows the DK parameters �s, ϕrad, and ϕdam as a function of the shock Mach number
for adiabatic shocks, gaseous detonations as in Ref. [38], ionization shocks, dissociation shocks,
RSs, and thermonuclear detonations. The parameters chosen are specified in previous sections. For
the six cases computed, it can be seen that fully unstable regimes are never achieved.

For adiabatic shocks, Fig. 11(a), the function �s is always in the green region, except for M1 � 1
where it approaches the function ϕrad. This is consistent with the regular oscillation decay t−3/2

(t−1/2 in the strong-shock limit) of the shock amplitude oscillations [2]. Figure 11(b) shows the
case of gaseous detonations, whose heat release is modeled with Q = Q0(1 + δQM2

1) for as-small
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FIG. 11. DK parameter �s and limits ϕrad and ϕdam as a function of the Mach number M1 for adiabatic
shocks (a), gaseous detonations as in Ref. [38] (b), ionization shocks in argon (c), dissociation shocks in
molecular nitrogen (d), radiative shocks for γ = 5/3 (e), and thermonuclear shocks for γ = 4/3 (f).

positive values of the correlation parameter δQ. It shows the transition to the SAE, as predicted
in Ref. [38]. Negative values of δQ will place the curve �s above ϕdam, in the highly damped
regime. Results for δQ = 0 agree with previous theoretical predictions, see Refs. [32,35,36]. They
show damped oscillations when the inner structure does not play a significant role in the burnt-gas
dynamics. It must be noted that it is not the ordinary case when considering reactive gases where
the reaction progress depends exponentially on temperature.

For ionization shocks, the parameter �s is plotted in Fig. 11(c) as a function of the Mach number
M1 for argon at T1 = 300 K and p1 = 5 Torr, along with the functions ϕrad and ϕdam. It can
be observed that the shock is always stable for any value of shock strength, in agreement with
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Ref. [7] when thermal equilibrium is imposed. Moreover, the shock enters into the highly damped
oscillations regime. In their works [6,7], it was shown that ionization by electron-atom collisions
and thermal nonequilibrium between the electrons and heavy particles are indispensable to get SAE.

Dissociation shocks, according to the computations made for nitrogen in preshock standard
conditions, exhibit a similar behavior, as seen in Fig. 11(d). The shock decays in a regular way (green
zone) except in a medium region (10 � M1 � 30, for this particular case), where its oscillations
decay faster (�s > ϕrad). Although not shown, beyond M1 = 30, the curve for �s asymptotically
approaches the curve ϕrad. This result agrees with Ref. [10], where it was shown that solely the
dissociation process is not enough to produce SAE, and that ionization and nonthermal equilibrium
are necessary for the shock to exhibit that behavior. The qualitative difference between Figs. 11(c)
and 11(d) stems from two facts: On one side, the post-shock Mach number Eq. (9) is affected
by having g2 �= γ , on the other side ionization-induced energy variations tend to a constant when
the shock Mach number increases, while the energy variation grows unbounded as a result of the
dissociation process for the change in the adiabatic index. That is, ε = 0 and ε < 0 for ionization and
dissociation shocks, respectively, when M1 � 1. In connection with Fig. 5, which was computed
for γ = 7/5, a strong shock in thermal equilibrium will be placed in the green or blue region placed
on the left side (Q < 0) and below the axis �s = 0.

Radiation effects are displayed in Fig. 11(e) for different radiation constants, φ = 10−1 and 10−5.
None of these cases, and none in any other within the range 0 � φ � 1, will render SAE. It is
rather the opposite, the endothermic effect q < 0 and its correlation with the shock intensity ε < 0
makes the shock oscillations decay faster than the adiabatic case toward its final planar form for
sufficiently strong shocks. This is in part due to the isolated effect of the radiation losses, where,
unlike previous cases, no change in the equation of state has been considered. Moreover, the effect
of pressure radiation could also enter into play, but the model should be rewritten to account not
only for changes in the energy equation but also the momentum equation.

Thermonuclear exothermic shocks, displayed in Fig. 11(f), are found to render SAE when the
factor φeff ∼ 10. The adiabatic index is chosen to be 4/3 to model relativistic degenerate gas.
This effect is similar to that found in Ref. [38] for gaseous detonations, where the detonation may
oscillate permanently when heat-release correlation with the shock intensity was sufficiently strong.
There, positive feedback that heat release exert on the detonation dynamics was found, which is
not unlike the Rayleigh criterion for the thermoacoustic instability. Nuclear dissociation alone, not
computed for the sake of conciseness, was previously found to lie on the regular and highly damped
oscillating regime [52]. The formulation presented here supports these results.

IV. CONCLUSIONS

This paper is an extension of previous work [38] that considered the DK instability in gaseous
detonations. The present paper includes endothermic and exothermic effects and the general for-
mulation does not restrict itself to any particular form for the dependence of energy Q with the
shock Mach number M1. The theory does restrict to low-frequency oscillations whose characteristic
length is much larger than the nonadiabatic shock thickness and the perfect gas equation of state.
Besides, constant base flow (stable inner structure) and isolated boundary condition are assumed,
which reduce the limits of validity of the results [15,16]. The effect of supporting boundary
conditions, along with the effect of radiation pressure and energy, is left for future work.

In terms of general properties, it is found that the fully unstable regime, that predicting an
exponential growth of the shock front perturbations, calls for a very high energy sensitivity
ε = (dQ)/(dM1). That is, the energy variations associated to the change in the shock intensity
must be of the order of the shock Mach number. The acoustic radiating condition, or SAE, is less
demanding in regard to the energy sensitivity. Small-to-moderate values of ε, of the order of M−1

1 ,
may suffice to put the shock in constant oscillation, even when the flow undergoes an endothermic
transformation across the shock. The opposite limit associated to a strong damping is easy to achieve
when, although not restricted to, endothermic configurations. Analytical expressions for ε in the
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distinguished limits are provided, along with computations of the transient evolution of the shock
front.

The general theory is also applied to different contexts of interest in high-energy-density
physics, they are ionization, dissociation, radiative, and thermonuclear shocks. The model allows
the inclusion of any phenomenon that may alter the energy balance across the shock, as it is the
change in the adiabatic index or the excitation of vibrational degrees of freedom in the molecules.
The global energy change Q is then analyzed in terms of its sensitivity ε to study the stability
limits. It is observed that endothermic processes generally place the shock into regular and highly
damped oscillations, on the condition that there exits thermal equilibrium downstream. It applies
for ionization, dissociation, which are in agreement with [6,10], but also radiation phenomena.
Exothermic effects are more likely to develop an unstable behavior when energy release is positively
correlated with the shock intensity, as found in thermonuclear detonations and previously in gaseous
media [38].
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APPENDIX A: DERIVATION OF THE MONATOMIC-GAS IONIZATION ENERGY EQUATION

This section will consider the first ionization only. The value of I1
i is tabulated and can be found

for many substances. For example, I1
i = 15.7596 eV for the first ionization energy of argon. This

effect can be included through the one-dimensional energy conservation equation, namely,

γ

γ − 1

p1

ρ1
+ u2

1

2
= γ

γ − 1

p2

ρ2
+ u2

2

2
+ αi

I1
i NA

W
, (A1)

provided that thermodynamic equilibrium is achieved downstream and that the adiabatic index for
the monatomic gas γ = 5/3 remains invariant since electrons and ions also have three degrees of
freedom. The parameters W and NA are the molecular weight of the specie and is the Avogadro
number, respectively. The parameter αi = ne/(na + ni ) defines the degree of ionization, where the
terms ne, na, and ni are the concentrations of free electrons, neutral atoms, and positive ions,
respectively. Neutral conditions for single ionization are met when ne = ni. The influence of
radiation can arguably be ignored in the range of parameters of interest since the characteristic
length of the radiation-due changes is much longer than the width of the relaxation zone.

Assuming that temperature is not high enough for the fluid particles to undergo photoionization,
the process can be fully described by accounting for ionization resulting from ions, atoms, and
electron collisions. Then, the degree of ionization can be written, in terms of the thermodynamic
parameters, using the Saha equation [6],

α2
i

1 − αi
= Gi

ni + na

(
mekBT2

2π h̄2

)3/2

exp

(
− I1

i

kBT2

)
, (A2)

where kB is the Boltzmann constant, h̄ is the reduced Planck constant, and me is the mass of the
electron. The function Gi depends on the partition functions of ions and atoms. Since the electronic
excitation is neglected, a constant value could be assumed. In fact, we consider Gi = g0eg0i/g0a,
where g0e = 2, g0i and g0a are the statistical weights of the ground states of electrons, single-charge
ions, and atoms, respectively.
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FIG. 12. Density jump Rs as a function of Ps (left) and Ts (right) for γ = 5/3, M1 = (1, 48). Conditions
chosen to be similar to Ref. [6].

In terms of dimensionless variables, the degree of ionization is readily obtained after simple
manipulation of Eq. (A2), reading

αi = 2
√
ψi(

√
ψi + 1 −

√
ψi ), (A3)

where the function

ψi(Ts,Rs) = Bi
T 3/2

s

Rs
exp

(
−φi

Ts

)
(A4)

includes the dependence with the temperature and density jumps across the shock, Ts and Rs,
respectively. The constants

φi = I1
i

kBT1
and Bi = Gi

4

(
me

2π h̄2

)3/2 (kBT1)5/2

p1
(A5)

are functions of the upstream flow conditions. Then, along with the parameters describing the
inelastic processes, the Hugoniot curve shape and the stability criteria are functions of the upstream
flow properties through the parameters φi and Bi, which render ∼610 and ∼214, respectively, for
argon at T1 = 300 K and p1 = 5 Torr [6]. The latter somewhat computes how effective ionization
is by interatom and atom-electron collisions, while the former defines the incipient temperature
condition for ionization to become non-negligible. The implicit algebraic system of equations is
closed, provided that Rs, Ts are defined in Eqs. (12), (10), and the dimensionless energy change is
given in Eq. (55).

In Fig. 12, the RH jump conditions for a broad range of incident Mach numbers are computed.
The effect of ionization is clearly distinguished, as it enhances the gas compression in the initial
stage. As expected, the degree of compression reaches by ionizing shocks exceed the classical
limit of Rs = 4 [81]. The value and position of the compression ratio peak agrees with the result
experimentally obtained by Glass and Liu [72] and numerically by Refs. [6,82]. For sufficiently
high pressures, the density jump drops toward its adiabatic classical limit, which translates into a
reversion in the RH curve, or βRH > π/2 as in Fig. 2. The inflection point placed in the high-pressure
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region separates two distinguished regimes: on the left-hand side, ionization dominates while on the
right-hand side ionization becomes negligible as it can be taken accomplished.

APPENDIX B: DERIVATION OF THE DIATOMIC-GAS DISSOCIATION ENERGY EQUATION

Interest is placed in shock-driven transformations. Streamwise integration of the energy-
conservation equation across the dissociation shock gives

γ1

γ1 − 1

p1

ρ1
+ u2

1

2
= p2

ρ2
+ u2

2

2
+ (1 − αd )

(
1

γ2 − 1

p2

ρ2
+ TvNAkB

W

1

eTv/T2 − 1

)

+αd

(
2

γ3 − 1

p2

ρ2
+ Id NA

W

)
, (B1)

where the situation where the excitation of the vibration and dissociation of diatomic molecules
dominate the inelastic process has been considered. The factor αd refers to the dissociation degree, Id

is the Bond-dissociation energy, and Tv = (2π h̄ν)/kB is the threshold temperature for the vibrational
excitation mode, where ν is the characteristic oscillation frequency of the molecule. Ideally, the
adiabatic indices refer to γ1 = 7/5 and γ3 = 5/3 but γ2 is a function of temperature with the two
limiting cases for γ2 being 7/5 and 9/7, depending on the degree of excitation of the vibrational
modes. This equation can be easily extended to include ionization by adding the corresponding term
proportional to αdαi, provided that ionization is a process that usually initiates after dissociation.
This effect is omitted here for the sake of conciseness.

Assuming that the characteristic time of dissociation is much smaller than the period of the
perturbations, the dissociation degree is determined by the Saha equation [8,10],

α2
d

1 − αd
= 4Bd

√
Ts

Rs

[
1 − exp

(
−φv

Ts

)]
exp

(
−φd

Ts

)
, (B2)

where

Bd = Gdφr

4
m5/2

A

(πkB)3/2

h̄3

T 3/2
1

ρ1
, φr = Tr

T1
, φv = Tv

T1
and φd = Id

kBT1
(B3)

are the independent dimensionless parameters that characterize the diatomic gas. The pre-
exponential factor Gd = g2

0a/g0m, where g0a and g0m are the statistical weights of the ground states
of atoms and diatomic molecules, respectively, the mass of the atom mA and the characteristic
temperature for rotational excitation Tr through φr . The factors φv and φd are the dimensionless
characteristic vibrational and dissociation temperatures, respectively. Bd ∼ 3.5 106, φr ∼ 0.01,
φv ∼ 11.3, and φd ∼ 380 are found for N2 at T1 = 300 K at p1 = 1 atm. As a matter of example,
Tr = 87.5 K, Tv = 5986 K, and Td = 52438 K for H2 [8].

The degree of dissociation can be easily reduced to dimensionless variables to yield αd =
2
√
ψd (

√
ψd + 1 − √

ψd ), where the function

ψd (Ts,Rs) = Bd

√
Ts

Rs

[
1 − exp

(
−φv

Ts

)]
exp

(
−φd

Ts

)
(B4)

includes dependence with the temperature and density jumps across the shock, Ts and Rs, respec-
tively. In contrast to ionization shocks, the factor Ts enters with the power 1/2 and two exponential
factors appear. The one associated to dissociation kills the function ψd at low temperatures, while
the one associated to vibration does likewise at very high temperatures. Once the system of equations
is solved, and then the degree of dissociation is given by a relation with the shock strength αd (M1),
the dimensionless energy per unit of mass subtracted to the fluid particles can be computed, see
Eq. (56).
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APPENDIX C: DERIVATION OF THE ELECTROMAGNETIC RADIATION ENERGY EQUATION

With negligible radiation energy and pressure, the first two RH Eqs. (2) and (3) are unchanged
but Eq. (4) becomes

ρ1u1

(
γ

γ − 1

p1

ρ1
+ u2

1

2

)
+ Fr = ρ2u2

(
γ

γ − 1

p2

ρ2
+ u2

2

2

)
, (C1)

where Fr is negative and that indicates that fluid particles loss energy, since ρ1u1 = ρ2u2 > 0.
According to the definition in Eq. (11), the radiative dimensionless energy

Q = − f
γ 2 − 1

2ρ1a3
1

1

M1
σT2

4 (C2)

is a definite negative function. In addition to the explicit dependence with respect to M1 in Q, the
Mach number will also appear implicitly through T2.

Equation (C1) is nonlinear and provides the dependence of the dimensionless temperature
Ts = T2/T1 in terms of the Mach number M1. This dependence can be obtained by the proper
manipulation of the conservation equations. Continuity Eq. (2) is inserted in Eqs. (3) and (C1) to
give

Ts − R−1
s

[
1 + γ (1 − R−1

s )M2
1

] = 0, (C3)

(γ − 1)φT 4
s + 2M1Ts + [

(γ − 1)
(
R−2

s − 1
)
M2

1 − 2
]
M1 = 0 (C4)

as the system of equations for the two unknowns R−1
s and Ts, where the positive dimensionless

constant φ reads

φ = 2 f
σT1

4

ρ1a3
1

. (C5)

Simple manipulation renders a polynomial of degree nine for R−1
s . However, if the linear term

in Eq. (C4) is replaced by Eq. (C3), a simpler expression for temperature, namely,

T 4
s = 1

φ

γ + 1

γ − 1

(
1 − R−1

s

)(
R−1

s,ad − R−1
s

)
M3

1 (C6)

is obtained, where the factor Rs,ad, which corresponds to the adiabatic condition given in Eq. (12)
for Q = 0, is conveniently introduced. Equation (C6) is found to be very instructive because it
allows the derivation of the major contribution in the dependence on M1 for the scaling of Ts in
terms of the Mach number, irrespective of the value of R−1

s . Indeed, when M1 varies, R−1
s remains

in the very small range 0 < R−1
s < R−1

s,ad, and, therefore, its net contribution in Eq. (C6) is almost
insensitive to the value of M1. It is readily seen that radiation losses produce an overdensification at
the shock front, thereby rendering 1 < Rs,ad < Rs to ensure a positive value to the right-hand side
of Eq. (C6). Once Ts(M1) is obtained from Eq. (C6) and inserted in Eq. (C3), the ratio Rs(M1) ∼
[1 + γ (1 − R−1

s )M2
1]/Ts(M1) provides the dependence of the density jump with M1, provided

that variations of 1 − R−1
s are small.

To further simplify the analysis, the strong shock approximation, M1 � 1, can be justifiably
applied, thereby allowing the writing of the downstream quantities in terms of power laws of
M1. Anticipating that Rs � Rs,ad and replacing the latter by its strong-shock asymptotic value
(γ + 1)/(γ − 1), Eq. (C6) immediately gives T 4

s ∼ M3
1/φ, yielding Ts(M1) ∼ φ−1/4 M3/4

1 , with
the power 3/4 < 1 being the result of the net contribution of the adiabatic shock Ts ∝ M2

1 and
the countercase scenario for fully RSs, Ts ∝ M1/2

1 , where both radiation energy and the radiation
pressure are taken into account [43]. It is not surprising that the RS with the radiative flux only leads
to a temperature growth with M1 slower than for the adiabatic case but faster than for the fully
radiative regime.
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FIG. 13. Density Rs (left) temperature Ts (right) jumps as a function of M1.

Using the strong-shock limit derived for postshock temperature in Eq. (C3) renders Rs ∼
γ φ1/4(1 − R−1

s )M5/4
1 , which can be further reduced to Rs(M1) ∼ γ φ1/4M5/4

1 for Rs � 1. Un-
like adiabatic shocks, the mass-compression ratio grows unbounded for M1 � 1, thereby rendering
1 − R−1

s ∼ 1 and R−1
s,ad − R−1

s ∼ (γ − 1)/(γ + 1), as previously assumed. As a direct conse-
quence, the downstream velocity goes to zero and matter accumulates just behind the shock front,
resulting in a diverging mass density. On the other hand, the pressure ratio is Ps = RsTs ∼ γM2

1,
where it is noticed that φ is missing, thereby being the same as that for an adiabatic shock.

The functions Rs and Ts are plotted in Fig. 13 as a function of the shock strength M1 for both
whole-range (solid) and asymptotic strong-shock (dashed) conditions. By simple inspection of the
corresponding strong-shock limits, it is observed that M1 ∼ φ−1/5 marks the region where functions
Ts and Rs detach from the curve (φ = 0) toward their corresponding asymptotic trends derived in
the previous paragraph.

APPENDIX D: DERIVATION OF ENDOTHERMIC AND EXOTHERMIC NUCLEAR REACTIONS

When considering nuclear dissociation in CCSN shocks as an isolated phenomenon, and assum-
ing nuclear statistical equilibrium, the mass fraction of each of the free neutrons, free protons, and
alpha particles is given by the nuclear Saha equation. For simplicity, it is further assumed only
alpha particles are present in the cold upstream flow, while in the postshock flow, due to high
temperatures, a fraction of alpha particles are dissociated into free protons and neutrons. This is
indeed a simplified picture, although the qualitative aspects of the dissociation energy are captured
sufficiently well. A simple justification is given by the fact that the binding energy of nucleons in
alpha particles is Ebin ∼ 7.075 MeV per baryon, which is within ∼20% of other nuclei present in
flow such as oxygen or iron.

The mass fraction of free nucleons can be obtained form the Saha equation [83]. Using the fitting
function of Ref. [84], the approximate solution

Xα = Bnd1

(T 3
s

R2
s

)3/8

exp

(
−φnd1

Ts

)
(D1)
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can be used to compute the mass fraction of alpha particles on condition that Xα < 1, since Eq. (D1)
grows unbounded for Ts � 1. The coefficients are

φnd1 = 7.075

T1,MeV
, Bnd1 ∼ 2.8

(
T 3

1,MeV

ρ2
1,9

)3/8

, (D2)

where ρ1,9 is the preshock density in units of 109 g/cm3 and T1,MeV is the temperature in the
preshock region in units of MeV. For accretion shocks in CCSNe, ρ1,9 and T1,MeV are ∼1. The di-
mensionless dissociation energy is then Q = −Xαφnd1(γ 2 − 1)/(2γ ). The exponential dependence
indicates that nuclear dissociation does occur effectively for temperatures sufficiently large, i.e.,
when φnd1/Ts ∼ 1 or smaller. It is then straightforward to relate it with the energy-release sensitivity
relative to the shock strength ε. Notice that energy subtracted from by nuclear dissociation is a
complex phenomena that depends nonlinearly on the changing upstream conditions. This process is
typically simplified to be proportional to the hydrodynamic incoming energy through the Bernoulli
parameter [49–51]. In such cases, the planar shock is found to always be stable [52].

Calculating the energy release in thermonuclear SNe is complicated for a number of reasons,
including the large number of reactions involved and coupling to hydrodynamics [45]. A rough
estimate can be obtained in the following way. For simplicity, it is assumed that the nuclear
fuel burns into 56Ni at the shock. For white dwarfs that mainly consist of 12C and 16O before
explosion, this process releases 0.79 MeV per baryon (or 44.4 MeV per 56Ni nucleus), which is
just the difference in the binding energies of 56Ni and two 12C and 16O nuclei. At high temperatures,
56Ni may endothermically dissociate into smaller nuclei, a process that can take up to 1.6 MeV
per baryon, when 56Ni split into alpha particles. Heavier sub-products will lead to smaller energy
subtractions. Therefore, the net energy balance across the thermonuclear SNe must account for both
the coupled endothermic and exothermic processes coexisting behind the shock. The corresponding
Saha equation reads

Xα ∼ Bnd2

(T 3
s

R2
s

)13/28

exp

(
−φnd2

Ts

)
, (D3)

for Xα � 1, where

φnd2 = 1.6

T1,MeV
, Bnd2 ∼ 3876

(
T 3

1,MeV

ρ2
1,9

)13/28

, (D4)

and ρ1,9 is the preshock density in units of 109 g/cm3. In the context of thermonuclear supernovae,
ρ1,9 and T1,MeV are roughly of the order of 1, so φnd2 is the order of unity while Bnd2 ∼ 103 − 104.
The corresponding energy release is offered in Eq. (58).
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