
PHYSICAL REVIEW FLUIDS 5, 112301(R) (2020)
Rapid Communications

Pipe flow with large particles and their impact on the transition to turbulence
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The classical transition from laminar to turbulent flow is affected if solid particles are
added. The transition behavior is a function of particle size d and solid volume fraction
φ and the flow undergoes a smooth transition, as opposed to intermittent, if φ exceeds
a certain threshold. In this work we show that, for particle-laden pipe flows with large
particle-to-pipe diameter ratios d/D, the φ threshold for altering the transition is much
lower than previously reported for smaller particles. Magnetic resonance velocimetry
reveals that particles introduce turbulent-like fluid velocity fluctuations in laminar flow.
Factors that might control the limits between “classical” and “smooth” transition in the
state space spanned by d/D and φ are discussed based on scaling analyses.
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Transition from laminar to turbulent flow in pipes has been investigated since the work of
Reynolds [1] in 1883, who found three flow states with distinct characteristics: ordered flow,
laminar, disordered flow, turbulent, and an intermediate transitional flow. In spite of nearly 140
years of intense investigations, transition has still not revealed all its secrets. For pipe flow, the
flow state is governed by a sole parameter, the Reynolds number, which for a Newtonian fluid with
density ρ f and dynamic viscosity μ in a pipe of diameter D at mean bulk velocity Ub is given as
Re = ρ f UbD/μ. The transition process starts with the formation of turbulent “flashes” at a critical
Reynolds number Rec. Reynolds [1] observed that Rec varied in the range 2000 � Rec � 13 000
depending on inlet conditions. At present it is established that turbulence cannot be triggered below
Re ≈ 1000 [2] and that laminar flow can be maintained up to Re ≈ 105 [3].

There are two types of turbulent flashes in the transitional regime: puffs and slugs [4–6]. If the
Reynolds number is large enough, the puffs grow into faster traveling slugs that spread and lead
to fully developed turbulence. This process is rather sudden and the change from a laminar to a
turbulent state is distinct [7–9].

One way to determine the flow state in pipe flow is from the friction factor f . It is a dimensionless
measure of the fluid friction, or drag, and is defined as f = D�P/(2ρU 2�L) where �P/�L is the
pressure drop per unit length of pipe needed to overcome wall friction. The friction factor for laminar
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flow is flam = 16/Re and for turbulent flow f is satisfactorily estimated by empirical relationships
such as the Blasius law fturb = 0.0791Re−1/4 [10]. The classical transition behavior in a Newtonian
single-phase fluid is an intermittent mix of laminar and turbulent states with flam as a lower bound
and fturb as an upper bound. The average friction factor is a decreasing function of Re that follows
16/Re until Rec when it rather abruptly increases and shows a local maximum at the end of the
transition region, whereafter it decreases as f ∝ Re−1/4 [9].

Matas et al. [11] showed that the addition of particles to a Newtonian carrier fluid alters the
transition behavior and that Rec is a nonmonotonic function of particle volume fraction φ and
particle size d . Particles smaller than d/D ≈ 1/65 ≈ 0.015 delay transition and larger particles
promote transition to turbulence compared with single-phase flow. Numerical studies by Yu et al.
[12] of the same flow cases replicated the findings. Here, the authors pointed out that it is difficult
to judge whether the flow is laminar or turbulent since particles induce local disturbances, which
lead to nonsmooth flow even in the laminar regime and there is no longer a sudden increase
in fluctuations. Recent experiments by Hogendoorn and Poelma [13] and Agrawal et al. [14]
indicate that, for particles of similar size as studied by Matas et al. [11], the classical behavior
of laminar-turbulent transitions with a sudden and abrupt increase in f occurs only at φ � 17%. At
higher φ, the transition behavior of the friction factor is smooth: f has no local maximum in the
transition region and turbulent puffs are difficult to distinguish from the globally fluctuating flow.

Apart from altering the transition behavior of the friction factor, the addition of particles also
modulates the turbulence. Several length scales can be defined in turbulent flow, two being (i)
the smallest length scale, the Kolmogorov length scale η = (ν3/ε)1/4, estimated from kinematic
viscosity ν and energy dissipation per unit mass ε and (ii) the integral length scale le, which is
the characteristic length of the most energetic eddies. Particles smaller than η will have little effect
on the turbulence production and dissipation. For η < d � 0.1le turbulence is attenuated and, for
d � 0.1le, turbulence is augmented. The main mechanism for attenuation is increased dissipation
from particle drag, and augmentation is driven by velocity fluctuations arising from particle wakes
[15,16].

Another effect of particles is additional stresses compared with the case of single-phase flow:
in a turbulent flow of a pure fluid, viscous and Reynolds stresses exist, but, for a particle-laden
flow, a third type of stress, particle-stress, is added. Lashgari et al. [17] simulated a particle-laden
channel flow and found three different flow regimes: laminar-like at low Re and low φ where viscous
stresses dominate; turbulent-like at high Re where Reynolds stresses dominate; and inertial shear-
thickening at high φ where particle-stresses dominate. In 1954 Bagnold [18] showed that, as φ

increases, the stress from turbulent fluctuations in the fluid decreases and will eventually give way
for particle stress. To determine the state of the suspension, he introduced the Bagnold number
Ba = 4Rep,γ̇ λ1/2, where Rep,γ̇ = ρ f γ̇ d2/μ is the particle Reynolds number based on shear rate at
the wall γ̇ and λ = 1/[(0.74/φ)1/3 − 1] is the linear concentration which represents the particle
diameter to particle spacing ratio; Ba is the ratio of inertial to viscous stresses.

In this work we experimentally investigate the transition behavior of suspensions with large
particles (d/D � 0.17) and show that the friction factor f has no local maximum and transition
is gradual instead of abrupt, even at φ = 5%. We perform a scaling analysis of agitation by particles
and viscous dissipation and propose a curve separating “classical” and “smooth” transitions in the
φ vs d/D state space.

The experimental setup consists of a circulating loop with a straight and horizontal cylindrical
pipe, a holding tank where the suspension is introduced, a centrifugal pump, and a magnetic reso-
nance imaging scanner. The inner diameter of the pipe is D = 33.5 ± 0.15 mm and the measurement
section is 6 m long, corresponding to 180D. To calculate the friction factor f , the pressure drop is
measured by using a differential pressure transducer (FKC11, 0–6 kPa, Fuji Electric, France) with an
accuracy of 0.1% of the span. Pressure is measured at two points separated by a distance L = 40D,
where the first pressure tap is located 100D downstream of a 180◦ pipe bend. The second pressure
tap is located 140D downstream the bend. The length of the pipe and the location of the pressure taps
are sufficient to ensure fully developed laminar flow. The mean volumetric flow rate is measured by
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TABLE I. Three sets of particles. Material is PMMA (procured commercially) and Nylon PA12 (3D-
printed).

Case d (mm) d/D φmax ρp (kg/m3) Material

SS 5.70 ± 0.07 0.17 0.58 1188 PMMA
LS 13.30 ± 0.09 0.40 0.52 1156 PMMA
C 6.95 ± 0.08 0.20 0.60 1038 Nylon PA12

using an electromagnetic flow meter (Krohne Optiflux 1000, IFC 300, Krohne Messtechnik GmbH,
Germany). To reduce the risk of measurement errors, the flow rate was also measured by collecting
a sample of the suspension under a given time. This was done for the extreme case of high particle
content and high Re, and the error is within 2.5%. The mean flow velocity U is calculated from
the mean flow rate. The flow is driven by a centrifugal pump (Flygt model 3085.183, Xylem Water
Solutions AB, Sweden) with a modified impeller and volute in order to allow passage of particles.
To ensure the accuracy of the experimental rig, f was measured for single-phase flow and it matched
well with 16/Re in the laminar regime and 0.0791Re−1/4 in the turbulent regime for a range of flow
rates and fluid viscosities.

Three sets of particles (see Table I) were used in the experiments, two spherical and one cubical.
The small spherical particles (SS) were 5.70 mm and the large (LS) 13.30 mm in diameter. The
cubical, dice-shaped particles (C) were 6.95 mm along the sides.

Different carrier fluids were prepared (see Table II) where density-matching with the particles
was achieved by adding sugar (10–45 wt.%) and the viscosity was further modified by adding
carboxymethylated cellulose (CMC) (0.5–1.5 wt.%). The viscosity of the carrier fluid was mea-
sured before experiments by using a rheometer (TA AR-2000ex, TA Instruments, Inc., USA)
and during experiments using a viscometer (DV-II+ Pro, AMETEK Brookfield, USA). Due to
its high sugar content, the carrier fluid viscosity was sensitive to temperature changes, which
is why the temperature of the solution was maintained at a constant level by an external heat
exchanger in the holding tank. To account for added particles, an effective viscosity μe was used for
determining the effective Reynolds number Ree. To compute μe, Eiler’s viscosity model [19] was
used: μ/μe = (1 + 1.25 φ

1−φ/φmax
)2.

We used a 1 T magnetic resonance system (Aspect Imaging, Israel) to obtain carrier fluid mean
velocity and estimate variance of the fluid velocity through magnetic resonance velocimetry (MRV).
The details of the measurement technique and the MR system can be found in Dyverfeldt et al. [20],
Elkins and Alley [21], and MacKenzie et al. [22].

The main results are presented in Figs. 1 and 2. In Fig. 1(a) the friction factor as a function
of Ree for all cases in Table III show a similar behavior: collapse onto a line slightly above
the single-phase f = 16/Ree for Ree < 800 and a collapse onto the turbulent Blasius line for
Ree > 5000. In between, all particle-laden cases demonstrate a monotonic connection between the
two lines. Compared with single-phase flow (blue crosses) the increase in f at constant Re based

TABLE II. Fluids used and experimental range of Reynolds number.

Case ◦Brix CMC (wt.%) ρ (kg/m3) μ (mPa) Re

SS1 43.3 0.5 1190 40 50–1750
SS2 36.2 0 1155 4.4 3000–20 000
LS1 36.8 0.5 1157 38 50–2000
LS2 36.0 0 1150 4.2 3000–20 000
C1 10.4 1.5 1040 35 50–2000
C2 49.8 0 1225 14 1500–6000
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FIG. 1. (a) Friction factor f as a function of Ree for all cases and pure water, as indicated in the legend.
The inset shows relative increase in f at constant Reynolds number based on carrier fluid viscosity (constant
Re). The increase in the inset is the increase experienced by adding particles to a fluid at constant total flow
rate. (b) The data in panel (a) is plotted as f − 16/Ree to highlight deviations from laminar single-phase flow.
Conservative estimates of the maximum errors are illustrated as gray regions [in panel (b), the error depends
on Ree]. Symbols and lines are the same in panels (a) and (b).

on fluid viscosity can be up to 400% when particles are added, see inset of Fig. 1(a). The transition
from a laminar to a turbulent state for 400 < Ree < 20 000 is scrutinised in more detail in Fig. 1(b),
where f − 16/Ree is plotted. Also, it is clear here that the particle-laden cases have an increased
friction factor compared with single-phase flow at low Ree and approach the fully turbulent curve
from above. This is in contrast with the single-phase data, which approaches the turbulent Blasius
curve by a distinct transition from below. All particle-laden cases demonstrate a smooth transition,
and the friction factor approaches the turbulent curve from above. Interestingly, there seems to
be two paths along which the friction factor approaches the turbulent curve: an upper one for
the small-sphere cases and a lower one for the large-sphere and cube cases. This observation might
be the footprint of changes in the (most probably very rich) underlying dynamics, which have yet to
be further scrutinised, described, and understood.

The estimated maximum errors are shown in Figs. 1(a) and 1(b) as gray highlighted regions. A
conservative estimate gives maximum relative errors in Ree and f to be 9.5% and 8.5%, respectively.
In the log-log plot of Fig. 1(a) the relative error is the same regardless of Ree and f . The maximum
absolute error for f − 16/Ree is Ree dependent and decreases as Ree increases, which is seen in
Fig. 1(b). The maximum errors indicated in Figs. 1(a) and 1(b) are extremely conservative and
is based on the worst case in all measured variables. The actual errors are probably considerably
smaller, given the agreement between the single-phase data and the f = 16/Ree line. For Ree >

1000, the two curves for the friction factor are separated also when the very conservative error
estimate is accounted for.

The profiles for mean and variance of velocity are presented in Fig. 2. Mean velocity profiles at
Re = 700 in Figs. 2(a), 2(d), and 2(g) change from laminar to turbulent-like as φ increases from
0% (blue) to 20% (purple). The corresponding variance profiles in Figs. 2(b), 2(e), and 2(h) show
that significant fluctuations are present already at this subcritical Re for the particle-laden cases. For
a given particle the variance profiles are similar for 350 < Re < 2000, as seen in Figs. 2(c), 2(f),
and 2(i), with an increase in amplitude as Re is increased. Generally, the particles seem to induce
fluctuations in a region reaching a particle diameter away from the wall at r/R = 1.

When the flow is dominated by viscous stresses, at low Re and low φ, fluctuations will be
dampened out. As φ is increased, the fluctuations increase, stemming from particle wakes, and
the flow is in a nonstationary state where the energy injected into the flow is balanced by increased
fluid dissipation. Apparently, this gives rise to an increase in f compared with single-phase flow and
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FIG. 2. (a), (d), (g) Mean axial velocity at Re = 700. (b), (e), (h) Variance of velocity at Re = 700. (c), (f)
Variance of velocity at Re = 350, 700, and 2000. (i) Variance of velocity at Re = 350 and 700. Top row SS,
middle row LS, and bottom row C. A flattening of the mean profiles at the center of the pipe can be seen with
increasing volume concentration, indicating a turbulent-like flow. Peak in the variance indicate aggregation of
particles at given r/R. The particle size in each case is indicated with gray schematics.

a smooth transition scenario, as seen in Fig. 1. To find the limits of particle size d/D and volume
concentration φ that will give a classical or smooth transition, we employ a scaling analysis coupled
with experimental observations from our own work and the work of Hogendoorn and Poelma [13]
and Agrawal et al. [14]. The results are plotted in Fig. 3.

To drive turbulent dynamics, the particle-induced fluctuations (or agitation) must be (i) strong
enough and (ii) have a physical size that is large enough. We will now address (i) by comparing the
amplitude of particle agitation to the fluid dissipation in particle-free flow. Neighboring particles
translating under shear will be displaced in the radial direction when passing each other, and at a

112301-5



LESKOVEC, LUNDELL, AND INNINGS

TABLE III. Range of Reynolds number for different particles and volume fractions.

Case 5% 10% 20% 30%

SS 50–20 000 50–20 000 50–20 000 3000–20 000
LS 50–20 000 50–20 000
C 50–6000 50–6000 50–6000

given concentration φ, the frequency of particle-particle interactions scales as γ̇ φ. A rough estimate
of the work needed to displace a particle during such a passage is FDd , where FD is the drag on a
particle. This work can be obtained as CD

1
2ρ(γ̇ d )2 π

4 d3 by using the standard definition of the drag
coefficient CD (assumed to be of order unity for this scaling analysis). Thus, the agitation power for
each particle (work of a single-particle passage divided by time between passages) should scale
as ργ̇ 3d5φ. This can be compared with the total dissipation in particle free laminar pipe flow,
which scales as μLU 2. Since the number of particles in a pipe section scales as φLD2/d3, the
fluid dissipation per particle scales as μU 2d3/D2φ. From these estimates, the ratio between particle
agitation and laminar dissipation is obtained as C = φ2(d/D)2Re, where C is a dimensionless
coefficient.

The blue solid line in Fig. 3 shows the curve that passes d/D = 1/19.5 and φ = 0.17 for which
this ratio is constant (at a constant Reynolds number). The red curve for constant Bagnold number
(i.e., constant effect of particle collisions) and the blue line (constant relative agitation, introduced
above) show similar trends. However, for d/D > 0.06, the curves diverge and if the shift from
classical transition to smooth is due to particle collisions, one should not see classical transitions
at all for d/D > 0.15. If, however, the shift is governed not by particle collisions but by particle
agitation, classical transitions should be observed also for very large particles at sufficiently low
concentrations. When it comes to (ii), the physical size of the particle-induced fluctuations, they can
be compared with the dissipative length scale of the flow, η = (ν3/ε)1/4. Since the dissipation in the
fluid is given by the pumping power per unit volume, the equation d/η = (d/D)(4

√
2Re)−1/2 can

FIG. 3. State space showing classical and smooth transitions where experiments from Hogendoorn and
Poelma [13], Agrawal et al. [14], and our own work are plotted. Filled markers indicate smooth transition and
empty markers indicate classical transition. The red curve shows constant Bagnold number. The blue curve
indicates that the limit between the two regions is derived from a scaling analysis based on particle-agitation
to fluid-dissipation ratio. The black dashed line represents the size of the smallest Kolmogorov length scales at
a Reynolds number of 1000.
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be derived assuming laminar flow. This relation shows that at Re = 1000, which is the minimum Re
for which turbulence can be observed [2], particles smaller than d/D ≈ 0.013 will be smaller than
the dissipative length scale η. This particle size is indicated with a dashed vertical line in Fig. 3 and
is close to the particle size for which agitation can be expected to be too small to initiate a smooth
transition. This is in congruence with the observation of Matas et al. [11], where particles with size
d/D < 0.015 did not alter the classical transition scenario but instead caused an increase in the
effective viscosity, thereby delaying the classical transition behavior to higher Re with increasing φ.

Classical transition is a backward bifurcation controlled by the velocities of the upstream and
downstream edges of turbulent puffs [8,23]: when the downstream velocity increases above the
upstream velocity, the size of the turbulent region is increasing, eventually leading to fully turbulent
flow. Our agitation discussion originates from an assumption that the bifurcation is still a backward
one, and that the main effect of the particles is to generate disturbances that bring the system to the
upper branch of the backward bifurcation whenever this branch exists. However, the particles could
also change the nature of the underlying bifurcation, for example, due to the fact that particles can
be expected to move both faster (if they are at the centerline) and slower (if they are close to the
wall) than turbulent puffs. Particles might therefore move out of turbulent puffs in both directions.
If the particles induce fluctuations while doing so, they could contribute to early transition not only
by the fluctuations as such, but also by providing a mechanism by which turbulent puffs can be
elongated. Understanding particle-puff interactions could be a rewarding aim of future numerical
and experimental investigations and one aspect to be studied is which, if any, particle effects that
are controlled by our agitation-dissipation relation.

Concluding, experiments have shown that suspensions with large particles in pipe flow exhibit
a nonclassical (smooth) transition behavior already at the low concentrations of 5%. During the
smooth transition, the friction factor as a function of Ree approaches the turbulent friction factor
for single-phase flow from above in a monotonic manner via two distinct curves. Large velocity
fluctuations are observed at subcritical Re. The observations could be the result of either agitation
from particles passing each other in shear or changes in the fundamental dynamics. Attempts to
quantify the former and identify mechanisms behind the latter are presented. Further understanding
will come from detailed experiments and simulations of suspensions with large particles and low
concentrations.
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