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Sustained and rapid advances in computing have enabled the conduct of direct numerical
simulations (DNS) at increasing problem sizes and higher levels of physical realism, which
have in turn contributed to many advances in understanding turbulence. However, contin-
uing and future success at the “extreme-scale” level will likely require new algorithms
adapted to emerging heterogeneous architectures, and even then, long simulations at ex-
treme problem sizes are probably still too costly. In this paper we first describe the essential
elements of an asynchronous parallel algorithm for DNS of incompressible isotropic turbu-
lence, which scales effectively up to 18 4323 resolution (more than 6 trillion grid points) on
a world-class IBM-NVIDIA CPU-GPU machine. We then propose a simulation paradigm,
built on the idea that, for physical quantities of short timescales, sampling over well-
separated snapshots in a long simulation at high resolution can be replaced by sampling
over short simulation segments with a high degree of statistical independence evolved from
snapshots at modest or even low resolution. The total computational cost is now counted
in Kolmogorov timescales instead of large-eddy timescales, leading to tremendous savings
at high Reynolds number. This “Multiple Resolution Independent Simulations” (MRIS)
approach is validated through a series of comparisons, and subsequently applied to obtain
results on fine-scale intermittency, at Taylor-scale Reynolds numbers 390 to 1300, with
grid spacing smaller than the Kolmogorov length scale. The results show conclusively that
extreme fluctuations of the dissipation rate are usually accompanied by extreme enstrophy,
while extreme enstrophy is usually accompanied by less-intense dissipation. Statistics of
the locally averaged dissipation and enstrophy suggest these two variables scale together at
inertial-range scale sizes (but not in the dissipation range). Finally, brief remarks are made
concerning perspectives on likely major challenges in an exascale future, and several other
topics of study where the MRIS approach may be useful.

DOI: 10.1103/PhysRevFluids.5.110517

I. INTRODUCTION

In turbulence, it is well known that direct numerical simulations (DNS) at massive scales are
very useful for advancing physical understanding, but also very demanding in computational re-
sources [1,2]. For a given flow geometry, strong motivation for ever-larger simulations may include
reasons of a physical nature, such as a higher Reynolds number [3], lower diffusivity in turbulent
mixing [4], increasing chemical complexity in reacting flows [5], and higher turbulent Mach
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numbers in compressible turbulence [6] as well as numerical reasons associated with resolution
or sampling in space or time [7,8]. Rapid advances in computing power (exponential growth of
roughly 1 million-fold increase over the last 25 years) have enabled simulations of order 1 trillion
grid points in at least isotropic turbulence [3], channel flow [9], and stratified turbulence [10]. With
exascale computers capable of 1018 floating point operations per second (flops) expected to arrive
by 2021 or 2022, future prospects for turbulence simulations appear to be bright. However, changes
in the fast-evolving high-performance computing (HPC) landscape pose considerable challenges
in algorithmic developments necessary to ensure good code performance. Furthermore, turbulence
computations are often so demanding that extreme-scale simulations of the largest size that can fit
into the computer memory are likely to be restricted to ever-shorter physical time spans.

In this paper we describe some recent progress made, and perspectives developed, in addressing
the two challenges indicated above. Of course issues and requirements can vary with the specific
flow configuration considered. Here we will limit our attention to isotropic turbulence amenable
to the use of Fourier pseudospectral methods on a three-dimensional (3D) domain with N3 grid
points, although similar considerations concerning code performance should hold for homogeneous
turbulence in noncubic domains as well. We present simulation results at up to 18 4323 resolution
(over 6 trillion grid points), which should help us better understand some of the long-unresolved
aspects of intermittency in turbulence [11,12].

Most large parallel fluid dynamics codes employ the distributed-memory programming model,
where the solution domain is divided among a (potentially large) number of parallel processes, each
operating as a single CPU on its own share of data. However, these processes must share data with
each other through calls to standard communication library routines, which adds substantial over-
head to the overall cost of the computation. Additional costs also arise from local data movements
needed on each parallel process to pack data from different areas of the computer memory into
contiguous “messages” before each communication call, and to unpack newly received messages in
reverse accordingly. Usually, as the problem size and process count both increase, communication
overhead increases and the code becomes less efficient. While most successful large simulations
have special measures incorporated to help manage communication costs, and some machines may
offer impressively fast communication performance, this is still a major bottleneck (followed closely
by local data movements as noted above) in the use of massive CPU-based parallelism.

The last decade in supercomputing has seen the increasing prominence of heterogeneous ar-
chitectures with tightly coupled large-memory CPUs and smaller-memory GPUs, or other types
of hardware accelerators capable of very high computational speed. Because of considerations
for energy efficiency, such prominence is likely to continue in the future, even though effective
use of such systems is often more challenging [13–15]. Essentially, a new mode of parallelism is
now available inside the GPU (which can hold hundreds of execution threads), but data movement
necessary between the CPU and the GPU can pose a new challenge, and a substantial increase
in algorithmic complexity may be inevitable. Furthermore, it may not be immediately clear to
what extent hardware with special strength in faster arithmetic can be of benefit to a code where
communication and local data movements (which may occur on CPUs, GPUs, or between them) are
inherently dominant. However, it is now possible for operations involving the CPU, GPU, and the
data transfer channel between them to occur asynchronously. In Sec. II we discuss the principles
of a batched asynchronous algorithm [16] that allows good speedup at extreme problem sizes, as
demonstrated on the 200 petaflops supercomputer located at the Oak Ridge National Laboratory,
USA, called Summit, which was (according to the URL https://top500.org/lists/top500/2020/06)
the world’s second fastest as of June 2020.

The quality of results from any DNS depends on the numerical methods used, the degree to
which both large scales and small scales are faithfully represented, in both time and space, as
well as the adequacy of statistical sampling. For flows with a stationary state, the conventional
approach to ensure good sampling is by running a long simulation for, say, O(10) eddy-turnover
times (TE , defined to be the ratio of a longitudinal integral length scale to the r.m.s. fluctuation
of a velocity component), performing postprocessing on data saved at regular time intervals, and
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finally averaging over multiple realizations. However, since numerical stability (in Runge-Kutta
methods and other schemes using explicit discretization in time) requires that the time step �t
scales with the grid spacing (�x), computational cost for a given physical time period increases
at least as fast as N4. This means every halving of �x leads to at least a 16 times increase
in cost—which exceeds considerably the performance increase available in most newly installed
top-ranked machines over their predecessors. It is, in fact, not surprising that most simulations
considered leading edge in scale in their time (e.g., Refs. [17,18]) have been relatively short. It
should be noted that increasing problem size is in fact being enabled by increases in memory
available on leading-edge machines, but actual computational power is increasing more slowly,
such that the largest possible simulations performed within finite resource constraints are at risk of
being limited to short physical time periods. This leads to the ironic situation that, as computing
power grows and algorithms successfully scale to larger problem sizes, the ability to conduct the
next-largest long simulations actually becomes increasingly compromised.

In this paper, we introduce a paradigm to address the challenge posed above, for studies of
small-scale processes that evolve on short timescales. We first make two observations, which are
supported by experience. The first is that statistical stationarity in time, with a mild assumption of
ergodicity, allows us to take samples from multiple short simulation segments, provided they are
well separated in time, with a high degree of statistical independence. The second is that when a
modestly resolved velocity field is refined to a higher resolution, the small scales adjust quickly,
potentially within a couple of Kolmogorov timescales (τη). These observations suggest that an
alternative to a long, high-resolution (ideal but unfeasible) simulation may be to start with multiple
(say, M) independent lower-resolution snapshots, allow them to quickly adjust to higher resolution,
and then start collecting statistics at the highest resolution after only a short period of time (say βτη,
with β not much larger than 1). The length of time spent computing on an N3 grid would then be
proportional to βMτη (in total), as opposed to multiple TE ’s. Substantial savings are both most likely
while most needed at high Reynolds numbers, where TE � τη, and it is important [19,20] to resolve
down to scales smaller than the Kolmogorov scale (η = (ν3/〈ε〉)1/4) based on the mean energy
dissipation rate (〈ε〉). We refer to this paradigm as Multiple Resolution Independent Simulations
(MRIS). More details, including a validation study, are given in Sec. III.

Some hints to the viability of this approach could be found in recent work [8] where events
of extreme dissipation and enstrophy were seen to adjust rapidly to changes in resolution, and
important conclusions could be drawn from short simulations of length less than 10 τη. In Ref. [8]
short simulations of forced isotropic turbulence at two Taylor-scale Reynolds numbers (Rλ, up
to 650) were performed at three resolution levels, up to 81923 grid points but all starting from
the same initial snapshot. This was, in effect, similar to just one MRIS realization of 10 τη long.
Our current objective is to increase the Reynolds number by running larger simulations, while
also performing ensemble averaging over the initial conditions by starting from modestly resolved
snapshots originally distributed over several TE ’s in time. In addition we study both one- and
two-point statistics—in particular, the properties of local averages of the dissipation rate, which
play a critical role in understanding intermittency [11,12,21]. Availability of data on such averages
over 3D volumes [instead of one-dimensional (1D) versions] is relatively recent [22]. We show some
selected results in Sec. IV.

Our intent in this paper is to communicate recent innovations in turbulence simulations that
we believe are important to the enduring goal of advancing understanding of turbulence through
taking proper advantage of future exascale computing or beyond. The proposed MRIS technique
is not all powerful: for example, in our work, a longer adjustment time for the numerical solution
will be required when attempting to increase the Reynolds number at a given resolution, than to
increase the resolution at a given Reynolds number. A longer adjustment time is likely required
also for simulations of wall-bounded turbulence, such as fully developed channel flow spanning
several flow-through times [23]. This is in addition to the obvious inapplicability of this approach
for simulations with no stationary state. However, this approach is well suited to the task of
obtaining well-sampled results of the small-scale physics, at higher resolution in stationary isotropic
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turbulence. Sections II– IV are devoted to different aspects of this work, as already indicated in the
paragraphs above. Conclusions are summarized in Sec. V.

II. A GPU-OPTIMIZED ALGORITHM FOR PSEUDOSPECTRAL DNS

The basics of Fourier pseudospectral methods [24,25] as well as their implementation on modern
parallel computers [26] are well known. We present a few key elements below and then proceed
to discuss the structure of a parallel algorithm for extreme problem sizes using GPUs. The latter
discussion is meant to highlight some key principles that may be of interest to other turbulence code
developers engaged in heterogeneous computing.

A. Computational approach and background

We solve numerically the Navier-Stokes equations for 3D turbulence in the form

∂u/∂t = −(u · ∇)u − ∇(p/ρ) + ν∇2u + f, (1)

where (assuming constant density) both the fluctuating velocity vector (u) and the forcing term (f)
are both solenoidal. In Fourier space we can write

∂û/∂t = −{ ̂∇ · (uu)}⊥k − νk2û + f̂, (2)

where carets denote Fourier coefficients, k is the wave-number vector, and k ≡ |k|. In pseudospec-
tral methods the nonlinear dyadic products uu are first formed in physical space, then transformed
to wave-number space and projected onto a plane orthogonal to k. Aliasing errors associated with
nonlinear terms are controlled by a combination of phase shifting (for aliasing in one dimension) and
truncation at the wave-number magnitude kmax = √

2N/3 [27,28] for an N3 grid (which eliminates
doubly and triply aliased Fourier modes). Use of the dyadic form as in ∇ ·(uu) versus the advective
form (u · ∇)u has the advantage of reducing the number of variables that need to be Fourier
transformed, as well as the level of residual aliasing errors which may arise.

A first decision in our parallel code design is a domain decomposition scheme among P parallel
processes, that facilitates the key computational task, i.e.. the 3D fast Fourier transform (FFT),
which is taken one direction at a time, on lines of data with all N grid points present in the local
memory. The decomposition can be 1D, resulting in P � N slabs each consisting of N/P planes;
or two-dimensional (2D), resulting in P = Pr × Pc pencils, each containing N × N/Pr × N/Pc grid
points. Both schemes have been used in the literature [26,29]. The 2D decomposition allows P > N
(in principle, up to N2) and is well suited for massive parallelism driven by large P. However,
a trend towards large-memory multicored processors (nodes) and other forms of shared-memory
parallelism may favor a 1D decomposition.

B. GPU implementation for extreme problem sizes

Most top-ranked machines possess unique characteristics that explain their ranking. Thus, al-
though portability across different platforms is desirable, writing a code that has significant machine
dependency is sometimes a necessary and worthwhile investment. Summit has a heterogeneous
architecture, consisting of 4608 nodes, each containing 42 user-addressable IBM Power 9 CPU cores
and six NVIDIA Volta GPUs. Each node consists of 512 GB of random access memory (DDR4) for
use by the CPU cores and 16 GB of high-bandwidth memory (HBM2) for use by each GPU. Large
CPU memory (16 times increase per node compared to the predecessor machine, called Titan) and
availability of multiple GPUs per node (versus 1 on Titan) are both important attributes. Clearly,
full utilization of all GPUs is easiest if N is divisible by six. Since each node has two sockets, better
performance—at the cost of increased programming complexity—is obtained by having two CPU
processes tied to three GPUs each, instead of six CPU processes and one GPU each.

Our goal is to reach problem sizes as large as possible, at a level of performance that makes
production simulations realistic. The actual FFT computation (as 1D FFTs) using highly optimized
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FIG. 1. Left: Decomposition of a slab of data into multiple (np) pencils, of size N × (N/np) × N/P each,
for problem sizes where a single slab does not fit into the GPU memory. Right: Each pencil is further divided
to allow batched asynchronism while using multiple GPUs, as done in Ref. [16].

GPU libraries is so fast that its cost is insignificant. The general principles of success then include (1)
minimizing communication costs, (2) taking maximum advantage of the CPU and GPU memory,
and (3) optimizing the data transfer that must occur. The first of these is much helped by a high
network bandwidth on Summit as well as the use of fewer parallel processes. The second involves
noting that, although GPU memory is limited, data stored on the large-memory CPU may be divided
into smaller units to be processed separately. The third involves using CUDA library calls and
specialized GPU kernels to transfer data between GPU and CPU while also avoiding any additional
costs of packing data into contiguous areas of memory before communication, and the unpacking
afterwards.

A relatively simple hybrid CPU-GPU programming model may involve copying an entire slab
of data from CPU to the GPU, computing on it and then copying back to the CPU. However, due to
the smaller GPU memory this approach would limit the problem sizes accessible. To address GPU
memory limitations, we can divide each slab along one of its long dimensions, into multiple (np)
pencils (labeled with distinct colors in Fig. 1). In principle, each GPU can process one pencil as a
distinct batch of data. However, if N is very large and np is small, even a single pencil may not fit
into the GPU memory, making a further subdivision necessary. A larger np can be used to make
each pencil smaller, but this will likely result in each GPU making numerous data transfer calls to
cover a larger number of smaller pencils, which is less efficient.

We address the challenges noted above by (assuming N/P is divisible by the number of GPUs per
CPU) further subdividing each pencil along its shorter dimension. More importantly, this strategy
provides opportunities for asynchronism, or overlapping, that are possible when each GPU works
on multiple batches of data drawn from different pencils within the same slab. Each subdivided
portion of a pencil is to be processed separately on a GPU: by first being copied in from the CPU,
computed on, and finally the results being copied out back to the CPU. This is repeated until all
such “subpencils” (within the same slab) assigned to a specific GPU have been processed. For
example, as each GPU proceeds from left to right (brown to red in the figure), while computation
of data in the blue subpencil proceeds on the GPU, data transfer from GPU to CPU of the (already
computed) green subpencil or transfer from CPU to GPU of the red subpencil, which is yet to
be computed, can occur simultaneously. Proper scheduling and management of these execution
sequences are necessary to ensure correct results is achieved by using CUDA library functions to
define two execution streams, designated for computation and data transfer respectively. The same
protocol of asynchronous operations here is carried out on other GPUs as well, separately from each
other. We refer to this strategy as a “batched asynchronism.”

With subpencils oriented along the x direction, as in Fig. 1, 1D FFTs along this direction can
be readily taken. For transforms in y, the subpencils need to be reoriented along the y direction,
by taking a transpose locally within the plane on the CPU, before copying it over to the GPU.
A highly efficient CUDA library call can be used to perform this transpose on the GPU and
transfer data between GPU and CPU in a single operation. For transforms in z, communication
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is required among all parallel processes to transpose x-y to x-z slabs of data. This involves packing
and unpacking the data before and after the network communication. A more complex memory
reordering is required while unpacking data received through network communication from other
processes. We use optimized GPU kernels (called zero-copy) where GPU threads directly access
data on the CPU without having to explicitly copy the data to the GPU [30]. These kernels are used
only for unpacking, while the CUDA library call is used to pack the data, as zero-copy kernels use
GPU resources for data transfers, which are required for fast computations.

In our “batched asynchronism” algorithm, as computed results for each subpencil in Fig. 1 are
returned to the CPU, it is possible for communication calls, to be issued as soon as each pencil
of data is ready. In principle this would allow some communication (among the CPUs) to occur
simultaneously with data transfers and computations on the GPU. However, testing has shown that,
consistent with the usual advantages of a small number of larger messages, communication of an
entire slab scales better to larger problem sizes. Consequently we have designed the code such
that, communication of computed results is initiated only when the computation is complete; and
likewise the next round of computations is initiated only when a communication call providing data
to be operated on has completed. This implies no overlap between operations involving the GPU
and communication; but with GPU-CPU data transfer and computations overlapping each other in
a highly efficient manner, this scheme still provides the best performance overall.

While our batched asynchronism algorithm as sketched out above is designed to handle the
largest problem size that can be accommodated on the system, some remarks about factors that
constraint the largest problem size feasible are appropriate. For example, we have actually timed
the code up to 24 5763 using 4096 nodes out of 4608 on Summit. However, the code eventually
becomes less efficient, and smooth operation at that scale is less likely because of factors such as
longer waiting times on a busy system, and greater susceptibility to hardware failures for jobs that
require nearly the full system, in addition to reduced flexibility for on-the-fly processing that adds
to memory requirements. Conversely, this also means, by aiming at a more realistic problem size,
we are able to operate without much concern for memory limitations.

The maximal code performance that we obtained, as detailed in Ref. [16], can be briefly
summarized as a speed up or GPU acceleration in the range of 3–5 relative to the best-performing
CPU code on the same machine, and approximately 14.2 sec of wall clock per (second-order
Runge-Kutta) time step using 3072 nodes of Summit, for simulation of the velocity field only, at
18 4323 grid resolution. We use single-precision arithmetic in the performance runs and simulations
in the following sections as the impact of machine precision on the results of the type we are
interested in is weak [8]. Communication costs hold the key to further advancements on this or
other yet more advanced platforms to come.

To conclude this computing-oriented section, we note that our focus has been on presenting
both the overall principles and some specific design considerations necessary for achieving high
performance at large problem sizes on one of the fastest CPU-GPU leadership-class supercomputers
in the world at this time. Hardware and concepts defining leadership-class and extreme-scale
computing can be expected to evolve rapidly in the future (as they have recently). However, it seems
quite certain that optimization of data movement, and adaptability in the face of rapid changes in
the high-performance computing environments, will continue to be crucial for future success.

III. MRIS: METHODOLOGY AND VALIDATION

In this section we begin with a more detailed discussion of the MRIS methodology and how this
approach can be tested, for forced stationary isotropic turbulence. A validation study is presented
which addresses single-point statistics, issues of statistical independence, and two-point statistics
crucial to the material of Sec. IV. The forcing scheme we use is designed to reduce the statistical
variability of spatially averaged statistics in time, by freezing the energy spectrum in the lowest
few wave-number shells [31], at values derived from long-time averages of results from stochastic
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forcing [32]. However, the MRIS methodology should be compatible with other forcing schemes
that share the principle of maintaining energy by forcing at the large scales as well.

A. The MRIS approach and a validation procedure

As noted in Sec. I, as expectations for DNS rise due to a combination of scientific need and
advances in computing power, a pressing challenge is that full-length simulations spanning several
large-eddy timescales at extreme-scale resolution pushing the envelope of latest leadership-class
platforms will likely be inaccessible. However, if a turbulent flow is statistically stationary and
the focus is on small-scale phenomena with short timescales, we suggest that a much more viable
alternative exists. In the proposed (MRIS) approach, we replace sampling over a long, continuous
simulation at high resolution, say, N3 by sampling over a number of short simulation segments that
possess a demonstrable degree of statistical independence. Although a full-length N3 resolution
may be excessively costly, a long simulation at some lower resolution (say, N3

1 ) can be assumed
to be available, either from prior work or through new calculations. Our strategy is to use multiple
snapshots, with approximate independence through a separation in time from an N3

1 simulation, as
initial conditions for the short N3 segments, which are then disjoint from each other. Since the small
scales adjust to grid refinement (N3

1 → N3) rapidly, these segments need not be long. The total
cost of simulations at N3 will then be measured in Kolmogorov timescales instead of large-eddy
timescales. This results in major cost savings, that will in turn make well-sampled results at high
resolution much more readily feasible than otherwise.

It may be noted that while ensemble averaging over multiple independent simulations in tur-
bulence is not common, it has been used before, in situations where statistical variability per
simulation can be very substantial [33]. For us, a critical test for MRIS is whether the results
are close, within some margins of uncertainty, to those from an actual, full-length N3 simulation.
For validation, we consider a full-length DNS that is available at some affordable value of N ,
at a Reynolds number sufficiently high to show clear intermittency, and is very well resolved
in space and time—essentially, usable as a high-accuracy benchmark that MRIS results can be
compared to. Resolution in space can be expressed by the nondimensional parameter kmaxη, where
kmax = √

2N/3 is the highest wave number resolvable on an N3 grid of length 2π units on each side,
and �x/η ≈ 2.96/kmaxη. Accuracy in time may be controlled through the Courant number, which
in the present flow without a mean velocity is defined as

C = �t

[ |u|
�x

+ |v|
�y

+ |w|
�z

]
max

, (3)

where u, v,w are velocity fluctuations, and the maximum is taken over all (N3) grid points. In our
second-order Runge-Kutta scheme a combination of kmaxη ≈ 1.4 and C = 0.6 is usually adequate
for low-order statistics but better resolution in both time and space are important for higher-order
quantities strongly impacted by intermittency.

For a given well-resolved instantaneous snapshot at N3 resolution, we can truncate down to N3
1

by removing content at all Fourier modes with wave number higher than the value of kmax that
corresponds to N3

1 resolution. This removal of high-wave-number modes leads to an immediate
decrease in various quantities, including 〈ε〉, that contain substantial high-wave-number content.
Next, we run an N3 simulation segment with this truncated field as initial conditions, filling in the
“extra” Fourier coefficients beyond the value of kmax of an N3

1 grid with zeros. The desired outcome
is for 〈ε〉 to recover quickly to its original value in the (reference) N3 simulation. For a given N , this
“recovery time” is expected to increase with N/N1, being longer (thus less economical) if N1 is a
very low resolution. In cases where prior data at resolutions N/3 or N/4 are conveniently available, it
would be useful to reach the desired resolution via an intermediate stage such as N1 → N2 followed
by N2 → N . Incidentally the “recovery” process examined here has some parallels with the process
by which the large scales can regenerate the small scales if the latter are artificially removed [34],
provided the large scales are themselves maintained.
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TABLE I. Selected parameters in simulation segments used for MRIS validation: from N3
1 to N3 (via N3

2 if
applicable), kmaxη on N3 grid, number of segments (M), time span in units of τη, and ensemble-averaged 〈ε〉
and Sε , at the beginning and end of each segment (subscripts b and e, respectively). Initial conditions for Cases
3 and 6 were taken from the end of Cases 2 and 5. In the reference 30723 simulation the time-averaged values
of 〈ε〉 and Sε were 1.409 and 0.588, respectively. All simulations in this table were performed using a Courant
number of C = 0.25, with the same forcing parameters and viscosity.

Case N1 N2 N kmaxη M β 〈ε〉b Sεb 〈ε〉e Sε e

1 768 – 3072 4.2 11 4 1.374 0.471 1.410 0.588
2 768 – 1536 2.1 22 2 1.375 0.471 1.409 0.585
3 – 1536 3072 4.2 22 2 1.409 0.585 1.410 0.587

4 384 – 1536 2.1 22 4 1.135 0.264 1.397 0.577
5 384 – 768 1.05 22 4 1.135 0.264 1.403 0.529
6 – 768 1536 2.1 22 2 1.403 0.529 1.404 0.586

Since we are investigating resolution effects, comparisons should be based mainly on quantities
that are sensitive to the small scales. The list we consider includes the mean dissipation rate (〈ε〉),
the dissipation skewness [35] (Sε), and the energy spectrum at high wave number, as well as
direct indicators of intermittency such as the statistics of dissipation rate and enstrophy fluctuations
evaluated at a point or averaged locally in space.

For reference in the next three subsections, Table I shows important parameters for tests con-
ducted in our MRIS validation study, with reference to a simulation at Rλ ≈ 390 (one of the values
tested in Ref. [8]), with N = 3072 at kmaxη ≈ 4.2 which provides good resolution for the small
scales. This full-length “reference” simulation was run for 5.5 TE , with 22 snapshots written at
intervals of 0.25 TE apart. We truncate each snapshot down to 7683 and examine how the numerical
solutions recover if we (in Case 1) directly apply a 4 times increase in resolution back to 30723, or
(Cases 2 and 3, combined) through two successive 2 times increases in resolution. We are interested
in whether a new stationary state forms in a short period of time, with statistics closely resembling
those extracted from the 30723 reference simulation. Similar tests (Cases 4 as well as 5 and 6)
are also conducted to see if acceptable results can be obtained from poorly resolved velocity fields
(in this case, 3843 with kmaxη as low as 0.5) in a similar manner. Although, through the definition
of η, changes in 〈ε〉 lead to changes in η and hence kmaxη since η ∝ 〈ε〉−1/4 this effect is weak
even if long-time variations in the order of 10% [31] are considered. Simulations listed in this table
were performed using CPU-based nodes on the 35-petaflops supercomputer Frontera at the Texas
Advanced Computing Center.

B. Single-point statistics and spectra

Both Table I and Fig. 2 provide information on the dissipation rate and dissipation skewness,
which can both be written explicitly in terms of the dissipation spectrum. When a substantial
collection of high-wave-number modes is abruptly removed the dissipation rate drops, while
subsequent transfer of energy from the large scales (which are forced) will allow a recovery. Since
forcing is applied at the large scales we do not expect its details to affect the small-scale dynamics
significantly [36]. The contrast between Cases 1 and 4 shows, as expected, that truncation at a
lower wave-number cutoff leads to a stronger reduction of dissipation rate and a slower subsequent
recovery. The route of two successive refinements (2 times each) requires fewer time steps to be run
on the targeted finer (N3) grid than a direct 4 times refinement—which translates to lower resource
requirements overall. Similar but stronger trends are observed for the dissipation skewness, which
contains more high-wave-number content than the mean dissipation rate.

In wave-number space, an immediate consequence of grid refinement is that energy can now
be transferred to higher wave numbers that were not represented before. Figure 3 confirms that
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(a) (b)

t/τη t/τη

〈ε〉 Sε

FIG. 2. Evolution of (a) 〈ε〉 and (b) Sε ensemble-averaged over multiple simulation segments, for Cases 1
(red), 3 (green), 4 (blue), and 6 (black), of different lengths as noted in Table I.

the small scales do adjust rapidly, with E (k) at the end of the short simulation segments being
nearly indistinguishable from results in the reference simulation. For Case 3, although the spectrum
initially has a mild pileup at the kmax of the intermediate-sized (15363) grid (resulting from Case 2),
a well-behaved functional form soon emerges.

Interest in the behavior of fluctuations of dissipation rate and enstrophy is a primary motivator
for resolving the small scales as well as possible. In Fig. 4 we show information on the time history
of [Fig. 4(a)] peak values (over all grid points) and [Fig. 4(b)] the probability density function
(PDF) of normalized dissipation and enstrophy, obtained from the simulation segments of Case 3.
In Fig. 4(a), despite substantial variability, the peak values can be seen to adjust to a new, stable
stationary state, after only about 0.5 τη. The observed peak values in this new stationary state agree
well with time-averaged values in the reference 30723 simulation (black dashed lines, partly hidden).
Higher values of peak �/〈�〉 also indicates enstrophy is more intermittent [8]. The dissipation PDF
data at different times in Fig. 4(b) are also in support of a rapid approach to a new stationary state,
consistent with the reference simulation.

C. Tests of statistical independence

The statistical quality of results from MRIS depends on the number of segments (M) available
for ensemble averaging, and their degree of statistical independence. The latter is expected to be

)b()a(

ηkηk

E(k)

FIG. 3. Development of the energy spectrum as a result of grid refinement for (a) Case 1 and (b) Case 3 (per
Table I). For clarity, only early-time data in the short segments (at increments of 0.1 τη, following the arrows)
are shown. A blended red and blue dashed line gives spectra at the end of the short segments and time-averaged
within the 30723 reference simulation.
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FIG. 4. Statistics of normalized dissipation and enstrophy obtained from multiple simulation segments for
Case 3 in Table I. (a) Peak values: ensemble-averaged (solid lines) and 25th and 75th percentiles (dashed
lines), red for dissipation, blue for enstrophy. (b) PDFs: red for data at t = 0, green, blue, magenta, cyan for
t/τη = 0.5, 1.0, 1.5, 2.0 respectively. In both frames black dashed lines (partly hidden) give results from the
reference 30723 simulation for comparison.

a function of scale size, and closely related to the time separation (τ0) between lower-resolution
snapshots used as initial conditions for the MRIS segments, with the overall sampling period
being effectively T = Mτ0. Statistical errors in DNS results can often be quantified via confidence
intervals computed after the fact. However, it would be useful to develop some a priori estimates
for the minimum τ0 desired, depending on the nature of the quantity being sampled, and in relation
to timescales τη or TE . We explore this issue below using both one- and two-time statistics.

With stationary turbulence in mind, a basic question for one-time statistics, such as the volume-
averaged energy dissipation rate (〈ε〉), is whether significant and random departures from the mean
of either sign are consistently observed within a time period T . If a signal shows persistent behaviors
(such as monotonic variations) then the sampling period is too short; conversely, a predominance
of rapid oscillations would suggest a small τ0 is desirable, although strict independence over an
interval of τ0 is not necessary.

Figure 5 shows data from two long simulations at Rλ 390, of different resolutions as noted in
the figure captions. The first is the one used to initiate high-resolution MRIS segments, whereas the

)c()b()a(

t/TE t/TE t/TE

FIG. 5. (a) 〈ε〉/〈ε〉T over a period of 5.5 TE in Rλ 390 simulations at kmaxη ≈ 1.4 (solid curve) and 4.2
(dashed curve) respectively, where the notation 〈·〉T denotes a time average of volume-averaged quantities.
(b) Energy spectrum E (k) normalized by a time average, for k = 6 (red) and k = 0.95 kmax (blue), from the
kmaxη ≈ 1.4 simulation. (c) Similar data, with kmaxη 4.2.
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second is the high-resolution reference simulation in our validation study. In Fig. 5(a) it can be seen
that, in both simulations, dissipation varies to about the same degree (of order 10% or less), and with
similar timescales. This behavior is not a surprise, since the mean dissipation rate is determined by
the large scales, and the same forcing is used in both data sets. However, quantities at disparate scale
sizes should behave differently. Figures 5(b) and 5(c) show that the energy spectrum E (k) is indeed
very dependent on wave number. At low wave number, the red lines in Figs. 5(b) and 5(c) show slow
and modest variations. In contrast at high k (near kmax at each resolution) the lines in blue resemble
rapid oscillations superimposed on a smooth background signal, which itself varies more strongly
at high resolution. Incidentally, since E (k) is (at high k) the sum of energies held in a large number
of Fourier modes in a spectral shell, we can infer that individual Fourier modes vary in time even
more rapidly than for the E (k) values shown.

While one-time statistics show directly how different quantities evolve in time, it is tempting to
ask if we can assess independence between two single-time snapshots, at times t1 and t2 = t1 + τ ,
by computing some statistical correlations. For example, one may consider the two-time correlator
σ (τ ) = 〈ε(x, t1)ε(x, t2)〉/〈ε2〉 which is analogous to the two-point correlator in space related to
intermittency exponents [37]. Another possible scale-dependent measure of statistical coupling may
be the coherency spectrum defined by ρ(k, τ ) = Ec(k, τ )/

√
E (k, t1)E (k, t2) where Ec(k, τ ) is the

cospectrum between û(k, t1) and û(k, t2) in wave-number space. However, both of these quantities
are subject to contamination by the “random-sweeping” effect [38], in which small-scale structures
may be simply moved to another location as a result of advective transport by the large scales. Such
an effect will cause an artificial drop of σ (τ ) even if the turbulence were frozen. Likewise, since a
coherency spectrum basically measures the phase coupling between Fourier-transformed quantities
in wave-number space [39], random sweeping can also cause an artificial decrease of the coherency
spectrum, especially at high Reynolds numbers.

Since random sweeping is an artifact of a fixed observer seeing differences in time while
small-scale structures are swept along by the fluid, an alternative approach free of this effect is
thus to consider the flow conditions experienced by an observer moving with the flow, i.e., to use a
Lagrangian framework [40]. For a general flow variable q, we can define the Lagrangian two-time
correlator as

σL(q; τ ) = 〈q+(t )q+(t + τ )〉/〈q2〉 (4)

where superscripts + denote Lagrangian quantities evaluated along the trajectories of fluid particles
moving with the local fluid velocity. Clearly, σL(q; τ ) is unity at τ = 0 but approaches the ratio
〈q〉2/〈q2〉 < 1 when τ is large enough for q+(t ) and q+(t + τ ) to be statistically independent. Sub-
tracting 〈q〉2 from both the numerator and denominator of σL(q; τ ) gives the correlation coefficient
ρL(q; τ ), which approaches 0 at large τ for any q.

Figure 6 shows sample results in the two-time correlators [in Fig. 6(a)] and correlations [in
Fig. 6(b)], for three choices of the quantity q being (1) u2 (square of one fluctuation), (2) ε, and
(3) its square, whose behavior mimics extreme events of very high amplitude. In this ordering, as
the dominant scales are shifted towards quantities associated with increasingly smaller scales, it is
not surprising that both measures of dependence or correlation decrease with time lag more rapidly.
The discrepancy between the green lines for σL(ε; τ ) and its Eulerian counterpart σ (ε; τ ) confirms
the importance of random sweeping, whose effect is strongest at small τ . The contrast between
Eulerian and Lagrangian data here is also consistent with past comparisons between the statistics
of Eulerian and Lagrangian time derivatives [41,42]. However at τ = 0.4 TE this discrepancy is
mild, which is also expected, since the large-scale motions responsible for the sweeping are well-
sustained only for a finite time interval. For the velocity, at τ/TE = 0.4, σL(u2; τ ) is not close to
the asymptotic value of 1/3 (which assumes the velocity PDF to be Gaussian. A clearer view of
the degree of independence that remains at this time lag is given by the Lagrangian correlation
functions in Fig. 6(b), where a value of 0.1 for ρL(ε; τ ) suggests a high degree of independence
from a practical viewpoint. Both panels show that ε2 has short timescales, which become shorter
yet as resolution is increased, consistent with the emergence of stronger extreme events of short
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FIG. 6. (a) Eulerian (dashed lines) and Lagrangian (solid lines) two-time correlators versus time lag in units
of TE , for q = u2 (red), ε (green), and ε2 (blue). (b) Lagrangian two-time correlations, with same color coding
for each variable. Both (a) and (b) show data obtained at two resolutions, kmaxη ≈ 1.4 and 4.2, at Rλ 390. The
only sensitivity evident is for ε2 (resolution increasing in the direction of the arrows).

lifetimes. Finally, although data at only one Reynolds number is given in this figure, since the
Lagrangian integral timescale of the dissipation rate decreases with respect to large-eddy timescales
as the Reynolds number increases [43] it seems likely that τ0/TE ∼ 0.4 as a criterion for statistical
independence of small-scale quantities will hold better yet at higher Reynolds numbers.

The assessment of resolution effects in Fig. 6 as discussed above suggests two high-resolution
snapshots obtained by grid refinement from two modestly resolved ones will retain the degree of
independence that originally existed in the former. Although this statement is understandably less
valid for high amplitude events which are under-represented if the resolution is low, this supports
the hypothesis that good sampling at high resolution can be derived from good sampling at modest
resolution, in the MRIS approach that we propose.

D. Moments of 3D local averages

We now move to an examination of MRIS results for multipoint statistics in physical space—
specifically, the scaling of moments of the 3D local averages of normalized dissipation rate and
enstrophy, over scale sizes r ranging from the smallest (one grid spacing, �x) to the largest (half of
the length, L0, of the periodic domain). Because our DNS is performed using Cartesian coordinates,
we use 3D averaging over subcubes (instead of spheres). In the limit of r → 0 the pth-order moment
of εr/〈ε〉 approaches 〈ε p〉/〈ε〉p, which implies (for p > 1) small-scale resolution is crucial. In the
other limit of r → ∞ all moments approach unity, regardless of order, with homogeneity in space
being the only requirement. However, the most important range of r is in the inertial range η � r �
L1, where the longitudinal integral length scale L1 is about 0.2 L0 in our simulations. In this range,
classical refined similarity theory suggests〈

ε p
r

〉/〈ε〉p ∝ (r/η)−ζp, (5)

where the dependence of the scaling exponents ζp (all positive) on the order p is of fundamental
interest. Unfortunately since 3D averaging is challenging in both experiments and computation,
many studies in the literature have, until recently [22], used instead 1D averages along a line,
and/or a 1D surrogate [(∂u/∂x)2, motivated by Taylor’s frozen turbulence hypothesis], which is
more intermittent than ε itself. Furthermore, accurate inferences of ζp require having a well-defined
scaling range (hence a high Reynolds number) and attention to possible contamination from
limitations in both resolution and sampling.

In our MRIS validation effort here, we focus on resolution and sampling. Figure 7 shows results
averaged over multiple MRIS segments, for orders two to six (the latter being more demanding).
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FIG. 7. Moments (top row) and logarithmic local slopes (bottom row) for 3D local averages of εr/〈ε〉
(solid lines) and �r/〈�〉 (dashed lines), ensemble-averaged over multiple simulation segments from Cases 2
(red) and 3 (green). Lines in blue are from the reference 30723 simulation. Second moments on the left, sixth
moments on the right. Dotted lines in green (very close to solid and dashed lines of the same color) show ±95%
confidence interval for the sixth-order moments and local slopes.

Scaling exponents are estimated through logarithmic local slopes: i.e., d ln〈ε p
r 〉/d ln r, which would

be equal to −ζp if a well-defined plateau exists. We introduce the notations μpε (r) and μp�(r) for the
local slopes for (the moments of) εr and �r , respectively. Since the Reynolds number in our MRIS
validation study is not high, it is not surprising that local slopes in this figure do not show a clear
scaling range. Instead, there is a hint of an inflection point developing in the neighborhood of r/η ∼
O(100). Stronger intermittency in �r versus εr is manifested clearly in higher values of the moments
at small r, an effect that is noticeable up to r/η ≈ 200. Values of the moments at small r increase
very strongly with p, indicating that the resolution needed to observe flat plateaus as r → 0 becomes
harder to achieve. For the data shown, comparison between red and green lines suggests the effects
of resolution are largely confined to r/η � O(5), with very little apparent effect at intermediate
scales close to the inflexion point noted above. This suggests kmaxη ≈ 2 (as for the red lines) may be
sufficient for investigating some aspects of inertial-range intermittency, although sufficient sampling
is still necessary. With good sampling, very good agreement is seen between lines in green and
blue: i.e., results on the local averages from the full-length 30723 reference simulation can be well
recovered from much less-expensive data derived from MRIS (Case 3). We also observe that the
data from the reference simulation, in blue, fall within the ±95% confidence interval lines for the
sixth-order moments (and local slopes) of both dissipation and enstrophy. This shows good sampling
from the MRIS approach is achieved and very good agreement with the reference simulation is
observed within sampling uncertainties. The difference in sixth-order moments of locally averaged
enstrophy at small r/η is likely due to the removal of Fourier modes contaminated by aliasing errors,
as the velocity field from the reference simulation was initially truncated.
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TABLE II. Parameters for production simulations at different Reynolds numbers, using the MRIS ap-
proach. All simulations in this table were performed using a Courant number of C = 0.3.

Rλ N kmaxη β M 〈ε2〉/〈ε〉2 〈�2〉/〈�〉2

390 1024 1.4 2 22 3.869 7.665
390 1536 2.1 2 22 4.034 7.938
390 3072 4.2 2 22 4.074 7.969

650 2048 1.4 2 15 4.357 8.718
650 3072 2.1 2 15 4.575 9.133
650 6144 4.2 2 15 4.664 9.214

1000 4096 1.4 2 10 4.949 9.901
1000 6144 2.1 2 10 5.250 10.556
1000 12 288 4.2 2 10 5.381 10.745

1300 12 288 3.0 1 10 6.103 12.238
1300 18 432 4.5 1 10 6.142 12.288

IV. MRIS: STUDY OF INTERMITTENCY AT HIGH RESOLUTION

A major motivation behind this paper has been a desire to contribute towards a high-fidelity
characterization of both dissipation range and inertial range intermittency in high Reynolds number
turbulence. This pursuit is very resource intensive, and large simulations that resolve the small
scales well are necessary. The works described in Secs. II and III were in fact undertaken in order
to identify a viable path towards meeting these challenges.

Table II shows the resolution levels and selected parameters of production simulations that
have been performed using GPUs on Summit, combined with the MRIS approach starting from
modest resolutions at four targeted Reynolds numbers. Results at Rλ 390 here are equivalent to
those reported in the MRIS validation study of Sec. III. As resource requirements increase, the
number of short simulation segments employed is fewer. Following estimates obtained in Sec. III,
each segment is 2 τη long, except for those at highest Reynolds number on a 18 4323 grid. In the
latter case we decided to shorten each segment to 1 τη, partly because approach to a new stationary
state in the manner of Fig. 4(a) took only about 1 τη, and partly because better overall sampling
is likely from taking averages over more segments of shorter duration than over fewer segments
of longer duration. Normalized second-order single-point moments in Table II are seen to increase
systematically with both Reynolds number and resolution, while being higher for enstrophy than
the dissipation. Sensitivity to resolution from kmaxη ≈ 2 onwards appears to be relatively weak,
thus suggesting, at least at kmaxη ≈ 4, a certain degree of convergence has been reached.

The study of intermittency is a very broad subject, including the statistics of velocity gradi-
ents [44,45], velocity increments [22,46], use of multifractal theory [47,48], and various other
aspects. For reasons of the scope and length of this paper we will just focus here on the moments
of the locally averaged dissipation rate (εr) and enstrophy (�r), and their statistical relationships to
each other. The moments of εr directly enter into a number of intermittency corrections based on
the Refined Similarity Hypothesis [11,21,49]. For instance, the Refined Similarity prediction for the
nth-order velocity structure function is of the form

Dn(r) = Cn
〈
εn/3

r

〉
rn/3, (6)

where Cn are universal constants. The moments of �r provide a useful contrast, as well as informa-
tion on the structural differences between strain-dominated and rotation-dominated regions in the
instantaneous turbulent flow.

Figure 8 shows data on second and fourth moments from the highest resolution simulations (all
with kmaxη � 4) available at all four Reynolds numbers, in a manner similar to that of Fig. 7. In
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FIG. 8. Ensemble-averaged normalized second-order moments (a), (b) of 3D local averages of dissipation
rate, εr (left), and enstrophy, �r (right), from simulations at highest resolution available at each Rλ. Ensemble
average of the logarithmic local slopes of the second-order (c), (d) and fourth-order (e), (f) moments of local
averages. The different colors correspond to different Rλ: 390 (red), 650 (green), 1000 (blue), and 1300 (black).
Horizontal dashed lines in panels (c)–(f) are included to assist in inference of scaling exponents from the
graphs, at the highest Rλ.

principle, local slopes should smoothly approach zero at both the small r and large r limits, scaling
with η for the former but L1 for the latter. For the second moment, this scaling at small r explains
why the local scopes are nearly independent of Reynolds number up to r/η at least about 10, while
the scaling at large r explains why, with L1/η ∝ Rλ

3/2 according to classical scaling, the local slope
curves eventually diverge at intermediate scale ranges in the manner shown.

In Fig. 8 we have included two vertical dotted lines, at r/η 60 and 600, which have been pro-
posed [22] as approximate bounds for inertial range scaling where applicable. It can be seen that as
Reynolds number increases, an inflexion point gradually develops into a plateau, which is somewhat
flatter for dissipation than enstrophy. The values of the exponents μ2ε and μ2� appear to differ
only very slightly, with both being close to 0.23. This difference appears to be less than what past
experimental data based on 1D surrogates averaged along a line suggested [48,50,51]. On the other
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FIG. 9. First-order conditional moments of (a) enstrophy given dissipation rate and (b) dissipation given
enstrophy at Rλ 390 (red), 650 (green), 1000 (blue), and 1300 (black). Dashed line of slope 1 corresponds to
enstrophy and dissipation scaling similarly.

hand, greater intermittency in the dissipation range for enstrophy compared to dissipation implies
local slopes at smaller r/η are of larger magnitude than those for dissipation (most significantly at
r/η ≈ 10 in the figure), while homogeneity ultimately forces both sets of curves to agree with each
other at sufficiently large r. Further investigations are appropriate in the future, especially when data
at yet higher Reynolds numbers with a comparable degree of resolution become available.

Curves for local slopes for the fourth-order moments shown in the bottom row of the figures
are of generally similar shape when compared with those for the second-order moments. However,
as can be expected, differences at small r indicate the small-scale resolution in this case is less
satisfactory, especially at higher Reynolds numbers. Careful observation in the nominal inertial
range of r/η also indicates inertial range behavior is less clearly developed at fourth order, while
the difference between dissipation and enstrophy in the same range is more significant than that
seen for the second moment.

A recurrent question in the study of intermittency is whether the dissipation rate and enstrophy, as
quadratic invariants of the symmetric and antisymmetric parts, respectively, of the velocity gradient
tensor, possess the same scaling properties [52] or even scale together [53]. For an update on this
question we present some conditional moments derived from the present database. We note that
conditional statistics given dissipation and or enstrophy have been used recently to study vortex
stretching [54]. Figure 9 shows the (single-point) conditional mean of [Fig. 9(a)] enstrophy given
the dissipation, and [Fig. 9(b)] dissipation given the enstrophy, at four Reynolds numbers. While
samples where the conditioning variable up to nearly 104 in magnitude do exist, we show results
only up to 103 on the x axes since data beyond that are noisy. The present results are similar to
those in a previous investigation [55] at low to moderate values of the conditioning variable, but
more accurate at a high conditioning value of the enstrophy. The data indicate that a high ε is
likely to be accompanied by a high �; but in contrast a high � is likely to be accompanied by a
ε which, although still large, may be nearly an order of magnitude smaller. At the other extreme
of very low dissipation or enstrophy both of the conditional means are relatively flat, with a weak
trend of decrease with increasing Reynolds number. This suggests, in the limit of vanishingly small
dissipation or enstrophy, both variables become independent of each other while being mostly
substantially below their average intensities. This observation is also consistent with results on joint
probability density functions presented in Ref. [53].

In Fig. 10 we extend results on conditional means to moments of different orders and to local
averages over volumes of linear size associated with the dissipation and inertial ranges. To facilitate
the comparisons, for each p > 1 we have taken the pth root of the moment. For a given εr , and as
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FIG. 10. Conditional moments of order p of local averages of enstrophy given local averages of dissipation
rate (top) and vice versa (bottom) for (a), (d) r/η ≈ 0.7, (b), (e) r/η ≈ 11, and (c), (f) r/η ≈ 90. First,
second, third- and fourth-order moments are shown by curves in red, green, blue, and black. Solid lines from
simulations at Rλ ≈ 390 and dashed lines from Rλ ≈ 1000. Dashed line of slope 1 corresponds to enstrophy
and dissipation scaling together.

order p increases, moments of the conditional samples of �r become increasingly dominated by
samples that turn out to be very large. This explains, for instance, in the top half of the figure, why
the black lines lie uniformly higher than the blue, as can be seen in Figs. 10(a) and 10(b). Effects of
Reynolds number on these joint statistics appear to be weak. On the other hand, in Fig. 10(c), data
for moments of all orders all collapse upon the line that indicates 〈�r |εr〉 = εr . In the bottom half
of this figure we show conditional moments of dissipation given the enstrophy. It can be seen that,
as r/η approaches the inertial range, both sets of conditional moments, for all Reynolds numbers,
and at all orders, largely collapse together on the diagonal line that would be satisfied also if the two
locally averaged variances were to take the same values. This behavior suggests that εr and �r do,
to a good approximation, scale together in the inertial range.

It should be apparent that the results reported in this section, involving simulations at 12 2883

and 18 4323 resolution, have required use of substantial computational power which is itself in high
demand. Recalling considerations in Sec. III, in the case of Rλ 1300, with the ratio TE/τη ≈ 136
(based on Ref. [18]) a simulation of 5.5 TE in length similar to the MRIS validation study earlier
in this paper will be 748 τη in length. In contrast, if we were to obtain 22 simulation segments
(same number as in Table II) only 1 τη each in length (based on Table III) then the cost would be
roughly equivalent to 22 τη. This is a factor of 34 reduction in resource requirements—changing
hypothetical periods of nonstop computing from months (which, incidentally, is not allowed) to
days, thus making a great impact on the feasibility of the computations.
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V. CONCLUSIONS AND DISCUSSION

In this paper we have reported on advances in developing, and actually applying, a capability
of performing direct numerical simulations (DNS) of turbulence at extreme-scale problem sizes,
that would otherwise be impossible or impractical in their resource requirements. The challenges
faced here have arisen due to the fact that, despite dramatic advances in world-class computational
resources, insatiable demands for high Reynolds number, improved small-scale resolution, and other
needs, are, ironically, pointing to increasing challenges for researchers’ abilities to conduct long
simulations at leadership-class problem sizes.

The first innovation reported is our recent success in development of a parallel algorithm for
DNS of incompressible turbulence on a 3D periodic domain, which successfully scaled up to a grid
resolution of 18 4323 (more than 6 trillion) grid points on a CPU-GPU machine which is currently
one of the fastest supercomputers in the world. Key features of this algorithm involve taking full
advantage of memory on both the CPU and GPU, in a manner that presents new opportunities
for asynchronous execution involving overlapping of computation on multiple GPUs and data
movement between the CPU and the GPUs. While this algorithm has some machine-dependent
elements, this effort may be viewed as a case study for future exascale computing, where major
efforts in adapting or even rewriting codes for a top-ranked machine will likely be required.

Despite the algorithmic advancement noted above, we point out that since resource requirements
simulating an N3 problem for a prescribed period of time increases at least as fast as N4, full-
length simulations spanning multiple large-eddy timescales at “leadership-class” problem sizes are
essentially impossible. However, if the prime interest is in small-scale motions of short timescales,
we show that a much more viable alternative exists, in an approach here termed Multiple Resolution
Independent Simulations (MRIS). The essence of MRIS is to first perform a (much less costly)
simulation at low or modest resolution, take multiple snapshots well separated in time, and refine
the grid to obtain multiple short simulation segments at the highest resolution. With appropriate
attention given to statistical independence, we have shown that ensemble averaging over a number
of such short segments produces results essentially equivalent to sampling from a long simulation
with samples separated from each other by fractions of a large-eddy timescale. In this paradigm
the total cost of a simulation of stationary isotropic turbulence at very high resolution can be
measured in (multiples of) Kolmogorov timescales rather than eddy-turnover times, resulting in
tremendous savings at high Reynolds numbers. A validation study involving several single- and
multipoint diagnostics as presented in this paper has apparently been successful. In particular, results
in Figs. 3, 4, and 7 provided several examples of small-scale statistics obtained from the MRIS
procedure being a close match with those taken directly for a full-length reference simulation at
high resolution.

We have been able to apply the MRIS approach to obtain high-fidelity results concerning
intermittency in both dissipative and inertial scale ranges in isotropic turbulence at four Reynolds
numbers ranging from 390 to 1300 based on the Taylor scale. This work has provided an opportunity
to overcome some of the limitations due to resolution and sampling in previous efforts. In particular,
although reliable statistics on higher order moments had been difficult to achieve, results shown
in Sec. IV are very robust, showing the benefits of leadership-class computing power applied
productively. Calculations based on the statistics of 3D local averages of the dissipation rate and
enstrophy show that although these quantities scale differently throughout the dissipation range,
their inertial range properties are much more (although not exactly) similar. Conditional statistics
also suggest strongly that these two variables do, to a good approximation, scale together when in
the inertial range. The high fidelity of results obtained in this paper gives rise readily to the search
for further physical insights, such as how differences and similarities in locally averaged dissipation
and enstrophy may be connected to the incidence of canonical flow structures such as local shear
layers [56] and vortex filaments of finite size.

In summary, we believe the body of work described in this paper provides a useful perspective
concerning how turbulence researchers may be able to truly use emerging exascale platforms to the
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fullest, and the challenges that the community can expect to face as well. For instance, machine
architecture can influence choice of problem sizes (in our case, a factor of 6 in the number of grid
points in each direction), as well as provide unique opportunities for asynchronism that requires
serious rethinking of basic algorithmic principles. Optimizing communication and data transfer on
heterogeneous machines will continue to be major challenges. The MRIS approach in this work
has been developed to address the issue of how large simulations of limited time span imposed
by practical constraints on resource availability can be designed to meet specific scientific needs.
Other than physical problems where early-time phenomena are of greatest interest, the MRIS
approach is likely to be applicable to studies of dissipation rate and fine-scale structure in passive
scalar fields [31,57], as well as the fluid particle acceleration [58], which are both dominated by
intermittency and characterized by short timescales.
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