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Some observations on Reynolds number scaling in wall-bounded flows
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High Reynolds number wind tunnels are essential tools for testing theories of turbulence.
This need has led to the construction of tunnels that use compressed gases as the working
fluid, and such facilities have given new insights into the behavior of turbulence in wall-
bounded flows. Here, we focus on results obtained at Princeton using the Superpipe and the
High Reynolds number Testing Facility that have given us new insights into the behavior of
wall-bounded flows, in particular, fully developed pipe flow, and turbulent boundary layers
in zero pressure gradients.
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I. INTRODUCTION

In this paper, I discuss the results obtained in the Superpipe and the High Reynolds number
Testing Facility (HRTF) at Princeton on Reynolds number scaling in wall-bounded turbulence.
The content follows the Otto Laporte Lecture, delivered at the APS/DFD meeting in Seattle, WA,
on 24 November 2019.

The Princeton facilities use compressed air as the working fluid, with operating pressures up to
200 bar to achieve a wide range of Reynolds numbers, and they have helped to give new insights into
the behavior of fully developed pipe flow and flat plate turbulent boundary layers. In particular, the
experiments confirmed the logarithmic scaling of both the mean flow and the streamwise turbulence
intensity at sufficiently high Reynolds number, and provide robust support for the attached eddy
model of turbulence.

Naturally, the need for experiments at high Reynolds number has been recognized since the
inception of research on turbulence. Many of our most fundamental theories of turbulence, for
example the appearance of a −5/3 region in the spectrum, were derived in the limit of infinite
Reynolds number. Such theories required testing, and some researchers turned to geophysical flows
to have access to very high Reynolds numbers. For example, the experiments by Grant et al. [1]
investigated turbulence in a tidal channel, achieving Reynolds numbers of about 3 × 108 (based on
the depth of the channel and the mean velocity). R. J. Taylor [2] was motivated by a similar aim in
his study of turbulence in the atmospheric boundary layer, and indeed some of the earliest work on
turbulence in the atmosphere was done by G. I. Taylor [3].

It was also understood that the proper design of airplanes, for example, required a full under-
standing of Reynolds number scaling. The drag on the vehicle, its stall characteristics, and the
formation of wakes, were all known to depend on Reynolds number, and so the necessity to perform
tests at flight Reynolds numbers was a powerful driver for the design and construction of new kinds
of wind tunnels. Large tunnels, however, are expensive to build and run, and high flow velocities
may introduce compressibility effects.

In a landmark contribution, Munk [4] suggested instead using air at variable pressure to achieve a
wide range of Reynolds numbers on a modest scale. Because the dynamic viscosity of air increases
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FIG. 1. Langley Variable Density Tunnel, completed 1923 [5,6]. Operating conditions: p = 0.1 to
20 bar (abs), D = 1.5 m, L = 1.8 m,Vm = 20 m/s, Rem = 26 × 106/m.

only slowly with pressure, the Reynolds number increases almost in proportion to the increase in
pressure. Munk’s vision was realized in 1923 with the construction of the Langley Variable Density
Tunnel, shown in Fig. 1 [5,6]. A more-or-less conventional wind tunnel was contained within a
large pressure vessel capable of operating at pressures from 0.1 to 20 bar (abs), achieving Reynolds
numbers up to Rem = 5.3 × 106/m at a maximum tunnel speed Vm of only 20 m/s (see also Table I).
The facility was used mainly for aeronautical studies, and yielded, among other advances, the
emblematic NACA nacelle design. In 1941 it was superseded by the Langley two-dimensional
low-turbulence pressure tunnel (LTPT) which also featured variable pressure while having much
improved flow conditions [7]. The LTPT ran at pressures up to 10 bars and at Reynolds numbers of
up to about Rem = 40 × 106/m. It was operational till 2006.

The concept of variable pressure was also used in the construction of the Compressed Air Tunnel
at the National Physical Laboratory in Teddington in 1931 [8,19]. In its 6 ft diameter test section,
air could be compressed up to 25 bars to produce Reynolds numbers up to Rem = 45 × 106/m.
As with the VDT, the main focus of the Compressed Air Tunnel was improving the aerodynamic
performance of aircraft. Similarly, the RAE 5m tunnel and the ONERA F1 tunnel [11,12] were
designed as production tunnels for aeronautical purposes (see Table I). Bodenschatz et al. [17] is a
good source for additional background on the development of variable pressure tunnels.

Relatively few experiments were conducted in such facilities to address fundamental questions in
turbulence. Kistler and Vrebalovich [20] were able to conduct a classical grid turbulence experiment
at the Southern California Cooperative Wind Tunnel at wind speeds of up to 60 m/s and with

TABLE I. Characteristics for selected high pressure wind tunnels.

Tunnel Year Ref. P (bar) D (m) L (m) Vm (m/s) Rem/m

Langley VDT 1923 [5] 0.1–4 1.5 1.8 20 5.3 × 106

NPL CAT 1931 [8] 1–25 1.8 ≈ 5 27 45 × 106

Langley LTPT 1941 [7] 1–10 0.9 × 2.3 2.3 150 40 × 106

SCCWT 1945 [9] 0.1–3 3.7 × 2.6 5.5 170 230 × 106

NRL Jülich ?? [10] 1–40 0.75 4 15 40 × 106

RAE 5m 1973 [11] 1–3 5 × 4 12 110, 94 20 × 106

ONERA F1 1977 [12] 1–4 4.5 × 3.5 11 120, 80 32 × 106

Göttingen HDG 1981 [13] 1–100 0.6 1 35 120 × 106

PU Superpipe 1994 [14] 1–200 0.129 22 35 350 × 106

Stanford 1999 [15] 1–8 0.15 3 17 8.5 × 106

PU HRTF 2007 [16] 1–200 0.5 3.6 10 90 × 106

MPIDS VDTT 2014 [17] 0.1–15 1.5 × 1.3 8.8 4.1 34 × 106

PU Supertank 2021 [18] 1–80 0.88 7.5 14 60 × 106
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FIG. 2. Göttingen high pressure tunnel, completed 1981. Operating conditions: p = 1 to 100 bar (abs),
D = 0.6 m diam., L = 1 m,Vm = 35 m/s, Rem ≈ 200 × 106/m. Reproduction with permission
from [24].

air pressures between 0.2 bar and 4 bars to achieve Reynolds numbers up to Rem = 16 × 106/m
(grid Reynolds numbers up to 2.4 × 106). Another series of fundamental studies in pressurized
tunnels was conducted on the flow past spheres at the Nuclear Research Laboratories in Jülich in
the 1970s [10]. The wind tunnel there could be pressurized up to 40 bars. Another notable variable
pressure facility is the high pressure wind tunnel (HDG) at the German Aerospace Center (DLR)
in Göttingen [13], which can be operated at pressures up to 100 bars and speeds up to 35 m/s,
so that Reynolds numbers up to 200 × 106/m are possible (see Fig. 2). It has been used to study
flow-induced vibration [21], and to investigate the flow over a circular cylinder for 104 < ReD < 107

[22,23].
I mention these facilities to emphasize that the concept of using high pressure to obtain high

Reynolds numbers is now almost 100 years old, and that this approach has been put into practice
a number of times. However, the concept of Superpipe, which was always envisioned purely as a
research tool for studying Reynolds number effects on turbulence, only originated in 1990 as part of
discussions at the AFOSR workshop on “New Approaches to Experimental Turbulence Research,”
held at Princeton University in 1990 [25]. There, Fazle Hussain remarked: “I think some national
or large-scale centers are unavoidable, so that large, unique facilities can be shared by all qualified
researchers. One example of specific experiments that I have proposed a few years back is a pipe, of
the order of 5 m in diameter, 5 km long.” Bill George added: “I agree that we need high Reynolds
number facilities. Answers from these facilities may prove to generate lots of ideas and a lot of
things we take for granted may prove to be wrong and we won’t know until we push toward higher
Reynolds number.” Tony Perry pointed out that the cost of such a facility is really not so great
when one considers that a billion dollar facility which produces a Reynolds number of a billion
“works out to only one dollar per unit Reynolds number!” A particularly perspicacious comment
came from Bert Hesselink, who observed that “the power requirements for a high Reynolds number
facility scale as L3. So there is much to be said for making the facility smaller and putting our
efforts in areas where other technologies have been developed, such as in micro-electronics and
micro-optics. This underrates the idea of developing more instrumentation. We should go smaller
and put resources in areas where problem really exists—in the measurements.”
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FIG. 3. Left: Princeton High Reynolds number Testing Facility (HRTF), completed 2007. Operating condi-
tions: p = 1 to 200 bar (abs), D = 0.5 m dia., L = 3.6 m,Vm = 10 m/s, Rem ≈ 90 × 106/m. Right: Princeton
Superpipe, completed 1994. Operating conditions: p = 1 to 200 bar (abs), D = 0.129 m dia., L = 22 m,Vm =
35 m/s, Rem ≈ 270 × 106/m. Reproduction with permission from D. Quinn.

The idea of using high pressure to keep the facility a reasonable size came up at a dinner during
the workshop attended by Steve Orszag, Katepalli Sreenivasan, Victor Yakhot, Garry Brown, and
Fazle Hussain. The next morning, Steve mentioned to me the suggestions from dinner. I did some
quick estimates for a high Reynolds number experiment using a 6 in. pipe and found all the numbers
on scale and power requirements to be feasible for a laboratory environment.

Steve’s research on turbulence was supported in part by ARPA’s Mathematics Directorate, and
in his next proposal to ARPA he wanted to include an experiment on pipe flow turbulence at high
Reynolds number. The proposal was successful, and I was lucky enough to recruit Mark Zagarola
to design and build the pipe, later to be called “Superpipe” by Steve. It could achieve a bulk flow
Reynolds number of about 35 × 106 and it cost about $300 000, which Steve noted was less than
one cent per Reynolds number, two orders of magnitude less than the tongue-in-cheek estimate put
forward by Tony Perry. The design was first reported in 1992 [26], and it was operational by 1994. It
is shown in Fig. 3; the full details of its design and construction are given by Zagarola [14]. Briefly,
it operates from atmospheric pressure up to 200 bar with speeds up to 35 m/s to obtain a variation in
Reynolds number of three orders of magnitude, that is, 31 × 103 � ReD � 35 × 106 (103 � Re+ �
5 × 105). Here, ReD = 2RU/ν and Re+ = Ruτ /ν, where R is pipe radius, U is the bulk velocity,
uτ = √

τw/ρ, ρ is the fluid density, μ is the viscosity, and ν = μ/ρ is the kinematic viscosity.
More generally, Re+ = δuτ /ν, where δ is the characteristic width of the flow (the boundary layer
thickness, the pipe radius, or the channel half-height). Although Superpipe has a length of only
22 m and an internal diameter of 0.129 m, if the same facility was operated using atmospheric air at
30 m/s, then at the highest Reynolds number it would be equivalent to a pipe that is 3200 m long
and 1.6 m diameter, which is getting close to the facility suggested by Fazle Hussain.

Since the Superpipe was completed, a number of other compressed-gas facilities have been
constructed for the similar purpose of examining fundamental questions in turbulence. The Stanford
high pressure tunnel was completed in 1999 by Eaton and DeGraaff [15,27] in order to study
turbulent boundary layers, and it operates at pressure up to 8 atm (see Table I). There is also the
Variable Density Turbulence Tunnel in Göttingen, Germany [17], which can operate with a variety
of gases. To reach the highest Reynolds numbers the tunnel is pressurized to 15 bar with the dense
gas SF6.

A little earlier, in 2007, the High Reynolds number Testing Facility (HRTF), shown in Fig. 3,
was completed at Princeton [16]. This wind tunnel operates at pressures up to 200 atm, and it can
generate turbulent boundary layers at Reynolds numbers over the range 8400 � Reθ � 235 000,
that is, 2600 � Re+ � 72 500. Here, Reθ = θU∞/ν, θ is the momentum thickness and U∞ is the
freestream velocity. With atmospheric air at 10 m/s, it yields a Reynolds number that is equivalent

110514-4



SOME OBSERVATIONS ON REYNOLDS NUMBER SCALING …

FIG. 4. Princeton Supertank, expected completion 2021. Reproduction with permission from [18]. Operat-
ing conditions: p = 1 to 80 bar (abs), H = 0.88 m diam., L = 7.5 m,Vm = 14 m/s, ReD ≈ 60 × 106/m.

to a tunnel with a working section 800 m long and 80 m diameter. There is also a new facility under
construction at Princeton, the Supertank [18]. It is expected to be in service in 2021, operating
at pressure up to 80 atm (see Fig. 4 and Table I). With atmospheric air at 14 m/s, at the highest
Reynolds number it would be equivalent to a tank 1000 m long with a diameter of 160 m [28].

Here, we focus on the results obtained in the Superpipe facility and the HRTF, complemented by
data on turbulence structure acquired in a pipe flow facility at Princeton using water as the working
fluid. Where possible, the data will be interpreted in terms of the attached eddy models due to
Townsend [29] and Perry and Chong [30]. There are a number of other theoretical development that
relate to turbulence scaling, and some notable references are McKeon and Sharma [31], Monkewitz
and Nagib [32], and Taira et al. [33], and the references included therein. In this paper, however,
the interpretations will be made primarily in the context of the attached eddy model. The paper will
conclude with some recommendations for future research.

II. TURBULENT WALL-BOUNDED FLOWS AND REYNOLDS NUMBER

A number of different Reynolds numbers are in use, but to describe the scaling of wall-bounded
flows we generally use the friction Reynolds number, Reτ or Re+, defined earlier as Re+ = δuτ /ν,
where uτ = √

τw/ρ is the friction velocity. The friction Reynolds number can be interpreted as
the ratio of two scales of motion, where δ is characteristic of the size of the largest eddies in the
flow, and ν/uτ is characteristic of the size of the smallest eddies (the Kolmogorov length scale η

in wall-bounded flows near the wall is typically about two to four times larger than ν/uτ [34]).
Hence, the friction Reynolds number expresses somewhat quantitatively the scale separation that
is characteristic of turbulence, and how this scale separation increases with Reynolds number. In
Fig. 5, this feature is qualitatively illustrated using flow visualizations of boundary layers at two
different Reynolds numbers.

As indicated in the Introduction, a first-order question in turbulence research is to understand
the behavior of turbulence at asymptotically high Reynolds numbers, that is, at Reynolds numbers
where the smallest scales are expected to be independent of the large scales. This question is more

FIG. 5. Turbulent boundary layer visualizations, flow from left to right. Left: Reτ ≈ 150. Reproduction
with permission from [35]. Right: Reτ ≈ 1100 (Reθ ≈ 2600). Reproduction with permission from [36].
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FIG. 6. Coherent motions in wall-bounded turbulence. Illustrations of sublayer streaks [41]; hairpin vor-
tices [42]; vortex packets or large scale motions (LSM) [30,43,44]; very large scale motions (VLSM) or
superstructures [38,40,45]. All figures reproduced with permission from respective sources.

often examined in studies of homogeneous turbulence, but it is also relevant to wall-bounded flows
where the geometric (impermeability), kinematic (no-slip), and dynamic (shear force) constraints
presented by the wall exert a decisive influence on the eddy shape and size. In particular, wall-
bounded turbulence features a number of different types of organized motions that are loosely
organized into “families” that reveal their full form only at a high enough Reynolds number where
there is a sufficient scale separation [37].

There are essentially four different but interrelated families. The structures located nearest the
wall are the sublayer streaks (see Fig. 6), which are associated with elongated vortex motions having
characteristic dimensions of x+

s ≈ 1000, y+
s < 10, and z+

s ≈ 100. Here x is the streamwise direction,
y is the wall-normal direction, and z is the spanwise direction, and the “plus” notation indicates that
the scales are normalized by the viscous length scale ν/uτ . The next family contains the hairpin
or � vortices, with z+

s = O(100), a height that scales with the distance from the wall, and these
vortices lean downstream at a typical angle of about 45◦. The hairpin vortices are often found to be
organized within a larger scale structure called vortex packets, or, more anonymously, large scale
motions (LSM), which makes up the third family of organized motions. Within the LSM, the heads
of the hairpin vortices tend to align along a direction that is inclined to the wall by about 15◦ or
20◦. LSM have a streamwise scale of approximately 2δ–3δ and are associated with the occurrence
of bulges of turbulent fluid at the edge of a boundary layer. The fourth family is made up of even
larger structures which are up to 10δ–20δ long, called very large scale motions (VLSM) in pipe flow
and superstructures in boundary layers. Recent evidence indicates that VLSM are composed of a
meandering train of LSM (see, for example, [38,39]), as first suggested by [40]. The energy content
of the VLSM increases with Reynolds number, and so the energy content of wall-bounded flows
changes slowly with Reynolds number from one that is dominated by hairpin vortices and LSM to
one that is dominated by LSM and VLSM.

III. MEAN FLOW SIMILARITY

The Navier-Stokes equation indicates that in the near-wall region where viscosity dominates the
mean velocity profile is linear, so that U + = y+, where U + = U/uτ , y+ = yuτ /ν, and U is the mean
velocity in the streamwise or x-direction. That is, the length and velocity scales for the inner region
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are the viscous length scale ν/uτ and the friction velocity uτ . Farther from the wall the influence of
viscosity diminishes, and at distances sufficiently far from the wall the length scale will be set by the
thickness of the layer, that is, the outer length scale δ. It is normally assumed that the outer velocity
scale is the same as the inner velocity scale uτ . In this respect, Townsend [29] argued that the inner
region presents something like a translation velocity to the outer layer, and since this translation
velocity is set by the wall shear, uτ is the correct velocity scale for the outer as well as the inner
regions. Accordingly, dimensional analysis gives that the dependence of the velocity at any point in
the layer is given by

U = φ(y, τw, μ, ρ, δ).

Near the wall in terms of outer variables, that is, for y/δ � 1, we expect there to be a region where
the outer length scale is not important, so that we have inner scaling where

U + = f (y+),

which reduces to U + = y+ in the viscous sublayer. Far from the wall in terms of inner variables,
that is, for y+ � 1, we expect there to be a region where the viscosity is not important, so that we
have outer scaling where

U +
∞ − U + = g(y/δ),

where U∞ is the freestream velocity for a boundary layer and the centerline velocity for a pipe
or channel. Note that this relationship is written in defect form, that is, in terms of the difference
between the freestream or centerline velocity and the local velocity. This approach resonates with
Townsend’s notion of a translation velocity.

Millikan [46] proposed that in the region sufficiently far from the wall but still far from the
edge of the layer, there may be a region where neither length scale is relevant, and by matching the
velocity gradients in this “overlap” region (also called the “constant stress,” “equilibrium,” “inertial,”
or “logarithmic” region) we obtain

U + = 1

κ
ln y+ + B, (1)

or, equivalently,

U +
∞ − U + = − 1

κ
ln

y

δ
+ B1. (2)

Here, κ is the von Kármán constant, and B and B1 are known as the additive constants. Because the
degree of scale separation is expressed by the friction Reynolds number Re+, we expect that this
overlap region will increase in size with increasing Reynolds number.

This logarithmic variation in the intermediate zone was always considered to be one of the
cornerstones of our understanding of wall-bounded flows. However, the Superpipe mean flow data
showed some deviations which were initially widely disputed. As shown in inner coordinates [as
used in( Eq. (1)] in Fig. 7, for the region 50 � y+ � 300 the velocity variation is not logarithmic but
follows more closely a power law (see [47] for details). The log law will then appear in the interval
600 < y+ < 0.12Re+, which means is that the log law only appears in pipes for Re+ greater than
approximately 5000. A similar behavior has since been seen for boundary layers although the upper
limit on y+ is somewhat smaller [48]. Also, for the higher Reynolds number flows where a log
law is evident, its slope did not correspond to the generally accepted value for κ of 0.41, but it
was somewhat larger, more in accordance with an earlier study by Patel [49]. See also [47]. Later
work by Bailey et al. [50] demonstrated the difficulties of measuring κ accurately, even in pipe flow
where it is possible to measure uτ to better than 1% accuracy. Bailey et al. recommended that the
best estimate for κ as measured in the Superpipe was most likely 0.40 ± 0.02, in accordance with
the generally accepted value.
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FIG. 7. Superpipe mean velocity results for 850 � Reτ � 500 000 in inner scaling. Reproduction with
permission from [51].

The same mean flow results are displayed in Fig. 8 in two different forms. On the left the data
are shown in classical outer layer coordinates [as used in Eg. (2)], and what is evident is a persistent
trend with Reynolds number for ReD < 106 (Re+ < 20 000). On the right, they are shown in what
is now sometimes called Zagarola scaling. That is, instead of the friction velocity we use an outer
velocity scale uo defined by uo = UCL − U , where U is the bulk velocity. For a boundary layer,
the equivalent scale is uo = δ∗/δ, where δ∗ is the displacement thickness [52]. It is in some sense
a “true” outer velocity scale since it is independent of the wall shear. As Zagarola and Smits [53]
concluded, for Reynolds numbers ReD between 31 × 103 and 540 × 106 (850 < Re+ < 11 000), it
appears that uo is a better outer velocity scale than uτ [14]. This result further reinforces the notion
that viscous effects reach farther from the wall than previously understood, and in pipe flows the
outer region only reaches its asymptotic state at very high Reynolds numbers.

FIG. 8. Superpipe mean velocity results for 850 � Reτ � 500 000. (a) Classic outer scaling. (b) Zagarola
outer scaling. Reproduction with permission from [51].
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FIG. 9. Left: Townsend roller eddies. Reproduction with permission from [29]. Middle: Theodorsen hairpin
eddies. Reproduction with permission from [42]. Right: Perry and Chong’s wall-attached eddies. Reproduction
with permission from [30].

Parenthetically, uo has been found to be a useful scale to collapse turbulent boundary layer data
in adverse and favorable pressure gradients [54], as well as flows with suction or blowing [53].

IV. ATTACHED EDDY HYPOTHESIS

One of the most successful concepts for scaling the turbulence is the idea of attached eddies, first
put forward by Townsend [29]. Townsend proposed that in the equilibrium region (the region large
compared to the viscous layer and small compared to the overall size of the flow), the turbulent
transport of momentum was dominated by eddies of a size that scaled with distance from the
wall. “In other words, the velocity fields of the main eddies, regarded as persistent, organized
flow patterns, extend to the wall and, in a sense, they are attached to the wall.” His attached
eddy model (AEM) is an inviscid (high Reynolds number) model, and proposes a superposition
of geometrically self-similar, attached eddies. The eddies cover a wide range of scales, but each
scale is proportional to the distance from the wall, and all the eddies have the same characteristic
velocity scale, uτ . Townsend proposed that they might resemble roller eddies, as shown in Fig. 9.
The model was designed to give −uv/u2

τ = 1 and it applies only in the constant stress (equilibrium)
region. Townsend’s model then predicts that, at sufficiently high Reynolds number,

u2

u2
τ

= B1 − A1 ln
(y

δ

)
, (3)

v2

u2
τ

= A2, (4)

w2

u2
τ

= B3 − A3 ln
(y

δ

)
. (5)

The AEM was developed much more extensively by Perry and Chong [30] and given a physical
basis by incorporating specific eddy shapes. As they noted, “In this theory, wall turbulence is
considered to consist of a ‘forest’ of randomly positioned horseshoe, hairpin or �-shaped vortices
that lean in the streamwise direction and have their legs extending to the wall.” The eddy shapes
and size distributions were drawn directly from experimental observations, notably the Theodorsen
hairpin eddies [42,55] and the vortex packets described by Head and Bandyopadhyay [43].

The model by Perry and Chong is well illustrated by Fig. 10. The eddies are assumed to be made
up of two rodlike vortices, joined at their apex and leaning downstream at 45◦, with a width equal
to their height, and a velocity scale given by uτ . In this discrete representation, the smallest eddies
(the first hierarchy) have a width/height of 100ν/uτ , chosen to match the characteristic spanwise
scaling of the sublayer streaks. Even the smallest eddies are taken to be large enough so that viscous
effects are negligible. The next hierarchy is twice the size, and contains half the number of eddies,
and so on. The largest eddies are of a size corresponding to the furthest extent of the equilibrium
region. Each hierarchy scales geometrically with the distance from the wall, so that the number of
eddies per unit area scales with 1/y2. All the eddies have the same velocity scale uτ . The induced
velocity field due to all the vortex rods can then be summed to give the mean velocity and turbulence

110514-9



ALEXANDER J. SMITS

FIG. 10. Perry and Chong’s hierarchy of attached wall eddies. Reproduction with permission from [30].

distributions. The actual model assumes that within each hierarchy there is a distribution of eddy
sizes (hence the word hierarchy) so that the mean velocity and turbulence distributions are smooth
with wall distance (see Fig. 9).

It is somewhat straightforward to see that the model inherently gives a logarithmic distribution
in the mean velocity. The circulation at any distance from the wall is proportional to the number
of vortex rods present at that height. For a two-dimensional wall-bounded flow the mean vorticity
is given by −dU/dy (the contribution from dV/dx generally being negligible), and so it is evident
that for this hierarchical structure dU/dy ∼ y−1, which yields a logarithmic variation of the mean
velocity. Hence, the model intrinsically yields the mean flow logarithmic scaling, which Townsend’s
model did not. It also reproduces the scaling given by Eqs. (3)–(5), and the form of the spectrum,
including the −1 and −5/3 regions. These forms are obtained by summing the various components
of the velocity field induced by the vortex arrays [30].

The Perry and Chong AEM therefore gives specific and powerful predictions regarding the
scaling of the mean flow and the turbulence, and demonstrates that the potential-flow � vortex
provides a link between the mean flow, Reynolds shear stress, turbulence intensities, and spectra in
wall turbulence. For a more up-to-date and much more explicit description of the AEM, see Marusic
and Monty [56].

The scaling given by Eqs. (3)–(5) can also be derived from spectral considerations. As Perry and
Abell [57] showed for the region in space that is populated by wall-attached eddies, with sufficient
scale separation (high enough Reynolds number) three regions in the one-dimensional, streamwise
turbulence spectrum may be identified: a low-wave-number region corresponding to large-scale
nonuniversal motions that obey outer flow scaling, a mid-wave-number region of universal wall-
structure where the eddies scale with y−1 (that is, wall-attached scaling), and a high-wave-number
inertial region that scales with the Kolmogorov length scale η. For pipe flow, the three regions are
then described by

φ11(k1R)

u2
τ

= g1(k1R), (6)
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FIG. 11. NSTAP probe design [60–62].

φ11(k1y)

u2
τ

= g2(k1y), (7)

φ11(k1η)

u2
τ

= g3(k1η). (8)

At a high enough Reynolds number, it was proposed that there may exist two overlap regions in
wave-number space: one between the R-y regions and one between the y-η regions. In these overlap
regions, we then expect

φ11(k1R)

u2
τ

= A1

k1R
, (9)

φ11(k1η)

u2
τ

= K0

(k1η)−5/3
. (10)

So this overlap argument yields a k−1 region and a k−5/3 region in the wave-number spectrum,
the latter obviously corresponding to the well-known Kolmogorov region. In the premultiplied
representation, the spectrum is expected to show a constant plateau in the k−1

1 region, with an
amplitude of A1. By integration of the spectrum, Perry and Abell [57] then recovered the logarithmic
scaling for the streamwise component given by Eq. (3), with the addition of an additive viscous
correction term that becomes negligible at asymptotically high Reynolds numbers. Therefore the
constant A1 in Eq. (9) is the same as that given in Eq. (3). These arguments were expanded to
include the other components of the turbulence as well as the shear stress by Perry et al. [58].

V. TURBULENCE SIMILARITY

One of the difficulties in the experimental verification of the turbulence scaling is that viscous
effects remain important even at moderate Reynolds numbers [59]. The advantage of using high
pressure air as the working fluid is that it becomes possible to examine these scaling laws at
very high Reynolds number. However, the principal disadvantage is that spatial resolution of the
instrumentation can become a major issue. For example, at ReD = 6 × 106 (Re+ = 98 × 103), the
viscous length scale in the Superpipe (diameter 0.129 m) is 1.3 μm, and so a regular hot wire
of length � = 1 mm would have �+ = �uτ /ν ≈ 760 at this Reynolds number, which would lead
to an unacceptable level of spatial filtering. This problem sparked a long development program
at Princeton to manufacture much smaller probes [60–62]. As a result, the NanoScale Thermal
Anemometry Probe (NSTAP) was introduced in 2010, with subsequent refinements leading to
probes as small as � = 30 μm. An early 60 μm example is shown in Fig. 11. Another advantage
offered by these small probes is an excellent frequency response, extending to 200–250 kHz.

Nevertheless, for measurements in the Superpipe even a 30 μm probe gives �+ = 23 at ReD =
6 × 106 (Re+ = 98 × 103). It became clear that accurate estimates of the turbulence behavior close
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FIG. 12. Scaling of the streamwise turbulence component in pipe flow. Left: inner scaling. Right: outer
scaling. Reproduction with permission from [65].

to the wall required a reliable spatial correction method, and so a correction method was developed
based on AEM concepts [34] and applied to the NSTAP data. Bearing these considerations in mind,
the streamwise turbulence intensity distributions measured in the Superpipe are shown in Fig. 12.
In inner scaling [Fig. 12(a)], there are several notable features: the collapse of the data for y+ less
than about 20 with a prominent peak at about y+ = 15, the orderly increase in the intensity levels in
the outer layer, and the gradual emergence of a peak in the outer layer at large Reynolds numbers.
Some of these features had been seen previously in boundary layers [27], but the outer peak was not
seen in that investigation, most likely due to the limit on the maximum possible Reynolds numbers.
The outer peak had been seen before by Morrison et al. [63], but there were legitimate reservations
regarding those measurements due to their limited spatial resolution (see, for example, [64]).

For the data shown in Fig. 12, the most severe spatial resolution issues occur at the highest
Reynolds numbers where �+ = 45.5 (see Table II). As indicated above, the results were corrected
using the scheme proposed by [34], which should be uncontroversial in the outer region where we
see the outer peak; in other words, the peak is not an artifact of the measurement technique. This
is not the case near the wall, however, where the Superpipe data suggest that the magnitude of the
inner peak reaches an asymptotic level with increasing Reynolds number [16], which later studies
seemed to confirm [61]. This view stood in contrast to other work, where the peak was believed
to increase with Reynolds number, sometimes spectacularly so [66]. These disparate observations
were not resolved until the recent work by Samie et al. [67], where NSTAP probes were used in
a turbulent boundary layer about 300 mm thick to achieve measurements with �+ < 3.5 for all

TABLE II. Experimental conditions for Superpipe turbulence experiments [65].

ReD = 2DU/ν Re+ P (bar) U (m) � (μm) �+ (m/s) �+

81 × 103 1985 1.0 9.5 60 1.8 1.8
146 × 103 3334 1.7 10.1 60 3.1 1.8
247 × 103 5411 3.2 8.4 60 5.0 1.8
513 × 103 10481 6.4 9.4 60 9.7 1.8
1.1 × 106 20251 11.5 10.8 60 18.8 1.8
2.1 × 106 37450 23.4 10.5 30 17.4 1.8
4.0 × 106 68371 46.9 10.4 30 31.7 1.8
6.0 × 106 98187 70.7 10.6 30 45.5 1.8
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FIG. 13. Inner peak magnitude growth with Reynolds number. Dashed line is from DNS [68]. Solid line is

u2+
max = 3.54 + 0.646 ln Re+ [Eq. (11)]. Reproduction with permission from [67].

Reynolds numbers. The data confirmed the presence of the outer peak, as well as establishing that
in boundary layers the inner peak magnitude varied according to

u2+
max = 3.54 + 0.646 ln Re+, (11)

in close agreement with the results obtained from DNS of channel flow by [68], as shown in Fig. 13.
In outer scaling [Fig. 12(b)], the data confirmed the presence of a logarithmic variation in the

streamwise component, as predicted by the AEM. This experiment was the first to show this result,
but it was quickly followed by results from high Reynolds number boundary layers that showed
a similar behavior [69], as seen in Fig. 14. The boundary layer data obtained in the HRTF gave
further confirmation of this trend, at Re+ up to 73 000 [70]. What is more, it was found that the
slope A1 = 1.26 was the same for pipe and boundary layer flows, and it has been proposed to call it
the Townsend-Perry constant in honor of the two AEM pioneers. This logarithmic variation appears
to be universal for all (canonical) wall-bounded flows, although the additive constant B1 seems to
demonstrate a dependence on the flow geometry. The Reynolds number for the DNS results by
Lee and Moser [68] was too low to show this logarithmic variation for the streamwise component;
they did find a logarithmic variation for the spanwise component (as expected from the AEM), but
intriguingly the logarithmic behavior for the wall-parallel component seems to emerge at a lower
Reynolds number than that for the streamwise component, a result that has not yet been verified by
experiment.

The logarithmic variation for the streamwise component is also seen in rough pipes with small
relative roughness (see [71]), which is also a result that is expected from the AEM. Interestingly,
even the higher order moments follow a logarithmic behavior, as illustrated in Fig. 15 for the fourth-
order moment. If the turbulence was Gaussian, the expected slope for the fourth-order moment
would be 1.26

√
3 = 2.18, while the measured slope is reasonably close at about 2, for smooth and

rough pipe flows (Fig. 15). A closer examination of the higher order moments is given by [70,72].
These results represent major successes for the AEM. However, some questions remain. The

AEM assumes that the region very near the wall is additive to the attached eddies. Since the extent
of the logarithmic region grows with Reynolds number, this implies that the (log) magnitude of the
peak will increase at the rate given by A1 = 1.26. The data, however, show a variation that is about
half this rate [Eq. (11), Fig. 13]. This remains an open question that deserves further study.
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FIG. 14. A universal log law for turbulence? Streamwise turbulence intensity: Melbourne wind tunnel
Reτ = 18 010 (2.5 μm hot wire); Large Cavitation Channel Reτ = 68 780 (LDV); Princeton Superpipe
Reτ = 98 190 (NSTAP); SLTEST Reτ ≈ 628 000 (Sonics). The solid straight lines correspond to Eq. (3) with
A1 = 1.26. Reproduction with permission from [69].

In Fig. 16 we show the results for the pipe flow (Superpipe) and the turbulent boundary layer
(HRTF) at their respective maximum Reynolds number where turbulence data were obtained. It
is apparent that the region of logarithmic similarity occupies the same physical region in space,
although the beginning and end points of the logarithmic regions are somewhat different, and their

FIG. 15. A universal log law for turbulence? Outer scaled streamwise Reynolds stress profiles of four
highest Reynolds numbers of (a) smooth- and (b) rough-wall Superpipe datasets. The solid line has a slope of
−2.0. The Gaussian expectation for the slope is 1.26

√
3 = −2.18. Reproduction with permission from [71].

110514-14



SOME OBSERVATIONS ON REYNOLDS NUMBER SCALING …

FIG. 16. Scaling in the equilibrium region. Left: pipe flow at Reτ = 98 000. Right: boundary layer flow at
Reτ = 73 000. Reproduction with permission from [70,71]. The grey region marks the mesolayer.

exact location in inner and outer coordinates is still the subject of current research. In this respect
[37,73], present additional analysis and considerations.

Also seen in this figure is a grey region, extending from about y+ = 67 in the pipe and y+ = 50 in
the boundary layer, lying between the buffer layer where inner scaling applies, and the logarithmic
layer where the flow is free of viscous effects. In the grey region, a Reynolds number dependent
behavior can be seen in all parameters, which we identify as the mesolayer. The mesolayer has been
the subject of considerable attention in the past (see, for example, [74–76], but the lower bounds
found here are somewhat different. In this region, we find that the turbulence intensity is almost
constant at lower Reynolds numbers while it is slightly rising at higher Reynolds numbers. In the
mean velocity, the profile follows a power law in y+.

FIG. 17. Kolmogorov spectra for Reτ ≈ 3 × 103, 5 × 103, 10 × 103, 20 × 103, 40 × 103, and 70 × 103, at
y/δ ≈ 0.05 (left) and y/δ ≈ 0.5 (right). ——, boundary layer; - - - -, pipe. Reproduction with permission from
[77].
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FIG. 18. Premultiplied spectra at y/δ = 0.1 in pipe for 2000 � Reτ � 98 000. Colors go from blue to red
as the Reynolds number increases. Left: premultiplied by k5/3

1 . Right: premultiplied by k1.52
1 . Reproduction with

permission from [77].

VI. RESULTS ON THE SPECTRUM

Here, we only consider the one-dimensional spectrum of the streamwise component of the
turbulence, that is, φ11(k1). We noted earlier that Perry and Abell [57] proposed that, at sufficiently
high Reynolds numbers, there may exist overlap regions between the R − y regions, and between
the y − η regions, which yield a k−1 region and a k−5/3 Kolmogorov region (see also Perry et al.
[58]).

We first consider the presence of a −5/3 region. The spectrum in Kolmogorov scaling is shown
in Fig. 17 for the pipe and boundary layer flows, as measured in the Superpipe and the HRTF [77] at
two positions, one within the logarithmic region. At high wave numbers, the spectra collapse well
in this scaling, but the inertial region does not follow a k−5/3

1 slope. This is more clearly seen in the
premultiplied spectra shown in Fig. 18. Multiplication by the correct prefactor (that is, the best fit
to the slope in log-log coordinates) should reveal a plateau region. It is apparent that the exponent
0f −1.52 is a better fit to the data than −5/3, which is in accordance with the observations by
Gamard and George [78], as given in Fig. 19. The Reynolds number here is given by Rλ = λurms/ν,
where λ is the Taylor microscale. For the highest Reynolds numbers in the pipe and boundary layer,
Rλ ≈ 1000 at y/δ = 0.1 [79], and so a value of 1.52 of the exponent fits in well with these earlier
experiments and the theory of [78]. This plot also makes clear that the exponent of −5/3 will only be

FIG. 19. Inertial layer slope. Here, uu ∼ k
− 5

3 +μ
x , where μ ∼ ln−1 Re. Data marked MW are from [80],

theory marked GG is from [78]. Reproduction with permission from [81].
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FIG. 20. Premultiplied spectra with varying Reynolds number at fixed wall-normal locations y/δ ≈ 0.05,
0.1, 0.15, 0.5 for pipe (left) and boundary layer (right). Arrows indicate the increasing Reynolds number from
Re+ = 3000 to Re+ = 70 000. The region of k−1

x should appear as a plateau. Reproduction with permission
from [77].

reached at extremely high Reynolds numbers, well outside even the values obtained in the Superpipe
and HRTF experiments.

Consider now the presence of a −1 region. The premultiplied form of the spectrum is shown
in outer scaling in Fig. 20 for the pipe and boundary layer flows, as measured in the Superpipe
and the HRTF [77] at a number of different positions. In this representation (multiplication by k1),
the spectrum is expected to show a constant plateau in the k−1

1 region, with an amplitude of A1, as
discussed earlier. However, for neither the pipe nor the boundary layer, no matter what the Reynolds
number is or what the position within the layer is, do we see a clear plateau region. As concluded
by Vallikivi et al. [77], it appears that in boundary layer and pipe flows in the turbulent wall region
there is no obvious k−1 region that persists with Reynolds number, or with a change in wall-normal
location, and the spectra do not exhibit a region that collapses both in inner and outer scaling. This
brings into question the relationship between the spectral overlap arguments of Perry and Abell [57]
and Perry et al. (1986) [58] and the logarithmic variation of the variances.
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FIG. 21. Turbulence kinetic energy production. Left: premultiplied form, where equal areas represent equal
contributions to the total production. Adapted with permission from [37]. Right: fraction of total production
contributed by the region for y+ � 100 (data from [68]).

VII. LARGE-SCALE MOTIONS

As was evident from the spectra shown in Fig. 17, the fraction of the total energy contained in
the large-scale motions increases with Reynolds number. See also Fig. 2 in [37]. Another indication
of the increasing role played by the large-scale motions is given by the turbulence production term
in the Reynolds-averaged Navier-Stokes (RANS) equations. The variation of the production term
with distance from the wall is shown in Fig. 21 in premultiplied form, where equal areas represent
equal contributions to the total production. On the left, we see that the near-wall contribution (for
y+ < 100) dominates the total production at low Reynolds number, but as the Reynolds number
increases the outer region contribution becomes more and more important. On the right in Fig. 21,
the fractional contribution of the near-wall production to the total production is plotted as a function
of Reynolds number for the DNS data of Lee and Moser [68]. At about Reτ = 5000 the contribution
from the outer layer exceeds the contribution from the inner layer. Hence large-scale motions
that contribute to the equilibrium region (LSM) and the outer region (VLSM) eventually come
to dominate the production at higher Reynolds numbers. This trend was seen already by [40], who
observed a growing contribution to the energy spectrum from motions with length scales of O(10R)
with Reynolds number; the first recorded observation of the VLSM in turbulent wall-bounded flows.
See also [38,82,83].

Experiments to gain more insight into the organized motions within high-pressure facilities like
the Superpipe and HRTF can be challenging. Measurements using multiple hot wires are certainly
possible [84], but they can provide only limited data on structure. Particle image velocimetry (PIV)
data are much more informative, in that they can give spatial information in two or three dimensions,
but optical access to the flow is often difficult to achieve. We are now modifying the Superpipe
working section to allow such optical access for PIV, but a great deal has already been learned from
measurements at lower Reynolds numbers in a pipe facility that uses water as the working fluid. In
particular, proper orthogonal decomposition (POD) and spectral analysis of PIV data have proved
to be powerful tools for investigating the nature of the LSM and VLSM [85–90].

According to Hellström and Smits [86], the POD modes ranked by energy content come in pairs,
and the first five pairs contain 15% of the total energy and 43% of the integrated Reynolds shear
stress even at Re+ = 2260, and so POD modes might serve well as a low-order representation for
the momentum transfer. Somewhat surprisingly, the first 80 modes all give positive contributions
to −uv (see Fig. 22). In addition, the VLSM are well represented by a small number of the most
energetic POD modes, as illustrated in Fig. 23. Note especially the long, meandering structure in
the lower right corner of the image, and how its structure is well captured by the just first four most
energetic modes.
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FIG. 22. Contributions to the Reynolds shear stress at ReD = 93 000 (Re+ = 2260). Bold lines show the
shear stress contained in the reconstructed flow, using · · · ·, 10; · − ·−, 30; − − −, 80 snapshot POD
modes; ——, all modes. The straight line indicates the distribution of the total shear stress. Reproduction
with permission from [86].

To examine the structure of these modes, we sort them in terms of their radial (n) and azimuthal
(m) modes. The most energetic modes are those with m = 3, followed by m = 2 and m = 4, all
having one radial structure n = 1 [86]. For n > 1 the modes begin to represent detached motions.
As illustrated in Fig. 24, it is apparent that as m and n increase, the modes contribute more and more
to the near-wall energy, with only a weak Reynolds number dependence. Also, the peak energies
for the first four azimuthal modes (m = 1 to 4) are located at a frequency of f D/U = 0.05 to 0.1,
corresponding to structures 10D to 20D long, clearly indicative of the VLSM.

FIG. 23. Contour plots of the streamwise velocity fluctuations at y/R = 0.2 and ReD = 12 500, constructed
using Taylor’s hypothesis. Flow is from left to right. Top: instantaneous fluctuations. Bottom: superposition of
the first four POD modes, showing how long, meandering structures can be formed from a small number of
modes. Adapted with permission from [85].
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FIG. 24. The radial behavior of the classical POD modes, averaged over all frequencies. Left: Azimuthal
modes m = 1–10 for the first POD mode, n = 1. − − −, ReD = 47 000 (Re+ = 1210); ——, ReD = 93 000
(Re+ = 2260). Right: POD modes for m = 3 and ——, n = 1; − − −, n = 2; and · · · ·, n = 3. Adapted
with permission from [86].

To investigate the origin of the VLSM, Hellström et al. [87] acquired PIV data simultaneously
in a cross-stream plane and in a streamwise plane on the pipe centerline. The most energetic POD
modes, the ones associated with the VLSM, were found to have a characteristic streamwise extent of
≈3R (see [91]), after which a transition to a new structure occurs that is marked by the detachment
and decay of an old structure and the initiation of a new structure at the wall. These modes appear
to describe a basic building block similar to that of the LSM, and that these blocks line up to create
a longer structure with a typical length estimated to about 6R. It was also shown that the structure
described by a specific azimuthal mode number, m, was azimuthally steady. The meandering nature
of the VLSM is likely a consequence of the interaction between structures with different azimuthal
mode numbers. It was therefore proposed that the the coherence of the long meandering structures
visualized by multipoint measurements is actually the consequence of a pseudoalignment of shorter
modes/structures, combined with the reoccurrence of a specific mode/structure at regular time
intervals. The shorter structures appear to have characteristics very similar to LSM, and these
support the suggestions by [40] and [92] that the VLSM are in fact not spatial structures but a
temporal manifestation of repeating LSM.

Furthermore, the POD modes display self-similarity in accordance with the AEM, in they scale
with the distance from the wall [88]. The modes resolving the energetic eddies in the homogeneous
directions are the harmonic ones, and thus they are inherently self-similar. It was also found that, in
the wave number range kθR ∈ [4.16, 33.3] (almost a decade), the only nonhomogeneous directions
also are self-similar, and all eddies can be fully described with a single radial profile (see Fig. 25).
The length scale representing the eddy could be estimated by its wall-normal radius, which is a
universal length scale completely describing the cross-sectional shape of the structure through all
stages of its evolution. It was recently shown that the wall-normal length scale is also the appropriate
streamwise length scale, so that the structures showed complete similarity [90].

VIII. CONCLUSIONS AND SOME OBSERVATIONS

The concept of wall-attached eddies that scale with the distance from the wall, as embodied
in the attached eddy model, is undoubtedly a powerful organizing concept for the all-important
equilibrium region of wall-bounded turbulence. Our measurements over a wide range of Reynolds
numbers have confirmed many aspects of the attached eddy model. Modal analysis revealed a
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R

m

FIG. 25. Modal peak location for the first POD mode (n = 1) and azimuthal mode numbers m ∈ [1, 64].
� Re+ = 1330; � Re+ = 2460; · · · · yp/R = 2πC (kθ R)−1, with C = 0.2. Modes with a peak location y+

p <

75 are identified with open symbols. The lower abscissa indicates the azimuthal wave number, while the upper
abscissa shows the corresponding azimuthal mode number, for Re+ = 2460. Reproduction with permission
from [88].

complete self-similarity for the attached eddy structure in a pipe, and the presence of a log law
in turbulence has been shown to occur in the same region where the log law in mean velocity is
found, but only for Re+ > 10 000. It is now clear that viscous effects remain important for large
distances from the wall, so that the predictions from the AEM and other similarity arguments will
only work at distances from the wall greater than about ten times the viscous sublayer and buffer
layer thicknesses combined. We see the mesolayer as the blending region between the viscous
scaling and the outer scaling for both the mean velocity and the turbulence, although it only becomes
evident at a sufficiently high Reynolds number.

Nevertheless, some of our results cannot as yet be reconciled with the AEM. For example, the
inner peak in the streamwise turbulence increases logarithmically with Re+, but at a rate that is
much slower than expected from the AEM. An outer peak in the turbulence intensity appears for
Re+ > 10 000, and its origin remains to be explained. Also, spectral data point to the elusiveness
of any possible asymptotic behavior with increasing Reynolds number. For example, the slope of
the inertial region asymptotes very slowly to −5/3, and no k−1 region was found at the Reynolds
numbers reported here. The spectral overlap arguments that support the −1 region are independent
of the AEM, but they share with the AEM the scaling of the wall motions with distance from
the wall, and the scaling of the larger motions with the layer thickness. Some adjustments will be
necessary to make the two points of view come into better agreement. It may be that the increasing
dominance of the VLSM may be disrupting the AEM at higher Reynolds number, but this will need
to be investigated further.

I would like to end with a word of caution, and some suggestions for future work. We have
learned a lot by studying pipes, boundary layers, and channels, and there are still gaps in our
knowledge. Such flows are canonical but they are also singular, in that they are two-dimensional
in the mean, and the smallest departure from, for example, zero pressure gradient or the flatness
condition leads to significant changes in all aspects of the mean flow and the turbulence. Flows
over vehicles, or within ducting systems, experience the effects of roughness, pressure gradients,
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surface curvature, three-dimensionality, separation, blowing, suction, etc. We therefore need to
move beyond canonical flows, not just to address practical applications but also to learn what parts
of our understanding of canonical flows survive under such perturbations. I would suggest, in fact,
that we may have reached a point of diminishing returns in studying canonical flows. It may be
more fruitful to begin to test our knowledge of wall-bounded flows by examining more complicated
flows. We might ask the question “Do we have enough insight into the structure of wall-bounded
flows to manipulate the energetic motions and reduce drag, or enhance heat transfer?” Or, “What
fundamental understanding might we gain by such experiments?” Many other problems can be
posed along these lines, and I believe that such investigations will undoubtedly lead to a deeper
and more nuanced understanding of wall turbulence, while expanding our abilities to predict more
general flow behavior.
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