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Understanding how turbulence leads to the enhanced irreversible transport of heat and
other scalars (such as salt and pollutants) in density-stratified fluids is a fundamental
and central problem in geophysical and environmental fluid dynamics. There is a wide
range of highly important applications, an important example being the description and
parameterization of diapycnal transport in the world’s oceans, a key area of uncertainty
in climate modeling. Recently, possibly due to the proliferation of data obtained through
direct observation, numerical simulation, and laboratory experimentation, there has been an
explosion in research activity directed at improving community understanding, modeling,
and parametrization of the subtle interplay among energy conversion pathways, turbulence,
and irreversible mixing in density-stratified fluids. However, there are still leading-order
open questions and areas of profound uncertainty concerning this interesting and important
research challenge.
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I. INTRODUCTION

This paper summarizes certain aspects of the invited talk (with the same title) that I gave on
Sunday November 24, 2019, as part of the 72nd Annual Meeting of the APS Division of Fluid
Dynamics, held in Seattle, WA. It presents my personal perspective on some priorities for further
research into the hugely complex, important and fascinating challenge of irreversible turbulent
mixing in stratified fluids. In this paper, I attempt to articulate my personal, indeed idiosyncratic,
view of turbulent mixing in stratified fluids, with a particular focus on various fundamental
fluid-dynamical aspects of ongoing uncertainty and controversy. Parameterizing such mixing is
a key component of larger-scale models of the world’s oceans [1], where there are of course a
huge range of different processes which lead to small-scale mixing, not least associated with the
interaction between topography, internal waves, and tidal motions [2]. However, here I focus on
highly idealized flow configurations that I have considered with a large number of collaborators.
Each flow configuration has specific practical attractions due to various computational and modeling
features. My personal objective in this paper is not to present a conventional review of the present
state of even just the fluid-dynamical community’s research into the important, and indeed pressing,
climate-crisis-relevant challenge of parametrizing turbulent stratified mixing [3]. The overarching
motivation is to contribute insights useful for the improvement of such parametrization, with a
particular aim of application to modeling ocean mixing. Nevertheless, at least in this paper, I do
not impose practical constraints concerning what actually has been (or indeed can conceivably be)
measured or observed in real flows. I believe it is important to understand (as much as possible)
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turbulent stratified mixing when there is access to all relevant data and from that data then identify
models which might be constructed to be consistent with and useful for real-world applications.

Put simply, the “end” here is to understand as much as possible about the causes and properties of
turbulent stratified mixing in and of itself, rather than viewing such an understanding as a “means”
toward a broader, yet inevitably more applied “end” of geophysical, environmental, or indeed
industrial fluid systems. Therefore, my objective in this particular paper is to achieve two aims.
First, I wish to demonstrate the subtle (and often counterintuitive) complexities of the energetics of
stratified mixing through consideration of a small number of illustrative examples. Second, I wish to
use results and insights arising from these examples to motivate further research in this fascinating
and challenging area.

To address these twin and interconnected aims, the rest of this paper is organized as follows.
In Sec. II, I discuss in detail certain key aspects of the energetics of stratified turbulent flows,
drawing out the central role played by an appropriate definition of the “(turbulent) flux coefficient”
�, essentially the rate at which turbulent dissipation is “taxed” by the stratification. In Sec. III, ap-
parently conflicting evidence is presented concerning the dependence of flux coefficients � (defined
in various ways) on the “buoyancy Reynolds number,” in body- or wall-forced shear flows, which
forcing ensures an approach to quasistationarity. The properties of such quasistationary forced flows
are then contrasted in Sec. IV with the properties of freely evolving shear flows prone to primary
vortical instabilities. As I argue below, in both these situations, it is reasonable to characterize
the flows in as being “weakly stratified,” in the loose sense that the mixing of the scalar density
(ultimately through diffusion) is “slaved” to the largely unaffected mixing of momentum (through
the enhanced viscous dissipation). Motivated by the desire to see if it is possible to have vigorous
mixing in flows which might be characterized as being “strongly stratified,” in Sec. V, forced flows
which are specifically designed in an attempt to access more strongly stratified flow regimes are
considered. Here the apparently generic spontaneous appearance of “layering” is demonstrated, i.e.,
the organization of the flow into regions of relatively “strong” and “weak” stratification. Tantalizing,
but as yet undoubtedly inconclusive, evidence is presented that energetic turbulence in “strongly”
stratified flows is inevitably associated with spatiotemporally intermittent layers where locally the
stratification should still be characterized as being “weak” in some sense. The implications and
potential applications of this evidence, as well as signposts pointing toward some of the most
interesting open questions, are discussed in Sec. VI.

II. HOW SHOULD STRATIFIED MIXING ENERGETICS BE QUANTIFIED?

Here attention is restricted to the idealized situation of a “Boussinesq” fluid with a linear
(imposed) equation of state. The fluid density ρ(x, t ) is assumed to vary relative to a reference value
ρr by sufficiently small amounts so that |ρ(x, t ) − ρr | � ρr and such variations are only significant
in the buoyancy force. Furthermore, density variations only depend on a single scalar field (for
example, the fluid’s temperature), which crucially is diffusive with (molecular) diffusivity κ . The
fluid velocity field u(x, t ) is assumed to be divergence free ∇ · u = 0. Therefore, the pressure field
is not associated with thermodynamic properties of the fluid, but rather the pressure is effectively a
nonlocal Lagrange multiplier imposing the constraint of divergence-free velocity field, i.e., that the
fluid is “incompressible.”

These assumptions have several strong consequences. Important real-world processes, such as
double-diffusion associated with the dependence of the density on two scalars with two different
diffusivities [4] or compressibility, thermodynamics, viscous heating, etc. [5,6], are (deliberately)
suppressed. Nevertheless, the dynamical behavior of this simplified system is still very complex and
rich. An important way to see this is to consider the “turbulent” kinetic energy equation, arising
if the velocity and density fields are decomposed into a “mean” and a fluctuation or “turbulent”
component using a Reynolds decomposition:

u = 〈u〉 + u′ = U + u′; ρ = 〈ρ〉 + ρ ′ = ρ + ρ ′, (1)
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where the angle brackets denote an appropriate averaging (perhaps formally most elegantly an
ensemble average but in practice often a spatial and/or temporal average).

A. Turbulent kinetic energy

In many circumstances of interest, there is some mean shear, due, for example, to wall-forcing,
artificially introduced forcing terms in a numerical simulation or even set in an initial value problem
which is allowed to evolve freely subsequently. Making the further assumptions for such shear
flows that the mean velocity U = x̂1U (x3, t ), using the geophysical coordinate system where gravity
acts in the (negative) x3 direction, the evolution equation for the turbulent kinetic energy K′ in a
Boussinesq fluid can be written symbolically (using the Einstein summation convention) as

1

2

∂

∂t
〈u′

iu
′
i〉 ≡ ∂

∂t
K′ = −E − B + P + F − ∇ · J . (2)

On the right-hand side of this equation, the divergence of the flux J captures various transport
and redistribution processes within the domain of interest, associated with viscous-, pressure-, and
advection-driven processes. With appropriate boundary conditions on the domain of interest (and
application of the divergence theorem), this term can often be ignored or alternatively be quantified
directly through boundary contributions. In a domain with moving boundaries (e.g., plane Couette
flow between two parallel infinite plates moving relative to each other) such boundary contributions
can force the turbulent flow.

Furthermore, F represents a body-forcing, as is often imposed in numerical simulations to
represent some unresolved physical process which injects energy right into the turbulent velocity
field, in some sense artificially.

The other three terms, the turbulence production term P , the “buoyancy” flux B (which with the
sign convention used here should more appropriately be called the density flux), and the (turbulent)
dissipation rate E are

P ≡ −〈u′
1u′

3〉
∂

∂x3
U ; B ≡ g

ρr
〈u′

3ρ
′〉; E ≡ 2ν〈s′

i j s
′
i j〉; s′

i j ≡ 1

2

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)
, (3)

where s′
i j is the (perturbation velocity) gradient tensor.

The turbulent kinetic energy K′ can also grow through extracting energy from any mean shear
via the Reynolds stress and mean shear S ≡ ∂U/∂x3 in the turbulence production term P , which
could also be maintained by some (imposed) forcing, either through boundary contributions or
(analogously to F) through extra terms artificially added in a numerical simulation to model some
unresolved process.

By whatever mechanism it occurs, such a tendency for K′ to increase in the domain of interest
(and to be transported around the domain through the action of J ) is balanced by the other terms.
The positive-definite dissipation rate E extracts kinetic energy irreversibly, and such dissipation is
markedly increased in turbulent flow (indeed this might be argued to be a defining characteristic
of “turbulence”) due to the proliferation of high gradients within such flows. It is self-evident that
understanding and modeling turbulent flows is a profoundly challenging problem of great theoretical
and practical interest to mathematicians, scientists, and engineers. This challenge is made even
harder by the added complexity associated with the density flux termB, which generically is nonzero
in stratified flows.

This term captures the conversion of kinetic energy to and from potential energy, as B > 0 occurs
when u′

3 and ρ ′ are (positively) correlated, and so, on average (relatively), dense parcels are being
lifted up within a gravitational field. It also may be thought of as the rate at which stratification
“taxes” turbulence. For every unit of energy injected through one of the three forcings described
above (i.e., body forcing, boundary contributions, or turbulent shear production) generically some
of it is viscously dissipated (via E) and some is converted to potential energy (via B). Indeed,
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modeling and parametrizing this “taxation” rate has been a major area of research (and controversy)
for decades [7–9].

B. Mixing parameters

Two classic nondimensional parameters which have been considered to quantify this taxation rate
are the “flux Richardson number” Ri f and the “turbulent flux coefficient” � (sometimes, somewhat
confusingly, called “mixing efficiency”) which may be defined as ratios of particular terms in (2)

Ri f ≡ B
P ; �B ≡ B

E , (4)

where the subscript B has been added to make the particular dependence on B explicit. �B (defined
in this way) was first introduced in a deeply influential paper by Osborn [10], where further assump-
tions were made that the turbulence was in a statistically steady state and the various transport terms
could be ignored, thus leading to a simple relationship Ri f = �B/(1 + �B ). Furthermore, from
experimental evidence, Osborn argued that �B � 0.2, though often in the oceanographic literature
in particular [11], equality is assumed.

Perhaps the biggest reason why �B has attracted so much attention is that it naturally arises
within the definition of a turbulent or eddy diffusivity for heat (assuming that heat is the stratifying
agent):

κT ≡
g
ρr

〈u′
3ρ

′〉
g
ρr

|∂ρ/∂x3| ≡ B
N2

, (5)

where N is the buoyancy frequency, which in general it must be remembered, could be a function
of space and/or time. Using the definition for �B, κT can thus be expressed as

κT = �B
E

N2
= ν�B

( E
νN2

)
≡ ν�BReb, (6)

where ν is the (molecular) kinematic viscosity and Reb is (commonly) referred to as the “buoyancy
Reynolds number.” This expression is very appealing, suggesting a natural way to construct κT ,
although it is always important to remember that (4) and (5) are specific definitions that inevitably
lead to (6) without any added insight. Indeed, since κT parameterizes the density flux as a (turbulent)
diffusive process, it (at least implicitly) connects the density flux B to the (turbulent) mixing of the
density field. However, there are (at least) two obvious criticisms of this approach.

1. Criticism 1: Reversibility

The first criticism is that the density flux is not sign definite and actually quantifies the (in
general) two-way exchange between the potential and kinetic energy reservoirs. If the flow on
average pushes dense parcels down, as naturally happens during “convection,” then B < 0, and
potential energy is actually converted into kinetic energy. Any observation of convection or the
mixing induced by Rayleigh-Taylor instability (see, e.g., [12]) reveals immediately that such
convectively driven mixing can be very vigorous. Applying ideas originally due to Lorenz [13–15]
convincing arguments have been presented [14,15] to identify irreversible mixing with changes to
the “background” potential energy, i.e., the minimum potential energy of the system accessible by
volume-conserving resorting of fluid elements.

The potential energy of the system can be thought to be divided into two parts, this background
potential energy and the remaining “available” potential energy, which can drive fluid motions.
Generically, the density flux can then be thought to be the sum of two terms B = S + M, a
sign-indefinite “stirring” rate S quantifying reversible exchanges between the kinetic energy and
potential energy reservoirs, and the sign-definite mixing rate M � 0. M can be thought of as
quantifying the rate at which irreversible mixing processes inherently associated with fluid motions
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increases the background potential energy and hence captures the (eventual) irreversible conversion
of kinetic energy into potential energy. This rate does thus capture the “taxation” rate of the
stratification on the evolving turbulent motion.

It can be argued [16] that it is more appropriate to define an “irreversible” flux coefficient �M,
or even associated instantaneous (ηi) and cumulative mixing efficiencies ηc [17,18]:

�M ≡ M
E ; ηi ≡ M

M + E = �M
1 + �M

; �c(t ) ≡
∫ t

t0
Mdt∫ t

t0
Edt

; ηc ≡ �c

1 + �c
; (7)

over some mixing event starting at time t0. These efficiencies are guaranteed to be in the range [0,1],
and also clearly have a connection with the flux Richardson number Ri f as defined in (4), and may
be thought of as capturing fundamentally the irreversible component of the exchanges between the
potential energy and kinetic energy reservoirs.

2. Criticism 2: Connection with diffusion

However, even once reversible stirring is filtered in this way, there is still a remaining criticism
that (irreversible) mixing should at its heart be considered an inherently diffusive process that
homogenizes the scalar distribution, and the effects of such homogenization (or equivalently the
reduction of the variance) on exchanges between different energy reservoirs (in particular into
potential energy) should really be thought of as a consequence of mixing, rather than the defining
characteristic of the mixing. This key point has indeed been captured by the classic approach [14,15]
in that, for the simplest case of a closed system of volume V0, the background potential energy KPb

increases monotonically at a rate �d ,

V0
d

dt
KPb = �d ≡ κρr

∫
V

[ |∇ρ|
|dx3∗/dρ|−1

]2

N2
∗ dV ; N2

∗ = g

ρr

[
dx3∗
dρ

]−1

, (8)

where the molecular diffusivity of the density scalar κ appears explicitly. In this expression, N∗ is
the notional buoyancy frequency associated with the sorted density field (with minimal potential
energy) with the individual fluid elements sorted to be located at x3∗.

Generically, in a statically stable density distribution, unless N is constant absolutely everywhere,
even in the absence of fluid motions KPb will increase due to the action of diffusion at a rate �i,
so that �d = M + �i. Therefore, although M has an implicit relationship with a diffusive mixing
process, the explicit connection can be muddied due to a priori uncertainty in the relative size of φi

and M.

C. Buoyancy variance

Perhaps a more natural connection can be made with the evolution of an appropriately scaled
“buoyancy variance.” Commonly, the negative of the reduced gravity g′ is referred to as the buoyancy
in this context, i.e., b ≡ −gρ ′/ρr . Multiplying the natural density advection-diffusion equation by
g2ρ ′/ρ2

r and averaging leads to

1

N2

∂

∂t

〈
b2

2

〉
= g

ρr
〈ρ ′x′

3〉 − κ

N2

〈
∂b

∂xi

∂b

∂xi

〉
− 1

N2

∂

∂xi

[
Ui

〈
b2

2

〉
+

〈
u′

ib
2

2

〉
− κ

〈
b

∂b

∂xi

〉]
,

1

N2

∂

∂t

〈
b2

2

〉
= B − χ − ∇ · Jρ ; N2(x3, t ) ≡ − g

ρr

∂

∂x3
〈ρ〉(x3, t ), (9)

defining an appropriately scaled destruction rate of buoyancy variance χ , transport flux Jρ , and
buoyancy frequency N associated with the (ensemble-averaged) density, implicitly assumed here to
be a function only of x3 and (possibly) t .

When formulated in this way, it is now apparent that if the transport terms have no net effect,
the destruction rate of buoyancy variance χ is in lock-step with the density flux B. However, χ has
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several inherent attractions as a measure to quantify the properties of mixing. Clearly, it maintains
an explicit connection to the central role diffusion must play in (irreversible) mixing as opposed
to stirring, a key concept in “passive” scalar mixing [19]. Analogously to the turbulent dissipation
rate E , χ is both guaranteed to be nonnegative, and can also be defined entirely locally (by making
the averaging volume infinitesimal and instantaneous, for example) as opposed to the mixing rate
M which is defined in terms of the evolution of the globally sorted density field associated with
the background potential energy. Determination of such a globally sorted density field is clearly
computationally expensive in numerical simulations, and in experiments or observations practically
unfeasible, giving further attraction to the use of χ to quantify mixing.

Perhaps most interestingly, χ does indeed have strong connections to conversion rates of avail-
able potential energy, although it is exceptionally important to be clear on the actual definition of
the buoyancy frequency which is being used, as well as the decomposition into “perturbation” and
“mean” [6,20]. By comparison between (8) and (4), the key difference is that χ is normalized
with the buoyancy frequency N associated with the (ensemble-averaged) density, while �d is
scaled with the sorted buoyancy frequency N�. Indeed, if the perturbation density ρ ′ (and hence
“buoyancy”) is defined relative to and scaled with a constant (in particular with respect to x3 and
t) buoyancy frequency, then the buoyancy variance can be identified as a perturbation available
potential energy, and thus χ is the destruction rate of (such an) available potential energy [6,20].
Indeed, understanding of such a relationship dates back (at least) to the early 1980s [21,22] and has
been used more recently formulate an appropriate local measure of available potential energy in an
attempt to quantify mixing locally [23].

With all these concepts appreciated, such an appropriately scaled destruction rate of buoyancy
variance χ can thus be considered a more “natural” measure for the quantification of the rate at
which stratification taxes turbulence, and so a third possible definition of the flux coefficient would
be

�χ ≡ χ

E . (10)

It is becoming accepted that such a proliferation of different definitions of mixing quantities should
be discouraged within the research community [1], as it proves extremely difficult to compare results
from different studies. Indeed, it is well known in the passive scalar mixing community [24] that
the destruction rate of scalar variance and the turbulent dissipation rate are by no means perfectly
correlated, and it is somewhat curious that more sophisticated insights from passive scalar turbulent
mixing have not been widely applied to the problem of parametrizing stratified mixing.

Indeed, it is not immediately apparent that �χ (or equivalent mixing efficiencies) needs to be
considered at all. After all, these are intermediate quantities, arising from attempting to identify
relationships between different terms in the turbulent kinetic energy equation. As originally effec-
tively argued by Osborn and Cox [25], and subsequently followed up by many authors [16,26], if
the fundamental challenge is to determine the eddy diffusivity κT , using (9) removes any need to
make any assumptions about the properties of the turbulent kinetic energy evolution. Remembering
that the chosen definition for the eddy diffusivity in (5) has B in the numerator, if the “lock-step”
between χ and B is assumed to occur to some extent, then the eddy diffusivity as defined in (5) can
be approximated as

κT � χ

N2
. (11)

Indeed there is some evidence that such an “Osborn-Cox”–based approach can lead to more reliable
estimates for κT [16,26,27], suggesting that it might well be more appropriate to consider the right-
hand side of (11) as the underlying definition of the eddy diffusivity, without involving the density
flux, and especially not its relationship to the turbulent dissipation rate via a flux coefficient.
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D. The parametrization challenge

There are clearly many reasonable and strong criticisms of using such blunt instruments as flux-
gradient theories (leading to eddy diffusivities) to describe turbulent stratified mixing. Nevertheless,
many larger-scale models rely implicitly on the use of such eddy diffusivities. Therefore, at least
at the moment, the fundamental challenge to fluid dynamicists remains the modeling of κT , and
in particular the dependence of κT on various nondimensional parameters. Returning to (5), the
turbulent enhancement of diffusivity is given by

κT

κ
= �BPrReb; Pr ≡ ν

κ
, (12)

where Pr is the (molecular) Prandtl number. As discussed above, there are various arguments
justifying other definitions than (4) for �B for the “flux coefficient” in this expression as being more
appropriate mixing measures. Indeed, there is suggestive evidence from numerical data [16,28] that
defining κ∗

T [or equivalently Re∗
b ≡ E/(νN2

∗ )] using the sorted buoyancy frequency is a more natural
way to model the eddy diffusivity of heat, although as already noted, use of such globally sorted
data is really only possible for simulations.

Ignoring such potentially important subtleties, the key challenge of modeling κT is mathemat-
ically equivalent to modeling the flux coefficient. Indeed, much of the focus in research has been
devoted to identifying whether the flux coefficient depends on various nondimensional parameters.
From the expression (12), it is clearly important to investigate whether the flux coefficient depends
on Pr and/or Reb, but these are by no means the only parameters which could be significant. Pr is an
intrinsic property of the fluid, while Reb is essentially a hybrid parameter, capturing the “intensity”
of turbulence relative to the stabilizing effects of both the fluid viscosity and the background
density distribution (via the buoyancy frequency N). Reb can also be interpreted as a measure of
the “dynamic range” [29] of the turbulence which can be expected to be largely unaffected by the
stratification, as Reb can be written as

Reb =
(LO

LK

)4/3

; LO ≡
( E

N3

)1/2

, LK ≡
(

ν3

E

)1/4

, (13)

where LK is the Kolmogorov microscale and LO is the Ozmidov scale, the largest (vertical) scale
which can be assumed to be largely unaffected by a background stratification. Furthermore, focusing
exclusively on the properties of the flux coefficient runs the risk of obscuring the underlying
dependence on parameters of the eddy diffusivity, the most important challenge for usefulness to
larger-scale modeling efforts.

Just to mention one example, in very many situations of interest, there is not only a background
stratification, but also a large scale background (vertical) shear S = ∂U/∂x3, central to the turbulent
production term P . This background shear also defines a timescale, and thus a natural “background”
parameter is an appropriate (gradient) Richardson number Ri, defined as

Ri ≡ N2

S2
. (14)

In the ideal situation of steady, inviscid flow where the base (streamwise) flow only depends on x3,
the well-known Miles-Howard theorem [30,31] establishes that the necessary condition for the flow
to be linearly unstable to normal mode disturbances is that somewhere within the flow Ri(x3) < 1/4.
Although only established in these highly restrictive circumstances, it seems plausible (and is often
assumed) that “strong” stratification with large values of this parameter will tend to suppress the
onset and maintenance of disordered motion. However, as discussed in more detail below, if there is
significant spatiotemporal variation in Ri, which inconveniently appears to be commonplace, then
it can be very challenging to characterize a flow as being “strongly” stratified in any meaningful
sense.

Interestingly, Ri emerges naturally even when considering an appropriate characterization of the
mixing within a flow, specifically when considering the “turbulent” Prandtl number of a (vertically
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sheared) flow. Just as it is possible to define the eddy diffusivity of density κT as in (5), the eddy
diffusivity of momentum νT notionally relates the second order correlation of the Reynolds stress to
the mean vertical shear (assumed to be positive and in the x1 direction alone for simplicity) and so

νT ≡ −〈u′
1u′

3〉
∂U/∂x3

≡ P
S2

, (15)

on multiplying across above and below by the shear S and remembering the definition of the
turbulence production P . Therefore, the turbulent Prandtl number PrT may be expressed as

PrT ≡ νT

κT
= P

B
N2

S2
= Ri

Ri f
, (16)

using the definition (4) of the flux Richardson number.
Naturally, there are many ways to interpret this expression. A particularly helpful deduction can

be drawn from consideration of a situation where Ri is sufficiently small so that the effect of the
stratification may be considered “weak,” in the specific sense that it is reasonable to assume (at least
loosely) that the scalar is mixed similarly to the momentum, and so PrT ∼ 1. This implies inevitably
that Ri f ∼ Ri, and so also Ri f would be (in this circumstance at least) “small” and correlated to the
characteristic value of Ri.

Although appealing because of both its direct connection to the Miles-Howard theorem, and its
relative practical accessibility to measurement in real flows, a possible criticism of the use of Ri as a
way to parametrize turbulent mixing is that it is a ratio of timescales of the large-scale, background
properties of the flow, with no apparent explicit information about the properties of the turbulence.
However, as is discussed further below, there is mounting evidence that there are circumstances
where the background shear and/or the stratification are effectively emergent quantities, inherently
coupled to the turbulence, particularly when the flow is quasisteady in what Turner [32] referred to
as “a kind of equilibrium.” On the other hand, a reasonable argument can be presented [33] that a
more natural parameter to consider is the (turbulent) Froude number, FrT , effectively the ratio of
characteristic timescales of the turbulence and the stratification, and defined as

FrT ≡ E
NK′ . (17)

Therefore the fundamental parametrization requires (at least) the determination of the functional
dependence of κT (Pr, Ri, FrT , Reb), although, as already noted many studies have focused on
the (superficially at least) equivalent determination of the functional dependence on the same
parameters of various definitions of the turbulent flux coefficient �.

Although in principle each of these parameters is independent as they consider different aspects
of the fluid, the background, and the turbulent flow [34,35], it is important to be vigilant for
the possibility of implicit correlations between the different variables, leading to certain areas of
parameter space being possibly inaccessible. For example, if the stratification is “weak,” while the
turbulence is vigorous, then it seems reasonable that the dissipation rate will have the classical
inertial scaling E ∼ U3/L with the turbulent kinetic energy K′ ∼ U2 for some characteristic velocity
scale U and length scale L. Therefore,

Fr−2
T ≡

(
NK′

E

)2

∼ N2

(U/L)2
∼ N2

S2
≡ Ri, (18)

under the further (at least plausible) assumption that the shear also scales with U/L. Furthermore,
due to the reciprocal dependence on N , it is not immediately clear whether it is actually possible for
a (sheared) turbulent flow to be simultaneously strongly stratified (with “large” Ri in some sense)
and vigorously and intensely turbulent with “large” Reb, and indeed there is some evidence that Ri
and Reb can, at least in some circumstances, vary inversely relatively to each other [36]. It is clearly
of great (and indeed pressing) interest to investigate this point further.
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FIG. 1. Flow geometry considered in Ref. [29]. The horizontally averaged density and streamwise velocity
are maintained as constant in time and with uniform gradient in the vertical direction, while the perturbations
away from these averages are allowed to vary within a triply periodic box. The “strength” of the stratification
is determined by the value of the coupling parameter Ri in (20), which is varied with time, effectively through
allowing the strength of gravity to vary, until the turbulence settles down to a statistically steady behavior.

III. FORCED (VERTICAL) SHEAR FLOWS: IS �(Reb)?

Turning to perhaps the simplest possible dependence of the flux coefficient, it is (still) a
controversial research issue whether an appropriate definition of the flux coefficient depends
on Reb. In a deeply influential paper [9], Shih et al. [37] considered numerical simulations of
homogeneous stratified sheared turbulent flows. The (mean) shear and buoyancy frequency were
fixed, so that, for every simulation, Ri had a fixed constant value. However, not all the simulations
were statistically steady. Data sampling a wide range of buoyancy Reynolds numbers were thus
constructed through instantaneous spatial averaging. At the heart of such a process is the implicit
assumption that data from such “snapshots” are still useful to identify parametric dependence of
the various mixing properties. Using this approach, they obtained clear evidence of �B � 0.25
(equivalent to Ri f � 0.2, though the data scatter is definitely consistent with Osborn’s �B ∼ 0.2, in
what they referred to as the “intermediate” range 7 � Reb � 100. They also detected clear evidence
of a scaling �B ∝ Re−1/2

b in what they referred to as the “energetic” regime of Reb � 100. Such a
decreasing scaling �B(Reb) (or equivalently Ri f ) at sufficiently large values of Reb has also been
identified in experimental and observational data [38].

However, typically other parameters did not remain constant, and spatial and temporal variability
occurred naturally. Therefore, the possibility remained that the observed behavior at “high” Reb

was associated with correlated variation in other parameters, or alternatively temporal (or spatial)
dependence. Also, as in passive scalar mixing [19], “history matters” in mixing, due to the subtle
interplay between larger-scale “stirring” and irreversible, small-scale, and inherently diffusive “mix-
ing.” Inevitably, the previous stirring time-history leaves a long-lasting imprint on the subsequent
mixing within a flow, and so using multiple “snapshots” to capture instantaneous mixing properties
in a time-evolving flow must be treated with caution.

To isolate (as much as possible) the effect of variation in Reb on mixing, Ref. [29] considered
a very similar flow geometry to that considered in Ref. [37]. The computational domain had
periodic boundaries in the horizontal. A constant density gradient and (streamwise) velocity shear
are imposed in the vertical direction, with periodic perturbations in velocity and density away from
these enforced background gradients imposed at the top and bottom of the computational domain.
The flow geometry is shown in Fig. 1.

When appropriately nondimensionalized, the perturbation velocity and density satisfy the fol-
lowing equations:

utot = u + u = x3x̂1 + u; ρtot = ρ + ρ = −x3 + ρ; (19)

∂

∂t
u + u · ∇u + u3x̂1 + x3

∂

∂x1
u = −∇p − Riρx̂3 + 1

Re
∇2u, (20)

∂

∂t
ρ + u · ∇ρ − u3 + x3

∂

∂x1
ρ = 1

RePr
∇2ρ. (21)
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FIG. 2. Variation with Reb of (a) �χ and (b) PrT for statistically steady constant shear or constant density
gradient simulations described in Ref. [29]. The Re−1/2

b scaling proposed in Ref. [37] and the upper bound
�χ = 0.2 proposed in Ref. [10] are both shown with dashed lines in the left panel. Adapted from and used with
permission from Ref. [29], copyright APS, all rights reserved.

When scaled in this fashion, the flow has three control parameters: Pr (always chosen to be Pr = 1
in these simulations), Re (which may be thought of as the nondimensional size of the computational
domain or, equivalently, the inverse of the fluid’s viscosity), and Ri. Crucially, Ri here is constant
throughout the domain, with respect to both time and the vertical coordinate x3, due to the imposed
background velocity and density gradients. Ri essentially plays the role of a coupling parameter,
quantifying the dynamical (buoyancy) effects of density perturbations on the velocity field.

Since the mean shear is imposed, such flows are continuously forced, with implicit power
required to maintain this shear being balanced by both viscous dissipation and density flux through
the system. A three-step iterative algorithm ensures that the flow evolved toward a statistically steady
state. First, Re is chosen. Then a target turbulent kinetic energy K′

t is chosen. Third, Ri is adjusted
so that K′ → K′

t . If K′ increases, then Ri is increased to “damp down” the turbulence, while,
conversely, if K′ decreases, then Ri is decreased to allow the turbulence to grow in a more weakly
stratified environment. This process ensures that the flow is turbulent throughout the computational
flow domain, and so there is also no ambiguity in the value of Reb associated with the averaging of
the dissipation rate chosen.

Provided the flow converges to a quasisteady state (which fortunately is observed to happen)
varying K′

T leads to several key quantities emerging naturally. First, the dissipation rate (and
hence the value of Reb) emerges, and for the particular choices of Re and K′

t varies in the
range 36 � Reb � 900. More interestingly, the particular critical value Ric at which steady state
occurs nevertheless varies over a very narrow range 0.146 � Ric � 0.163, as indeed does the
analogously emergent value of the turbulent Froude number 0.42 � FrT � 0.52. Therefore, to a
good approximation, these statistically steady simulations (perhaps fortuitously) access a very wide
range of Reb, while to a good approximation keeping all the other relevant parameters constant.

Furthermore, due to the statistical steadiness, both χ � B, and perhaps more importantly, the
partitioning between E and B (or equivalently χ ) emerges without being set a priori. In other
words, the “taxation rate” of the stratification quantified by the turbulent flux coefficient �χ can be
calculated. The results are plotted in Fig. 2. Although there is a slight decrease at higher Reb � 300,
there is no evidence of the Re−1/2

b scaling, and the data are really very close to the Osborn upper
bound [10]. Furthermore, as shown in the right panel, PrT � 1 across the full range of Reb. An
(admittedly highly speculative) interpretation of these data is that statistically steady (vertically)
shear-driven turbulence in a stratified fluid can be supported at the highest possible value of Ri
at which PrT � 1, thus tending toward a situation where Ri ∼ Ri f ∼ 0.17 and hence � � 0.2,
precisely as conjectured by Osborn [10]. Of course, PrT � 1 can reasonably be characterized as
a “weakly stratified” flow.
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The flow geometry shown in Fig. 1 is highly idealized. Perhaps the most serious criticism is that
the imposed forcing is both quite artificial, and imposes a tendency toward a single characteristic
value of Ri, thus making it impossible to determine whether the observation that PrT � 1 is
the expected generic property of sufficiently weakly stratified flows (and hence that the original
inequality � � 0.2 is actually appropriate for statistically steady flows [10]). Furthermore, only a
single value of the (molecular) Prandtl number Pr = 1 is considered, and it is at least conceivable
that varying Pr may lead to variation in PrT , at least in some circumstances.

Fortunately, many of these criticisms can be addressed by considering (vertically) stratified
plane Couette flow. This is the flow between two horizontal bounding plates, separated by a
distance 2h0, forced to move at equal and opposite speeds ±U0 (thus defining a Reynolds number
Re0 = U0h0/ν) and (notionally) maintained at different temperatures (with the hotter plate at the
top) so that Dirichlet boundary conditions are imposed on the velocity and density (ρr ± ρ0) of the
fluid, thus also defining a “bulk” Richardson number Rib = gρ0h0/(ρrU 2

0 ). Such a flow has several
computational attractions, not least of which is that there is naturally a constant (with height) vertical
density flux [39]. The value of this flux naturally emerges from the near-wall structure of the density
field, just as the wall shear stress (and hence the power injection by the wall-forcing) naturally
emerges from the near-wall structure of the horizontally averaged velocity field.

These properties can be exploited to construct a Monin-Obukhov (M-O) similarity theory for
the mean velocity and density profiles [40,41], which can be further generalized to consider fluids
with different molecular Prandtl numbers in the range 0.7 < Pr < 70 [39]. This similarity theory
proves to be highly appropriate to a description of the calculated mean properties of the numerical
simulations, and in particular coupled, essentially linear profiles in density and velocity emerge
(outside of thin boundary layers). These linear profiles imply that, throughout the interior of the
flow, specific values of the (gradient) Richardson number Ri emerge with little vertical variation.

The theory predicts (and the simulations confirm) that this interior Ri is bounded above by Ric �
0.21, effectively irrespective of the value of Re0, and that the flow becomes intermittent (in a well-
predicted way) if the flow becomes too strongly stratified in the sense that the “Obukhov length”
(the ratio of the cube of the friction velocity to the density flux) becomes too small, as predicted in
Ref. [42]. However, for the region of parameter space where the flow remains turbulent, irrespective
of the value of the molecular Pr, PrT � 1 over the entire range of Ri � Ric, and so Ri f � Ri �
Ric � 0.21, once again highly consistently with Ref. [10].

As pointed out in Ref. [41], the M-O theory also predicts the value of Reb, thus casting into
serious doubt whether it is appropriate (at least in this flow geometry) to consider Reb to be the
key independent parameter to describe the mixing properties. Crucially, even for this much more
realistically forced flow, the stratification can always be characterized as being “weak” in that PrT �
1. Further evidence of this weakness is demonstrated by the (empirical) fact that, as described above,
the interior (emergent) Ri ∝ Fr−2

T , consistent with the stratification not (significantly) modifying
the classical inertial scaling for the turbulent dissipation rate E . However, it remains somewhat
mysterious that the effect of the stratification might be considered to be weak, until that is, it just
stops being weak, and causes the flow to become intermittent, although it is the specific properties
of the flow near the wall which appear to be key to the onset of intermittency.

Furthermore, this flow highlights a common challenge in consideration of stratified shear flows,
namely ambiguity and the associated potential for confusion in the particular choice of Richardson
number to describe the flow. The interior gradient Richardson number Ri emerges as a consequence
of the balances at the heart of the M-O theory, and in general this is distinct from the bulk Richardson
number Rib set by the boundary conditions. Finally, it is still mysterious why Ric � 0.2, with, as
noted in Ref. [39], the relationship to the Miles-Howard theorem being “apparently fortuitous.”

IV. UNSTABLE (VERTICAL) SHEAR FLOWS: DOES HISTORY MATTER?

The forced flows considered by both Ref. [29] and Ref. [39] were constructed (and in particular
forced) deliberately in an attempt to observe statistically steady flows so that the mixing properties
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could be isolated from any transient (and hence inherently time-dependent) effects. Also, both
flows allowed for characteristic values of the Richardson number to be identified unambiguously.
Of course, transient flow evolution is exceptionally common. Furthermore, the whole paradigm of
mixing events which go through several stages starting with flow instability leading to turbulence
transition, vigorous mixing and turbulence with final ultimate decay, is based on the sequential
occurence of highly time-dependent phenomena.

Indeed, it has been commonly assumed that a generic way in which turbulent stratified mixing
occurs is through the onset and subsequent breakdown of shear instabilities in a stratified flow.
This view naturally leads to the constraints implied by the Miles-Howard theorem, and so the
consideration of flows which (at least somewhere) have local gradient Richardson number Ri
significantly less than 1/4, although there are some important subtleties associated with “optimal”
transient growth [43,44], ambient turbulence [45], finite amplitude perturbations [46,47], and finite
Reynolds-number effects [48]. Indeed, much of the attention has been focused on stratified flows
with inflectional velocity profiles which would be unstable even in the absence of stratification,
even though, due not least to the presence of internal waves, statically stable stratification can lead
to instability in flows which are linearly stable in the absence of stratification (see, for example,
Ref. [49]).

A particularly instructive class of flows which has been widely considered [16,17,50,51] have
initial hyperbolic tangent profiles in streamwise velocity and density:

ub = U (x3)x̂1; U (x3) = U0 tanh (x3/d0); ρb = ρr − ρ0 tanh (x3/δ0); Re0 = U0d0

ν
. (22)

Here 2d0 is the initial total depth of the shear layer (which might more consistently be called a
vorticity interface) while 2δ0 is the initial total depth of the density interface, and ρr is a reference
density. There is a total velocity jump of 2U0, leading to a natural definition of the flow Reynolds
number as Re0 = U0d0/ν. Care must be taken when making comparisons, as some studies use the
total shear layer depth and velocity jump, thus leading to a Reynolds number larger by a factor of
four.

Consideration of these flows requires the analysis of an initial value problem. Whereas the flows
considered in Sec. III are continuously forced with a forcing which is either constant, or at least
very close to constant with time, the evolution of these flows evolves “freely” from an artificially
chosen and inherently unstable initial condition. In a sense, this initial condition has been set up
by some forcing, which is “switched off” at t = 0 when the flow (with some small perturbation) is
allowed to evolve. These two different situations constitute two end members of the more general
(and certainly more geophysically relevant) class of flows with “forcing” which can vary in both
space and time. It is always important to remember just how idealized such initial value problems
actually are, and whether their evolution leads to generic behavior is an interesting, and still open
question. This issue is discussed further in Sec. VI.

A further potential source of confusion is the significance of the Richardson number of such
flows. The background gradient Richardson number is

Ri(x3) ≡ N2

S2
= gρ0d0

ρrU 2
0

d0

δ0

sech2(x3/δ0)

sech4(x3/d0)
≡ RibR

sech2(x3/δ0)

sech4(x3/d0)
, (23)

defining the length-scale ratio R and the bulk Richardson number Rib. Only for the simplest case of
R = 1 does Rib correspond also to the minimum gradient Richardson number Rim (at the midpoint
of the shear layer), the relevant quantity for the application of the Miles-Howard theorem.

The particular value of the length scale ratio R plays a key role [52] in the relevance of Rib to
the value of Rim. In particular, if R is large, and so the density interface can be characterized as
“sharp,” Ri drops to small values away from the interface, and so Rib (and indeed the Miles-Howard
theorem) becomes irrelevant to determining whether the flow is unstable or not. Large values of Rib

may suggest that the flow is “strongly” stratified, but as there are regions of the flow where Ri is
very small, there is no obvious blanket constraint against the flow being unstable.
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In stratified shear flows, this is not just a point of academic curiosity. Although hyperbolic tangent
profiles were initially considered due to the fact that significant analytical progress could be made
[30], they are also close to the error function profiles which would be expected to develop due to
diffusion between two streams of fluid with different properties of velocity and density. In such a
circumstance, the ratio R ∝ √

Pr [52], and so it is reasonable to assume that it is at least possible
for relatively “sharp” interfaces to occur in water for example [with Pr ∼ O(10)] while R ∼ O(1) is
expected in gases (Pr � 0.7 in air).

A. Overturning and scouring: KHI and HWI

These two different possible situations suggest two qualitatively different types of mixing, which
may be referred to as “overturning” or “scouring” [53]. If the stratification is relatively weak, then
a shear instability (and its ensuing turbulent breakdown) can overturn the density interface, further
smoothing and spreading out the density distribution. In such a case, it seems at least plausible that
the ensuing mixing could appropriately be modelled as a diffusive process, due to the fact that it
(further) smears out the density gradient in the vicinity of the interface. On the other hand, if the
density interface is sufficiently “strong” and “sharp,” then instabilities and turbulence are no longer
sufficiently energetic to overturn the interface but rather are characterized by vortical structures that
impinge on the interface and scour relatively fine wisps of fluid from the interface into the interior.
This process could reasonably (if loosely) be characterized as “antidiffusive,” as the interface not
only can survive but may indeed be sharpened further in certain circumstances.

Although this is argument seems highly speculative, it is possible to identify circumstances
under which such “scouring” dynamics might be expected to occur in a fully turbulent flow [54],
and provided the flow actually starts in such a “layer-interface” state (also sometimes referred to
as a “staircase”), such an interface can continue to persist in stratified plane Couette flow [55].
Furthermore, there also are primary instabilities of a stratified flow which exhibit these contrasting
properties, establishing that this dichotomy is a useful way of thinking about stratified shear flows,
even from an initial value viewpoint. Sufficiently weakly stratified flows are prone to the classical
“overturning” Kelvin-Helmholtz instability (KHI), which at finite amplitude takes the form of
a periodic array of elliptical vortices prone (at sufficiently high Re0) to a “zoo” of secondary
instabilities [56,57]. These secondary instabilities rapidly trigger the transition to an intense burst
of turbulence which “flares” for a relatively short period before decaying.

Conversely, generically when the scale ratio R is sufficiently large so that Ri drops to small
values away from the density interface, when the interface is sufficiently strong so that Rib is still
sufficiently large, a qualitatively different “scouring” instability occurs. This instability is often
referred to as the Holmboe wave instability (HWI) [58], though there is not the same complete
consensus about nomenclature [59], and once again, the subtle effects of viscosity must be treated
with care when classifying stratified shear instabilities [48]. In the simplest symmetric case when the
density interface is at the midpoint of the shear layer, at finite amplitude the saturated primary HWI
manifests as counterpropagating trains of patches of vorticity above and below the interface. These
trains perturb the interface to form characteristic counterpropagating cusped waves, “scouring”
wisps of fluid upward and downward from the cusps of these waves [60]. (The situation is somewhat
more complicated when the symmetry is broken by the interface being displaced from the midpoint
of the shear layer [61], with different dominant wavelengths and growth rates for the two branches
of HWI propagating in different directions.)

1. Mixing properties of “scouring” turbulence induced by HWI: Do flows self-organize?

Although there has not been the same detailed analysis of the secondary instabilities of HWI,
provided they are conducted at sufficiently high Reynolds number, numerical simulations [28,62]
suggest that HWI are also prone to a wide range of secondary instabilities, and also breakdown
to disordered turbulence. However, it appears that this turbulent phase “burns” for a significantly
longer period of time compared to flows primarily prone to KHI. Indeed, for a significant period of
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FIG. 3. (a) The probability density function (PDF) of Rig(x3, t ) for times during the turbulent period of
eight different simulations prone to primary HWI with Re0 = 6000 and Pr = 8. Each line type corresponds to
a different initial condition choice of length-scale ratio R and bulk Richardson number Rib (coded as J). (b) The
aggregated probability density function of Rig(x3, t ) for times during the turbulent period of all eight different
simulations. The vertical dashed line marks the critical value of 0.25. Used with permission from Ref. [62],
copyright CUP, all rights reserved.

time, the turbulence induced by the HWI appears to relax into “a kind of equilibrium” as postulated
by Turner [32], and this equilibrium turbulent state appears to be generic, in the sense that certain
key characteristics of this turbulent state do not appear to depend on either the initial sharpness
(quantified by the ratio R) or strength (quantified by the bulk Richardson number Rib) of the density
interface.

One way to consider quantitatively the generic character of the turbulence following the break-
down of primary HWI is to calculate the notional gradient Richardson number distribution Rig(x3, t )
associated with horizontally averaged profiles of streamwise velocity and density [62]. At every
instant after the onset of the fully turbulent state, it is possible to calculate (from the data of
a numerical simulation) the horizontally averaged density distribution ρ(x3, t ) and streamwise
velocity u(x3, t ), and hence Rig(x3, t ):

Rig(x3, t ) ≡
− g

ρr

∂ρ

∂x3(
∂u
∂x3

)2 , (24)

where as usual ρr is the reference density.
It is then possible to construct the probability density function (PDF, sampled at vertical locations

and time) of this notional Richardson number distribution during the turbulent period of simulations
initialized with a range of choices of R and Rib. The PDFs for eight different simulations (with
different choices of R and Rib) are plotted independently in Fig. 3(a) and combined together in
Fig. 3(b) [62]. Irrespective of the initial conditions chosen, the PDF for flows with HWI are very
strongly peaked around the critical value of Rig = 0.25, marked in each panel with a vertical dashed
line. Although not shown, equivalent PDFs for simulations prone to primary KHI do not exhibit such
universal, “critical” behavior. This behavior of HWI-unstable flows is highly suggestive of the flow
self-organizing critically into a marginally unstable state for a significant time. Indeed, other aspects
of the flow (such as apparent scale invariance in the “avalanching” eddies) are also suggestive of
such flows being attracted toward a generic state of self-organized criticality.

These key aspects of universal, long-lived turbulence properties also appears to lead to mixing
properties which have some universality. Within such flows, as there still is undoubtedly a life cycle
to the mixing event, it is most natural to consider cumulative measures of mixing, as defined in (7).
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FIG. 4. Time variation of cumulative turbulent flux coefficient �c(t ) as defined in (7) for the eight
simulations listed in Fig. 3 prone to primary HWI (plotted with the same line types) and for a simulation with
Re0 = 6000, Pr = 8, Rib = 0.16, and R = 1 prone to primary KHI (plotted with a solid black line). Adapted
from and used with permission from Ref. [62], copyright CUP, all rights reserved.

Therefore, in Fig. 4, �c(t ) is plotted with different colored lines for these eight simulations, where
t0 = t2d , i.e., the saturation time of the primary HWI. Interestingly, yet again the mixing within
these flows converges (strongly) toward the upper bound proposed by Osborn [10] �c → 0.2. This
is consistent again with PrT ∼ O(1), and that such mixing may be thought of as being in some
sense a quasisteady state for still “weak” stratification, when the most appropriate definition of
Richardson number is used, and there is at least suggestive observational evidence consistent with
this self-organized criticality argument [63].

2. Mixing properties of “overturning” turbulence induced by KHI: How large can � be?

However, as is apparent in Fig. 3, the mixing properties of flows prone to primary KHI appear
to be markedly different. The equivalent time evolution of �c is plotted with a black line for a flow
with Rib = 0.16 and R = 1 after the saturation of the primary Kelvin-Helmholtz billow. There are
two key differences. First, �c “flares” to a much larger peak value than for any of the HWI-unstable
flows. This flare is associated with the effects of the breakdown of the large primary overturning,
and is perhaps not surprising, as such “convective” and statically unstable mixing processes are well
known to be significantly more efficient than shear-driven mixing events [12]. Second, this large
O(1) peak value has a lasting imprint on �c, with �c ∼ 0.4 for this flow for large times as the mixing
event dies away, suggesting that mixing induced by the breakdown of the primary overturning of
KHI may be characterized as being “optimal” [51].

Clearly, for such large overturning-driven mixing events, the flow history really matters, and the
mixing can be much more efficient than postulated in Ref. [10]. As discussed in detail in Ref. [50],
these discrepancies are not entirely surprising, since the underlying assumptions of the existence of
a statistically steady homogeneous turbulent state with no coherent large scales or other significant
advective terms are essentially all violated by the relatively rapid turbulent breakdown of Kelvin-
Helmholtz billows. Furthermore, since “history does matter” for such mixing events, great care must
be taken in interpreting data constructed from snapshots at different stages in the flow evolution.

Nevertheless, although the underlying assumptions of Ref. [10] do not necessarily apply, there is
at least suggestive evidence that mixing associated with such shear-driven overturnings is relevant to
real flows. Using “snapshots” from numerical simulations (with associated instantaneous values of
mixing properties and parameters, such as Reb) it is possible to identify a certain characteristic
dependence of turbulent flux coefficient �M as a function of Reb, as shown in Fig. 5(a). The
variation is clearly nonmonotonic, and fits well in an envelope defined by two expressions of the
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FIG. 5. Variation with Reb of turbulent flux coefficients: (a) �M inferred from numerical simulations
[16,50,64]; (b) �B inferred from observations [65,66] as labeled. Shading quantifies estimates of uncer-
tainty: for further details see Ref. [67]. The dashed lines show bounding expressions of the form (25) with
Rem

b = 300, �m = 0.5 and Rem
b = 100, �m = 0.2. The horizontal dotted line marks the upper bound � = 0.2

postulated in Ref. [10]. Adapted from and used with permission from Ref. [67], copyright Wiley, all rights
reserved.

form

�M(Reb) =
2�m

( Reb
Rem

b

)1/2

1 + ( Reb
Rem

b

) , (25)

where Rem
b ∼ O(100) is the value of Reb at which �M(Reb) attains its maximum value �m. The

upper bound has Rem
b = 300 and �m = 0.5, while the lower bound has Rem

b = 100 and �m = 0.2.
Note that this functional form is consistent with the large Re−1/2

b scaling [37,38], and also im-
portantly consistent with oceanic and lake observations of �B as shown in Fig. 5(b). (Shading
typically denotes data scatter, as described in more detail in Ref. [67].) Essentially, such inherently
transient mixing associated with overturning can be “efficient” (perhaps even “optimal” [51]) in
that flux coefficients can be significantly larger than 0.2, and also flux coefficients can decrease
as Reb becomes very large. The high values of flux coefficient are caused by the effects of the
large overturning induced by the primary instabilities, demonstrating that such flows are profoundly
affected by their time history. Also, and crucially, their behavior is still fundamentally associated
with “weak” stratification, as the requirement for the flow to become unstable to KHI is inevitably
constrained by the Miles-Howard theorem.

V. “STRONGLY” STRATIFIED FLOWS: WHAT HAPPENS AS FrT → 0?

There are at least two “obvious” ways by which it is possible to consider flows which at least have
the potential to be strongly stratified: flows where the background velocity gradients and density
gradients are not parallel and numerical simulations where energy is injected at relatively large
scales into a turbulent stratified fluid with arbitrarily strong stratification in an artificial, yet still
controlled, way.

A. Horizontal shear flows: Is layering generic?

Flows where the velocity shear is horizontal and hence perpendicular to the (background) density
gradient have a particular attraction for accessing turbulence in “strongly” stratified fluid. Clearly,
the evolution within the flow of small perturbations is not constrained by the Miles-Howard theorem.
Furthermore, the possible “roll-up” of the background shear into relatively isolated vortices does not
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have an inevitable energetic cost as in vertically sheared flows. Therefore, in principle at least, it is
possible for horizontally sheared flows to be unstable for arbitrarily strong (vertical) stratification,
although it is now known that the vertical stratification still has a strong effect on the instability
properties [68,69].

Indeed, even when vertically oriented vortices manage to develop, such vortices are prone to the
“zig-zag” instability [70–72]. A key property of this instability is that it has a characteristic vertical
length scale of U/N , where U is some characteristic velocity of the flow. Subsequent breakdown at
finite amplitude, inevitably (at sufficiently high Reynolds number) inducing turbulent mixing leads
to a layer-interface structure, with relatively deep, relatively well-mixed “layers” (of scale U/N)
separated by thinner “interfaces” of locally enhanced density gradient [36,73,74].

Such a layer-interface structure occurs very commonly in stratified turbulent flows, with a
particular dramatic manifestation occuring in stratified Taylor-Couette flow [75]. Initially vertically
linearly stratified fluid in the annular region between two concentric cylinders spontaneously forms
such a layer-interface structure when the inner cylinder is rotated at sufficiently high rotation rate
relative to the outer (stationary) cylinder. Evidence suggests that the initial depth of the layers in
this “staircase” is set by the onset of the “stratorotational” instability [76,77], but the subsequent
flow can be very strongly turbulent, with vigorous turbulence with the relatively well-mixed
layers scouring (and potentially intermittently overturning [78]) the much more strongly stratified
“interfaces.”

It can be tempting to classify such layered flows as being strongly stratified, in that estimates of
the turbulent Froude number FrT � 1, when based on volume averages of dissipation rate E in the
numerator and turbulent kinetic energy K′ and buoyancy frequency N in the denominator. However,
using such uniform values for a highly spatially variable flow can be misleading, especially if used
as evidence that vigorous turbulence can be maintained in such strong stratification, and can lead to
nontrivial irreversible mixing. In particular, the experimental evidence [75,78,79] that the vertical
density flux (and hence appropriate measures of mixing efficiency) does not depend on the strength
of (very strong) stratification (as quantified by overall estimates of FrT ) should not be interpreted
as convincing evidence that nontrivial mixing is maintained as FrT → 0. Vigorous turbulence is
generically localized in the relatively well-mixed (and hence relatively weakly stratified) layers,
rather than over the (arbitrarily strongly stratified) “sharp” interfaces.

Unfortunately, stratified Taylor-Couette flow does not establish categorically whether turbulence
can still remain in the “strongly stratified turbulence” regime (sometimes also called the “layered
anisotropic stratified turbulence” or LAST regime [80]). This regime is closely associated with
a self-similar scaling [81] that naturally leads to layers of depth U/N ≡ Lv , and is characterized
by a particular distinguished limit. This limit requires that both the (horizontal) Reynolds number
Re ≡ ULh/ν � 1 and the horizontal Froude number Fh ≡ U/(LhN ) � 1 (where U is a charac-
teristic velocity scale and Lh is a characteristic horizontal scale) such that ReF 2

h � 1. With the
further assumption that E ∼ U 3/Lh (i.e., that the dissipation has the classical inertial scaling, which
could perhaps be criticized in a flow with “strong” stratification) this distinguished limit implies
(among other characteristics [82]) that Reb � 1, As already noted, Reb � 1 is associated with a
high dynamic range with large-scale separation between the Kolmogorov microscale LK and the
Ozmidov length scale LO as defined in (13). Using the inertial scaling and the scaling that Fh � 1,
the characteristic scales are thus naturally ordered as Lh � Lv � Lo � LK .

There are reasonable arguments that this regime is of great geophysical significance, but unfor-
tunately it is extremely computationally demanding to simulate [83,84]. Furthermore, due not least
to the predicted inherently anisotropic structure of high-aspect ratio “pancakes” of turbulence (as
Lh � Lv), there is a clear need to identify the turbulence and mixing properties of different regions
within such inherently anisotropic, spatiotemporally variable flows. This identification would be
a natural application for a data-driven approach that could potentially be “learnt” using modern
artificial intelligence algorithms [85].
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B. Forced “strongly stratified” flows: Are internal waves efficient mixers?

An alternative approach attempting to access strongly stratified flow regimes, in particular
avoiding the need to compute in horizontally extended computational domains, is to consider
computations with artificial body-forcing at large scales. Other attractions of this approach are
that it allows a rational sweeping through parameter space in a controlled fashion varying the
turbulent Froude number FrT without a reliance on shear-driven instabilities, and also it yields
at least the possibility that the flow can approach a statistically steady state. This latter aspect
removes (presumably) the possibility that the time-history of the flow will matter in determining the
turbulence (and mixing) properties of the flow. Once again, it is important to remember that this form
of forcing is (at least quasi) steady in time. Spatiotemporal variability does indeed emerge, but it is
not possible to gain insight into the dynamics of flows with (surely more realistic) spatiotemporally
variable forcing.

In an important paper [33], this quasisteadily forced approach was used to investigate the (hy-
pothesized) dependence �B(FrT ). For large FrT , the scaling �B ∝ Fr−2

T is clearly identified, entirely
consistently with the weak stratification scaling Ri f ∝ Ri discussed above, associated with the
properties of the turbulence indeed being largely unaffected by the stratification, and also consistent
with previous experimental and observational studies, as compiled in, for example, Ref. [86]. At
intermediate FrT ∼ O(1), �B � 0.5 a maximum value in this study [33], before apparently reducing
to smaller, yet categorically positive, and essentially constant independent of FrT , �B � 1/3 as
FrT → 0. Reassuringly, the high FrT scaling and the existence of a constant Fr0

T scaling as FrT → 0
has been subsequently confirmed to apply for a wide range of different flows [87]. However, when
data are collated from different flows, there is no clear evidence of nonmonotonicity at intermediate
FrT , and also the small FrT asymptote is consistent with � ∼ 0.5, reminiscent of the peak value
previously observed [33] and also in flows prone to primary KHI [67].

This is at least slightly suggestive of two conjectures. First, it suggests that the particular
form of forcing may indeed be significant, at least for the particular numerical value of flux
coefficient associated with the induced turbulence. Second, it suggests that the “taxation rate” of
one-third of injected large-scale energy eventually leading to irreversible mixing and two-thirds
being dissipated viscously may be accessible for such (at least apparently) strongly stratified
flows. Of course, to investigate the significance of these conjectures, it is natural to consider the
mixing properties of stratified turbulent flows forced (at large scales) using a variety of different
strategies.

It is (perhaps unsurprisingly) straightforward to establish that the particular numerical value of
the (nonzero) asymptotic value of an appropriately defined � as FrT → 0 does indeed depend on the
forcing strategy utilized [88]. However, it is also important to consider (admittedly artificial) body-
forcing which has at least some potential basis in reality. One (reasonable) choice injects energy at
large scale into purely horizontal (and hence in some sense “vortical”) modes [89]. An alternative
attractive choice is to model the large-scale forcing as being associated with the internal wave field.
Such a forcing can be designed both to have a spectral wave-number dependence designed to mimic
that which is observed geophysically and also for the different velocity and density components to
be inter-related with the polarization relationships expected for internal waves, and so in particular
having nonzero vertical and density perturbations [88]. Certain key aspects of the flow induced by
such a forcing are shown in Fig. 6.

In Fig. 6(a), a snapshot in the x3-x3 plane is shown of the pointwise-calculated local (i.e., with
no volume-averaging) turbulent kinetic energy dissipation rate EL. The plane is taken from the
midpoint of the computational domain at a late time (t = 150, scaled in advective time units)
after any initial transients associated with the start up of the simulation may be assumed to have
passed. A clear layering of the flow is observable, with intense regions of dissipation embedded
in much more quiescent regions. This is further evidence that layering appears in a wide range of
stratified turbulent flows and also that it is important to be cautious about characterizing flows with
volume-averaged quantities as such layering can often occur.
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FIG. 6. In a turbulent flow forced by large-scale internal waves: (a) Snapshot in the x1-x3 plane (at
the middle of the computational domain) at a late time (t = 150, scaled in advective time units) of the
pointwise-calculated local turbulent kinetic energy dissipation rate EL . (b) Two-dimensional p.d.f. of hori-
zontally averaged dissipation rates EH and χH . The two dotted lines on each panel mark values corresponding
to �H = 0.1 and �H = 1; (c) two-dimensional probability density function (PDF) of FrH and �H calculated
from horizontally averaged quantities. Data in (b) and (c) are for a range of nondimensional times t � 50 after
initial spin-up, and the blue dashed line marks the volume-averaged value �χ = 0.496. Adapted from and used
with permission from Ref. [88], copyright CUP, all rights reserved.

It therefore is natural to consider horizontally averaged quantities as a relatively simple way
to identify properties associated with regions of vigorous (and not-so-vigorous) turbulence. In
Fig. 6(b), the two-dimensional probability density function (PDF) is plotted of the horizontally
averaged kinetic energy dissipation rate EH and the horizontally averaged buoyancy variance dissi-
pation rate χH . On this plot, diagonal lines correspond to fixed values of the appropriate turbulent
flux coefficient �H constructed from these horizontally averaged quantities, and for comparison, two
dotted lines mark 0.1 and 1. For this particular flow, �χ = 0.496, the ratio of the volume-averaged
χ and E . The blue dashed line marks the equivalent relationship between the horizontally averaged
quantities χH and EH . Interestingly, the horizontally averaged data lie quite close to this relation,
even though the individual values vary by at least two orders of magnitude.

This property is of course consistent with the “strongly stratified” scaling discussed above,
in that it is consistent with �H ≡ χH/EH being constant, and hence independent of appropriate
nondimensional parameters within the flow. This is shown in Fig. 6(c), where the two-dimensional
p.d.f. of �H and FrH is plotted for the same times t > 50. FrH is the turbulent Froude number
constructed with horizontally averaged quantities:

FrH ≡ EH

NHK′
H

, (26)

where the subscript H in the terms on the right-hand side denotes horizontal averaging of pointwise
evaluated quantities. (Note this is different from the “horizontal Froude number” briefly mentioned
above in the context of the LAST regime.) It is clear that �H ∼ Fr0

H over two orders of magnitude,
when FrH can be reasonably characterized as being “small.”

However, it is important to appreciate that these different values of FrH are constructed from
within the same flow simulation, which nevertheless exhibits great spatial inhomogeneity and
anisotropy, in particular being clearly characterized by layering associated with orders of magnitude
variability in dissipation rates. Such variability would be expected to be consistent with a correlated
variation in other parameters (such as Reb). Therefore, apparent independence of flux coefficient
with respect to variations in (small) FrT may more broadly be associated with the (relatively large)
flux coefficient varying little with respect to any of the parameters.
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For this flow, in either the vigorously turbulent regions, or the essentially quiescent layers, the
mixing has similar properties, as quantified by an appropriate definition of the flux coefficient.
Indeed the mixing throughout the flow appears to be highly “efficient,” suggesting that the mixing
induced by such internal-wave-driven flows may typically have a high (and hence efficient) value
of flux coefficient. Somewhat smaller values (�χ �0.37) were associated with purely horizontal
forcing, suggesting that the “breaking” of internal waves may well lead to more efficient mixing,
perhaps associated with being “convective” in character [90,91]. Also, it could be argued that
the differences observed previously in this (apparently) asymptotic value at low FrT may well be
associated with particular aspects of the large-scale forcing.

The fundamental quantity of interest, the actual absolute amount of diapycnal mixing, will be
dominated by the more turbulent regions (as is apparent from the definition of κT multiplying the
flux coefficient by Reb). There are curious, and still unexplained observations, that these clearly
apparent “layers” in dissipation rate do not correlate with local changes in the background shear
and stratification, and that the specific value of the flux coefficient is broadly similar in both the
turbulent and quiescent regions of the flow. Nevertheless, that stratified turbulence is generically
layered is a viewpoint which is gaining more and more supporting evidence.

VI. “CONCLUSION”: IS ANYTHING CERTAIN?

In this article, I have attempted both to convey some of the interesting advances in the last few
years and also to highlight remaining areas of profound uncertainty in understanding and modeling
(irreversible) turbulent mixing in stratified flows. As discussed in Sec. II, a fundamental challenge
in stratified mixing has been, for several decades, modeling of a (turbulent) eddy diffusivity for
the density (or “heat”), i.e., κT . Although in fact a subsidiary, derived quantity, a large amount of
research effort has actually been devoted to the parametrization of some appropriate definition of a
turbulent flux coefficient �. More specifically, there have been many studies investigating whether
anything generic can be said about the functional form of �(Reb, Ri, FrT , Pr), where arguments
have often been presented that a particular nondimensional parameter is physically meaningful.

Of course, there are (at least) two very reasonable and fundamental criticisms of the underlying
philosophy identifying the modeling of a flux coefficient as the most important open question
requiring an answer. First, it is self-evident that modeling scalar transport in a turbulent flow using
such a flux-gradient model involving an eddy diffusivity κT is generically likely to be inaccurate.
Furthermore, focus of attention on flux coefficients has the implicit assumption that it is sensible to
attempt to describe irreversible mixing rates (quantified through B, M, or χ , averaged in some way)
in terms of the turbulent dissipation rate E , once again averaged in some way. That it is appropriate
to model stratified mixing in terms of such a flux coefficient � “taxation rate” relating mixing rates
to the turbulent kinetic energy dissipation rate is really a rather strong, and indeed often highly
inappropriate, assumption. Also, focus on � unfortunately obscures the fact that it is really the
diapycnal scalar transport which is the process of fundamental interest.

Nevertheless, even accepting these criticisms, and carrying on regardless in an attempt to
construct a fluid-dynamically justified functional form for some definition of flux coefficient � (or
other measures of mixing efficiency), strong evidence is emerging that it is extremely difficult to say
anything generic about the parameterization of stratified mixing. The influential, indeed seductively
appealing hypothesis that �(Reb) in some nontrivial way [9,37,38] appears (at the moment) to
be inconsistent with the evidence of at least one highly idealized flow. This stratified shear flow
is forced (by design) to be statistically steady and spatially homogeneous [29], and (perhaps
fortuitously) characterized by essentially constant values of the other (assumed) key parameters,
thus isolating the (non-)effects of variation in Reb.

However, it cannot be said that flux coefficients, or equivalently “mixing efficiencies,” never
depend on Reb. Both observations and “snapshots” of the highly time-dependent mixing induced
by the breakdown of primary KHI does indeed exhibit such a dependence, consistent with the
characteristic scaling of � ∼ Re−1/2

b at high Reb previously assumed. However, it is not yet clear
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how important the time dependence of this flow is, i.e., it is an open question as to just how much
“history matters,” associated with the vigorous primary, and perhaps optimal “overturning” [51].

Indeed, the mixing dichotomy between more efficient “overturning” and less efficient “scouring”
appears to be a useful way to think about stratified mixing, at least in the situation of shear-driven
mixing. “Scouring,” associated with sharper and stronger density interfaces and the breakdown
of the other classical shear instability HWI, appears to be associated with at least a “kind of
equilibrium,” and so longer-lived periods of turbulent mixing. Just as in wall-forced stratified plane
Couette flow, for such relatively long-lasting turbulent mixing, it seems reasonable to think of the
flow as being “weakly stratified,” in the specific sense that Ri ∼ Ri f � 0.2 and so PrT ∼ O(1),
implying momentum and scalar are “mixed” similarly.

This observation therefore naturally motivates the search for flows which can be characterized
as being both strongly stratified (e.g., with FrT � 1) and vigorously turbulent (e.g., with Reb � 1).
This search must always keep in mind two major potentially misleading phenomena. The first is that
it is important to monitor whether there is correlation between parameters, as generically it is not yet
established that real turbulent flows can access every part of the multidimensional parameter space.
Second, and perhaps more importantly, there is mounting evidence, in simulation [85], experiment
[75], and even observation [91], that spatiotemporal variability is a central, perhaps even defining
characteristic of stratified turbulent mixing processes. This mounting evidence points clearly toward
the fact that the structure of turbulent stratified flow states exhibits significant spatiotemporal
variability. Just to take one example, there is a lot of evidence that “layering is generic,” in the
sense that, in a wide range of circumstances, approximately constant density gradients are broken
down by stratified turbulence spontaneously into a “staircase” of relatively well-mixed and deep
“layers,” separated by relatively thin “interfaces” with increased density gradient [3].

Although spatiotemporal variability in the flow structures has been widely identified and studied
in idealized simulations and laboratory experiments, as already noted the larger-scale flow forcing
has usually been quite simple. As discussed above, there have been studies which have been forced,
essentially quasisteadily in time either at a boundary (for example in stratified Taylor-Couette
flow or plane Couette flow), or through artificial body forces in a numerical simulation. There
have also been many unforced (at least after time t = 0) simulations and experiments, where the
initial value problem of the subsequent flow evolution from an initial, deliberately constructed,
“background flow” is considered. In real geophysical flows, it seems much more likely that the
large-scale forcing of the small-scale turbulence (and ensuing mixing) will itself be spatiotemporally
variable. For example, Ref. [92] investigated time-periodically varying shear flows as a model of the
interaction between KHI and propagating internal waves. It is clearly very important to investigate
further whether such spatiotemporal variability in forcing leads to qualitatively different behavior,
particularly at sufficiently high Reynolds number for vigorous turbulent mixing to occur. Put simply,
has traditional focus on the simpler end member classes (of either quasisteady forcing or “free”
initial value problems) thrown the geophysically relevant mixing “baby” out with the overidealized
“bathwater”?

Indeed, care must be taken to determine whether a particular value of some quantity (such
as a flux coefficient) of interest, averaged in time and/or space, is made up of a combination
of qualitatively different “patches,” “layers,” or “regions.” A particular open question of great
interest is whether a flow which appears to be on average both strongly stratified and vigorously
turbulent typically contains highly spatiotemporally intermittent patches of vigorous, yet locally
weakly stratified turbulence embedded within largely quiescent regions of exceptionally strongly
stratified fluid [85]. Studying such a “patchy” and/or “layer-interface” flow requires a robust method
to identify and characterize these “structures” underlying the flow “statistics,” where it has long been
known that there appears to be at least an imprint of inhomogeneity and anisotropy [80,93]. It also
inevitably calls into question how the various physical quantities (for example N , S, E , χ , etc.)
are actually averaged for input into the different nondimensional parameters used in modeling.
Just to mention one issue, the definition (13) of the Ozmidov length scale LO must be treated
with caution. A reasonable interpretation is that vigorous turbulence (with a relatively vertically
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localized dissipation rate E) is embedded within a background, relatively more vertically extended
stratification, with characteristic buoyancy frequency N . The relative vertical extents over which
E and N are calculated must be clearly understood for appropriate calculation and interpretation
of LO.

With the explosion in the development of a huge variety of data-driven techniques, stratified
turbulent mixing seems a research area ripe for the application of artificial intelligence, and
there have already been some promising first steps in this direction [85,94,95]. Such data-driven
approaches, when allied with the deep physical insight garnered over decades of fluid dynamical
research, is perhaps the way forward to unravel at last some aspects of the fascinating and crucially
important mystery that is turbulent mixing in stratified fluids.
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