
PHYSICAL REVIEW FLUIDS 5, 104802 (2020)
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We consider an isotropic compressible nondissipative fluid with broken parity subject to
free surface boundary conditions in two spatial dimensions. The hydrodynamic equations
describing the bulk dynamics of the fluid and the free surface boundary conditions depend
explicitly on the parity-breaking nondissipative odd viscosity term. We construct an ef-
fective action which gives both bulk hydrodynamic equations and free surface boundary
conditions. The free surface boundary conditions require an additional boundary term
in the action which resembles a 1 + 1D chiral boson field coupled to the background
geometry. We solve the linearized hydrodynamic equations for the deep water case and
derive the dispersion of chiral surface waves. We show that in the long-wavelength limit
the flow profile exhibits an oscillating vortical boundary layer near the free surface. The
layer thickness is controlled by the ratio between the odd viscosity (νo) and the sound
velocity (cs), δ ∼ νo/cs. In the incompressible limit, cs → ∞, the vortical boundary layer
becomes singular with the vorticity within the layer diverging as ω ∼ cs. The boundary
layer is formed by odd viscosity coupling the divergence of velocity ∇ · v to vorticity
∇ × v. It results in nontrivial chiral free surface dynamics even in the absence of external
forces. The structure of the odd-viscosity-induced boundary layer is very different from
the conventional free surface boundary layer associated with dissipative shear viscosity.

DOI: 10.1103/PhysRevFluids.5.104802

I. INTRODUCTION

In a seminal work [1], Avron noticed that in two spatial dimensions the viscosity tensor allows
for a parity-breaking term, dubbed odd viscosity, without breaking the fluid isotropy. The recent
interest in this parity-violating stress-shear response was triggered by Ref. [2], which shows that
the odd viscosity coefficient is quantized for quantum Hall (QH) systems, where it is related to the
adiabatic curvature on the space of flat background metrics on a torus. Several theoretical works
subsequently studied odd viscosity, also known as Hall viscosity, as a new quantized observable of
QH fluids [3–26]. Other classes of fluid systems where “odd viscous” effects might be important
include polyatomic gases [27–30], chiral active matter [31–35], vortex dynamics in two dimensions
[36–39], chiral superfluids and superconductors [6,40], and any fluid dynamics with parity-breaking
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intrinsic angular momentum of constituent particles. Experimentally, odd viscosity can be indirectly
measured through corrections to the charge transport (see, e.g., Ref. [41]) or more directly in chiral
active fluids by observing the dynamics of the boundary of a fluid with odd viscosity [34]. It has
also been shown that if the fluid is almost incompressible, the odd viscosity effects are most visible
at the dynamical boundary subject to no-stress (free surface) boundary conditions [42,43].

A classic example of no-stress dynamical boundary conditions is that of surface gravity waves.
For perfect fluids without any viscosities, the irrotational surface dynamics was solved by Stokes in
1847 [44], when he derived the famous surface gravity wave dispersion relation � = ±√

g|k| [45].
The presence of infinitesimal shear viscosity requires tangent-stress-induced vorticity near the

moving boundary, thereby violating irrotationality. This effect can be captured within linearized
hydrodynamics, where a small but finite shear viscosity (νe) creates a thin vortical boundary layer
of thickness δ ∼ √

νe/� near the surface of the fluid [46]. The fluid outside this layer remains irrota-
tional to an excellent approximation [47]. The presence of odd viscosity in addition to shear viscos-
ity significantly alters this boundary layer structure as shown by some of us in Ref. [43]. While the
thickness of the boundary layer is still controlled by δ ∼ √

νe/�, in the limit νe → 0 (with fixed νo),
the vorticity ω = ∇ × v within the layer diverges as ω ∼ 1/

√
νe [43]. Therefore, the limit νe → 0

is singular and can be thought of as the formation of a discontinuity in the velocity component
tangential to the fluid boundary. This discontinuity makes it difficult to access free surface results
for fluids with exactly zero shear viscosity νe = 0 (to be contrasted with the limit νe → 0 [43]).

Strictly nondissipative fluids [48] (νe = 0) are of considerable interest, with notable examples
being QH fluids and superfluids. Therefore, in this work we consider a strictly nondissipative
fluid with odd viscosity and free boundary. The dissipationless nature of such a fluid allows for a
variational principle description, which produces both bulk hydrodynamic equations and appropriate
free surface boundary conditions.

The solution to the linearized hydrodynamic equations with free surface shows that a finite
compressibility is needed to satisfy the no-stress boundary conditions at the free surface without
appealing to weak solutions with discontinuities. The incompressible limit is therefore subtle and
characterized by the formation of a singular boundary layer whose thickness is controlled by a new
length scale δ ∼ νo/cs—ratio of odd viscosity (νo) to sound velocity (cs)—with diverging vorticity
(ω ∼ cs).

In summary, this work comprises three main results: the variational formalism for the free
surface dynamics of a compressible fluid with odd viscosity; the relationship between the bulk
fluid Casimirs and the Hall constraint; and linear surface waves and an incompressible limit.

II. HYDRODYNAMICS OF COMPRESSIBLE FLUID WITH ODD VISCOSITY

Hydrodynamic equations consist of the conservation equations for local mass and momentum
[49], assuming all other relevant quantities are equilibrated. The momentum conservation and
continuity equations can be written in terms of the mass density of the fluid ρ and its velocity
vi as follows:

∂tρ + ∂i(ρvi ) = 0, (1)

∂t (ρvi ) + ∂ j (ρviv j − Ti j ) = −ρFi. (2)

Here we assume that the fluid is charged so that the external force in the presence of electromagnetic
fields is given by Fi = Bεi jv j + Ei, with εi j being the Levi-Civita tensor, and the ratio between
charge and mass density is −1. For simplicity, we neglect thermal effects in this paper and do not
consider local energy conservation [49], since it follows directly from the equations for momentum
and mass conservation.
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FIG. 1. Schematic of the free surface dynamics of an infinitely deep two-dimensional “ocean.”

For a fluid with odd viscosity and vanishing shear and bulk viscosities, the stress tensor Ti j in
Eq. (2) is given by [1]

Ti j = −p δi j + νoρ(∂∗
i v j + ∂iv

∗
j ), (3)

where νo is called kinematic odd viscosity. Here and in the following, we use the star operation
defined by a∗

i ≡ εi ja j . The pressure p in Eq. (3) must be understood as a function of the density
[50] p(ρ). Both the parameter νo and the equation of state p(ρ) are supposed to be derived from an
underlying microscopic model and are assumed to be known in the rest of the paper. Formally, the
incompressible limit can be achieved by taking the limit of infinite sound velocity cs → ∞, where
cs = √

d p/dρ.
Equations (2) and (3) are often referred to as the first-order hydrodynamics, emphasizing the fact

that the gradient expansion of the stress tensor (3) is stopped at the first order in spatial derivatives
of velocity. It is well known that in the hydrodynamics with gradient terms the velocity of the fluid
is not uniquely defined [51]. One could fix the definition of velocity by saying that the mass density
current entering the continuity equation in Eq. (1) is given by ρvi. Alternatively, one could insist
on ρvi being the momentum density entering Eq. (2). In the following, we assume that for the fluid
under consideration the momentum density and the mass current density are identical and given
by ρvi. This may not be true in a particular microscopically realized fluid (see, e.g., Ref. [52])
and the results presented in this paper will change. However, it is straightforward to generalize our
calculations to such cases.

For a fluid domain with boundaries, we must supply boundary conditions to the bulk equations
of motion in Eq. (2). The fluid free surface is a dynamical interface 	 between two fluids where we
impose one kinematic and two dynamical boundary conditions:

(∂t	)n = vn|	, niTi j |	 = 0. (4)

Here ni ≡ (nx, ny) are the components of the unit vector outward normal to the free surface 	

(see Fig. 1). The equation on the left is the kinematic boundary condition which states that the
velocity of the fluid normal to the boundary is equal to the speed of the boundary. The pair of
equations on the right states that there are no normal and tangent forces acting on an element of
the fluid surface. It is important to realize that both conditions depend on how we parametrize
the momentum density and the mass current in terms of the velocity field. The normal velocity
vn entering the first condition arises from the mass current density, while the dynamic boundary
conditions are given in terms of the stress tensor components Ti j . The velocity dependence in Eq. (3)
comes from the identification of the fluid momentum density with ρvi.
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III. VARIATIONAL PRINCIPLE

The fluid dynamics described in Eqs. (2)–(4) is nondissipative (see Ref. [49]). The absence of
dissipation allows us to capture the full bulk and boundary dynamics in a variational principle. For
that we parametrize the flow velocity in terms of three scalar fields (θ, α, γ ), known as Clebsch
potentials:

vi = ui − νo∂
∗
i ln ρ, uμ ≡ ∂μθ + Aμ + α∂μγ , (5)

where i = 1 and 2 and μ = 0, 1, and 2. Although the fluid Hamiltonian is only a function of
mass density and flow velocity, the Poisson algebra between these quantities is degenerate, due
to the existence of Casimirs, that is, quantities that have vanishing Poisson brackets with any other
hydrodynamic variables. Note that this degeneracy of the Poisson structure does not rely on any
particular form of the Hamiltonian and makes it impossible to write the full action only in terms
of hydrodynamic quantities. To overcome this difficulty, the phase space must be enlarged, and,
in the enlarged phase space, density and Clebsch potentials become canonical variables. For an
introduction to Clebsch parametrization we refer the reader to Ref. [53] and references therein.

Let the fluid domain M be given by y � h(t, x) and let ε(ρ) be the internal energy density of the
fluid. Using the definition (5), the hydrodynamic action can be written as

S = SM + S	, (6)

SM = −
∫∫

dt dx
∫ h(t,x)

−∞
dy

[
ρ

(
u0 + 1

2
v2

i

)
+ ε(ρ)

]
, (7)

S	 = νo

∫∫
dt dx

[
2φt

√
ρ̃
(
1 + h2

x

) − ρ̃ hxht − φxφt
]
, (8)

where Eq. (8) is defined on the boundary y = h(x, t ). The boundary value of the density ρ̃ is defined
in terms of the bulk density as ρ̃(x, t ) = ρ(x, h(x, t ), t ). The auxiliary field φ(x, t ) is restricted
to the boundary and is necessary to guarantee the action invariance with respect to boundary
reparametrizations. Note that the action for φ resembles the one for a chiral boson coupled to the
boundary geometry. The boundary action (8) does not affect the hydro equations in the bulk, but is
necessary to ensure the no-stress boundary conditions at the boundary.

Equations of motion coming from the action (7) gives us both the continuity equation (1) and the
dynamics of the Clebsch potentials in the bulk, that is,

∂tα + vi∂iα = 0, (9)

∂tγ + vi∂iγ = 0, (10)

∂tθ + vi(∂iθ + Ai ) = v2
i

2
− A0 − ε′(ρ) + νoε

i j∂iv j, (11)

and the kinemetic boundary condition,

ht = vy − hxvx, taken at y = h(t, x). (12)

Equations (9)–(11) together with the continuity equation (1) and the Clebsch parametrization (5)
can be combined into the momentum conservation (2), with the stress tensor given by Eq. (3).

Variation of ρ taken at the boundary relates the field φt with hx, ρ̃, and the boundary value of vx,
that is,

φt = −vx

√
ρ̃
(
1 + h2

x

)
, taken at y = h(t, x). (13)

Normal and tangent dynamical boundary conditions, Eq. (4), arise from variations over h and φ,
respectively. For details, see Appendices A and B.
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IV. CASIMIRS AND HALL CONSTRAINT

Let us consider the fluid domain to be the whole plane with the action given by Eq. (7) with the
upper limit of integration h → +∞. From the time derivative part of the action −ρu0 = −ρ∂tθ −
(ρα)∂tγ , we can immediately derive Poisson brackets between ρ, θ , α, and γ and then between ρ

and ui, as shown in Appendix A. It is clear that the Poisson algebra between ui and ρ is not affected
by the odd viscosity term. Therefore, the corresponding Poisson brackets between ρ and vi can be
obtained through a field redefinition (5). It is known that the Poisson structure between ui and ρ is
degenerate and possesses an infinite number of Casimirs. Defining the quantity Q ≡ (∂iu∗

i − B)/ρ,
one can show that

Ir =
∫

d2x ρ Qr (14)

is a Casimir for any r = 0, 1, 2, . . .; that is, Ir’s have vanishing Poisson brackets with any function
of ρ and vi and are therefore conserved for any fluid Hamiltonian. In terms of vi and ρ, the quantity
Q is

Q = ω − B + νo� ln ρ

ρ
. (15)

For the dynamics given by Eq. (7), one can show that Q is transported along the flow, that is, Dt Q =
0, where Dt ≡ ∂t + v j∂ j is the material derivative. In particular, if this quantity is initially constant
Q = β, it will remain constant at all times at all points. This observation allows one to consider a
reduction of the hydrodynamics (2) subject to the constraint Q = β. If the external magnetic field
is constant, the fluid density fluctuations become gapped and one can recognize this constraint as
the so-called Hall constraint [12,54]. For the QH fluid the constant value β = 2π h̄

m∗ν
is given in terms

of Planck’s constant h̄, particle mass m∗, and QH filling fraction ν. This constraint was originally
derived by Stone for fractional QH states in Ref. [54] and then generalized in Ref. [12] to include
odd viscosity. Imposing the constraint Q = β makes all Casimirs proportional to the total number
of particles in the system and can be understood as a Hamiltonian reduction of the fluid dynamics.

We leave the investigation of the surface dynamics with the QH constraint for future work and
focus here on the dynamics of a fluid without external fields: Ei = 0 and B = 0. We also assume
finite thermodynamic compressibility d p/dρ < ∞, so that the fluid is compressible and supports
sound waves.

V. PROPAGATING WAVES IN THE BULK

Let us now consider small perturbations around the homogeneous background given by ρ = ρ0

and vi = 0 propagating in the bulk of the fluid. We linearize the hydrodynamic equation (2) in
n = (ρ − ρ0)/ρ0 and vi, obtaining

∂t n = −∂ivi, ∂tvi = −c2
s ∂in + νo�v∗

i , (16)

where we used ∂i p = c2
s ∂iρ with the sound velocity cs considered to be a constant computed at

ρ = ρ0. For plane wave solutions (n, vi ) ∝ eiq·r−i�t , we obtain the dispersion of linear modes given
by

� = 0, �± = ±
√

c2
s q2 + ν2

o q4. (17)

The corresponding (unnormalized) eigenvectors are

(n, vi )0 = (
νoq2, ic2

s q∗
i

)
, (n, vi )± = (q2,�±qi − iνoq2q∗

i ), (18)

for � = 0 and � = �±, respectively.
Let us denote the divergence of the fluid velocity as D = ∂ivi. This quantity is identically zero

for incompressible flows. It is often convenient to use the divergence D together with vorticity
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ω instead of velocity components. In particular, the eigenmodes considered above can be written
as (n, ω,D)0 = q2(νo, c2

s , 0) and (n, ω,D)± = q2(1,−νoq2,�±). One can see that the first mode
corresponds to linearly static perturbation, which is incompressible (D = 0) with vorticity and
density perturbations proportional to each other. For the dispersive modes, the ratio ω/D gives
the “tilt” (slope) between the direction of the wave vector and the velocity of the perturbation equal
to νoq2/�±. This tilt was discussed by Avron [1].

It is clear from Eq. (17) that the ratio k0 = cs/νo defines a characteristic scale for the wave vector.
For q 
 k0 the corrections to bulk waves are small, while for q � k0 the odd viscosity effects are
dominant and the sound waves become almost purely transversal.

VI. LINEAR SURFACE DYNAMICS

Let us now assume that the fluid is confined to a half-plane with a perturbed boundary of y �
h(x, t ), and let us seek linearized solutions describing the time evolution of the boundary h(x, t )
together with corresponding bulk and boundary density and velocity profiles. Focusing on velocity
and density perturbations confined to the fluid boundary, we must look for solutions of the type
emy−ikx−i�t , with Re(m) > 0 defining the rate of the decay of the boundary perturbations into the
bulk y → −∞. These boundary waves can be obtained from the bulk propagating solutions obtained
in the previous paragraph through the substitution (qx, qy, q2) → (k,−im, k2 − m2). In particular,
we obtain the following dispersion relation:

�2 = ν2
o (m2 − k2)2 − c2

s (m2 − k2). (19)

This dispersion relation is real if either m2 � k2 or m2 � k2 + k2
0 . In the linearized regime, the

general solution for boundary waves is a superposition of waves with given � and k for two different
values of m [55]. The boundary conditions (4) fix the relative amplitude A1/A2 of the superposition
of these modes. In the linear approximation, the boundary conditions (4) become

ht = vy, (20)

c2
s n + νo(∂xvy + ∂yvx ) = 0, (21)

νo(∂xvx − ∂yvy) = 0, (22)

all evaluated at y = 0. Equation (20) determines the evolution of the surface if the normal component
of velocity at the surface is known. For plane wave solutions with wave vector qx = k and frequency
�, the two remaining equations, Eqs. (21) and (22), become

νo(ikvx − ∂yvy) = 0, νo(∂yvx + ikvy) = −c2
s n. (23)

This is an overdetermined system of equations for the dispersion if only a single mode at a given
m is used. Following Lamb [46] we look for the solution as a linear superposition of two boundary
waves:

(n, vx, vy) = eikx−i�t
2∑

α=1

Aαemαy
(
nα, vα

x , vα
y

)
,

(
nα, vα

x , vα
y

) =
(

1,
�k

k2 − m2
α

− νomα,−i
�mα

k2 − m2
α

+ iνok

)
, (24)

where both values m1,2 solve (19), and (nα, vα
x , vα

y ) is a solution to the linearized bulk equations
and follows directly from Eq. (18) by replacing q → (k,−im). Substituting (24) into (23) we
obtain A1/A2 and the dispersion �(k). The incompressible regime is accessed when k 
 k0. In
the following we focus on this regime, leaving the case of large k for the Appendix C.

Generally, in the presence of a confining potential (e.g., gravity) one expects to have both right-
and left-propagating boundary modes. However, here we consider the surface in the absence of an
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(a) (b)

FIG. 2. (a) The velocity field profile [vx (x, y), vy(x, y)] is plotted as a streamline plot with the color density
denoting the vorticity profile ω(x, y) for time t = 0 and k = 0.205 51. Here, velocity is measured in units of
νok0 = cs, (x, y) in units of k−1

0 , and vorticity in units of νok2
0 . (b) Dispersion relation for linearized bulk (blue)

and boundary (red) waves. Here, the wave number is measured in units of k0 and the frequency in units of νok2
0 .

The right-propagating surface mode appears when k � 0.655 01.

external restoring force. In this case, one of the modes has � = 0, corresponding to an arbitrary
initial profile h(x) and zero initial velocity. The other mode is nontrivial and exists because odd
viscous terms can play the role of a restoring force [43]. The full equation for the dispersion of this
mode is complicated. In the limit k 
 k0, we have the following from Eq. (19):

m1 ≈ k

(
1 − (�/νo)2

2k2
0k2

)
, m2 ≈ k0

(
1 + k2

2k2
0

)
, (25)

and the dispersion of the gapless mode

� ≈ −2νok|k| + 2
νo

k0
k3 + O

(
k−2

0

)
. (26)

The leading term of the surface wave dispersion (26) is universal and coincides with the one
obtained in Ref. [43]. However, in contrast with Ref. [43] the subleading k/k0 terms in Eq. (26)
are also nondissipative. Solutions for the velocity and density profiles and their scaling with respect
to k0 are discussed in the Appendix C and are shown in Fig. 2. As there is an exact symmetry
�(k) → −�(−k) due to the PT symmetry (parity and time-reversal symmetries combined) of the
hydrodynamic equations with odd viscosity, we show only the � � 0 part of the spectrum in Fig. 2.
Figure 2(a) shows the bulk vorticity profile corresponding to the chiral boundary mode. We note
here that the results for large k/k0 are expected to be less universal as in applications they can be
changed by higher-order gradient corrections to the hydrodynamic equations.

VII. DISCUSSION AND CONCLUSIONS

Hydrodynamic equations, Eqs. (2) and (3), can be obtained through the variational principle,
Eqs. (6)–(8), due to their nondissipative nature. The no-stress boundary condition is accounted for
by the boundary action (8). The latter has a form of 1 + 1 action of two chiral boson fields h and φ

coupled to the background boundary geometry. The field h describes the form of the boundary and
the field φ is an auxiliary field.

The Hamiltonian structure of the fluid dynamics derived for a fluid domain with no boundary
allows for an interesting Hamiltonian reduction. Imposing the Hall constraint Q = 2π h̄/(m∗ν)
makes all Casimirs (14) proportional to the total mass of the fluid. The Hall constraint plays an
important role in the hydrodynamics of the QH effect, and our interpretation makes this constraint
very natural from the point of view of the Hamiltonian structure corresponding to the action,
Eqs. (6)–(8), as shown in the Appendix A.

Within the linearized dynamics, we showed that the velocity divergence in a compressible fluid
with odd viscosity generates the vortical boundary layer at the surface of the fluid. The boundary
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layer is necessary to satisfy the tangent no-stress boundary condition. As a result, a chiral wave with
the dispersion (26) can propagate along the fluid edge even in the absence of an external confining
potential. The finite compressibility of the fluid regularizes singularities at the surface even in the
absence of shear viscosity.

The variational principle presented here can be used to obtain the nonlinear surface waves in
the incompressible limit (cs → ∞). In the lowest order in nonlinearity the result should match the
action proposed in Ref. [56] on phenomenological grounds. Moreover, one could impose the Hall
constraint on the action, Eqs. (6)–(8), and study the effects of odd viscosity on edge excitations of
fluids similar to QH fluids. We reserve these investigations for future work.
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APPENDIX A: BULK VARIATIONAL PRINCIPLE AND HAMILTONIAN STRUCTURE

In this section, we present a hydrodynamic action which provides the bulk equations, Eqs. (1)
and (2), for a compressible fluid with odd viscosity. For the brevity of notations we put the charge to
mass ration e/m∗ → 1 and use the notation in Eq. (5), namely, uμ ≡ ∂μθ + Aμ + α∂μγ for μ = 0,
1, and 2. Let us assume the fluid domain to be the whole two-dimensional plane. The generalization
to the fluid domain with free surface is discussed in the next section. Let us consider the action

S[θ, α, γ , ρ, vi] = −
∫

dt
∫
R2

d2x

[
ρ(u0 + viui )ρ − ρvivi

2
+ ε(ρ) − νoviε

i j∂ jρ

]
. (A1)

Variation of this action gives us

δS =
∫

dt
∫

d2x

[
ρ δvi

(
vi − ui + νo

ρ
∂∗

i ρ

)
+ (δθ + αδγ )(∂tρ + ∂i(ρvi )) + ρ δγ (∂tα + vi∂iα)

− (ρ δα + α δρ)(∂tγ + vi∂iγ )

− δρ

(
∂tθ + A0 + vi(∂iθ + Ai ) − 1

2
vivi + ε′(ρ) − νoε

i j∂iv j

)]
. (A2)

From this variation, we obtain the Clebsch parametrization of velocity given in Eq. (5), the conti-
nuity equation (1) and the dynamics of the Clebsch potentials, Eqs. (9)–(11). The Euler equation
is obtained by taking the time derivative of vi from Eq. (5) and using the equations of motion to
Clebsch potentials. Hence,

∂tvi = ∂i∂tθ + ∂tα∂iγ + α∂i∂tγ + ∂t Ai − νo∂
∗
i ∂t (ln ρ),

∂tvi = ∂i

[
v j

(
v j

2
− ∂ jθ − Aj

)
− ε′(ρ) + νoε

jk∂ jvk − A0

]

− v j∂ jα∂iγ − α∂i(v
j∂ jγ ) + ∂t Ai + νo∂

∗
i

[
1

ρ
∂ j (ρv j )

]
,

∂tvi = −∂i

[
v j

(
νo∂

∗
j ln ρ + 1

2
v j

)
+ ε′(ρ) − νoω

]
+ v j (∂iα∂ jγ − ∂ jα∂iγ )
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− Ei + νov
j∂ j∂

∗
i ln ρ + νo∂ j∂

∗
i v j + νo

ρ
∂∗

i v j∂ jρ.

In order to express the last line solely in terms of the fluid density and the velocity field, we must
note that

v j (∂iv j − ∂ jvi ) = v j (∂iα∂ jγ − ∂ jα∂iγ ) + Bεi j − νov
j (∂i∂

∗
j ln ρ − ∂ j∂

∗
i ln ρ),

and after a little bit of algebra, we end up with

∂tvi = −v j∂ jvi − (Bεi jv
j + Ei ) − ∂i(ε

′(ρ) − νo∂ jv
∗ j ) + νo

ρ
∂ j (ρ ∂∗

i v j ) − νo

ρ
∂iv

j∂∗
j ρ,

∂tvi + v j∂ jvi = −(Bεi jv
j + Ei ) − 1

ρ
∂ j

[
p(ρ) δ

j
i − νoρ(∂∗

i v j + ∂iv
∗ j )

]
, (A3)

where we used the identity

∂iv
j∂∗

j ρ = −∂iv
∗ j∂ jρ,

together with fluid pressure definition, that is, p(ρ) = ρε′(ρ) − ε(ρ).

Hamiltonian structure

In the action (A1), the field vi is a Lagrange multiplier and can be “integrated out.” Therefore,
we can rewrite it as

S = −
∫

dt
∫

d2x

[
ρ

(
∂tθ + A0 + α∂tγ + 1

2
vivi

)
+ ε(ρ)

]
. (A4)

Here the velocity field vi is expressed in terms of Clebsch parameters by Eq. (5). We separate time
derivatives and rewrite (A4) as

S =
∫

dt
{∫

d2x[−ρ∂tθ − ρα∂tγ ] − H
}
, (A5)

where the fluid Hamiltonian is given by

H =
∫

d2x

[
1

2
ρvivi + ε(ρ) + ρA0

]
. (A6)

The part of the action (A5) containing time derivatives defines the Poisson algebra of the system.
From the action (A5), we see that −ρ and θ are conjugated quantities, whereas −ρα is conjugated
to γ . This means that we have the following Poisson brackets:

{ρ, θ ′} = −δ(x − x′), (A7)

{ρα, γ ′} = −δ(x − x′), (A8)

{θ, γ ′} = 0, (A9)

{ρ, ρ ′α′} = 0, (A10)

{ρ, γ ′} = 0, (A11)

{ρα, θ ′} = 0. (A12)

Here, for the sake of brevity, we used the notations ρ = ρ(t, x), θ ′ = θ (t, x′), etc.
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It is straightforward to see that this canonical algebra is the same for fluids without odd viscosity.
Namely, it is not hard to show that

{ρ, ρ ′} = 0, (A13)

{ρ, u′
i} = ∂iδ(x − x′), (A14)

{ui, u′
j} = ∂ jui − ∂iu j − (∂ jAi − ∂iA j )

ρ
δ(x − x′) = ∂ jui − ∂iu j + εi jB

ρ
δ(x − x′). (A15)

These brackets are the same as the brackets for density and velocity fields for a fluid without
odd viscosity [53]. Therefore, the presence of odd viscosity leads to nothing but a redefinition of
the velocity field. One can easily obtain the Poisson brackets for ρ and vi = ui − νo∂

∗
i ln ρ using

Eqs. (A13)–(A15).
The algebra in Eqs. (A13)–(A15) is well known and admits an infinite number of Casimirs,

namely,

F =
∫

d2xρ f

(
εi j∂iu j − B

ρ

)
(A16)

is a Casimir for any function f . Rewriting it in terms of vorticity ω = εi j∂iv j , we find

F =
∫

d2xρ f (Q), (A17)

where Q is defined by Eq. (15). We can show that ρQ is a Casimir density by imposing that f is a
linear function of Q.

From Eqs. (A13)–(A15), it is straightforward to work out the explicit form of Poisson algebra in
terms of ρ and vi:

{ρ, ρ ′} = 0, (A18)

{ρ, v′
i} = ∂iδ(x − x′), (A19)

{vi, v
′
j} = −Qεi j δ(x − x′) + νo(∂i∂

′∗
j − ∂∗

i ∂ ′
j )

δ(x − x′)
ρ

. (A20)

Hamilton equations of motion for ρ and vi follow from

ρ̇ = {H, ρ}, (A21)

v̇i = {H, vi} + ∂t Ai, (A22)

where the fluid Hamiltonian is given by Eq. (A6). Thus,

ρ̇ =
∫

d2x′ρ ′v′i{v′
i, ρ} = −∂i(ρvi ), (A23)

and

v̇i = ∂t Ai +
∫

d2x′
[(

1

2
v′ jv′

j + dε′

dρ ′ + A′
0

)
{ρ ′, vi} + ρ ′v′ j{v′

j, vi}
]
. (A24)

Substituting (A19) and (A20) after some manipulations we obtain a Euler equation corresponding
to the stress (3):

v̇i = −v j∂ jvi − (Ei + Bv∗
i ) − 1

ρ
∂ j

[
p δ

j
i − νoρ(∂∗

i v j + ∂iv
∗ j )

]
.

104802-10



HYDRODYNAMICS OF TWO-DIMENSIONAL COMPRESSIBLE …

APPENDIX B: VARIATIONAL PRINCIPLE WITH FREE SURFACE

In this section, we generalize the bulk action (A1) to account for the free edge dynamics. For that,
the hydrodynamic action must provide us the continuity and Euler equations together with kinematic
and dynamic boundary conditions, Eq. (4). Let us consider the case where the fluid domain is given
by y � h(t, x), thus the bulk action becomes

Sbulk = −
∫

dt
∫ ∞

−∞
dx

∫ h(t,x)

−∞
dy

[
ρ(u0 + viui ) − ρvivi

2
+ ε(ρ) − νoviε

i j∂ jρ

]
. (B1)

To vary this action, we must remember that the boundary function h(t, x) is a dynamical field. Thus,
using the Leibniz integral rule, we end up with

δSbulk =
∫∫

dt dx
∫ h(t,x)

−∞
dy

[
ρ δvi

(
vi − ui + νo

ρ
∂∗

i ρ

)

+ (δθ + αδγ )(∂tρ + ∂i(ρvi )) + ρ δγ (∂tα + vi∂iα)

− (ρ δα + α δρ)(∂tγ + vi∂iγ )

− δρ

(
∂tθ + A0 + vi(∂iθ + Ai ) − 1

2
vivi + ε′(ρ) − νoε

i j∂iv j

)]

+
∫∫

dt dx

{
ρ(δθ + αδγ )[∂t h + vx∂xh − vy] − δh

[
ρα(∂tγ + vi∂iγ ) + ε(ρ)

− νoε
i jvi∂ jρ + ρ

(
∂tθ + vi∂iθ − 1

2
vivi

)]
+ νoδρ(vx + vy∂xh)

}
y=h(t,x)

. (B2)

Variations of fields on the bulk are the same as in the previous section; hence they provide the same
bulk equations. Thus, this action variation on bulk equations of motion becomes

δSbulk|on EoM =
∫∫

dt dx{ρ(δθ + αδγ )[∂t h + vx∂xh − vy] − δh[p(ρ) − νoε
i j∂ j (ρv j )]

+ νoδρ(vx + vy∂xh)}y=h(t,x). (B3)

Variations of θ and γ on the edge give us the kinematic boundary condition, that is,

∂t h + vx|y=h∂xh − vy|y=h = 0. (B4)

However, variation over ρ on the boundary states that the tangent velocity vanishes at the edge, that
is, vx + vy∂xh = 0, and variation over h states that

[p(ρ) − νoε
i j∂ j (ρv j )]y=h = 0. (B5)

Obviously, these are not the no-stress boundary conditions from Eq. (4). Therefore, we must add
purely boundary terms to the full action. Such boundary action can be described as

Sedge = −νo

∫∫
dtdx[ρ̃∂t h∂xh + ∂tφ∂xφ − 2∂tφ

√
ρ̃[1 + (∂xh)2]], (B6)

where we introduced the density boundary field ρ̃(t, x) ≡ ρ[t, x, h(t, x)] and the field φ(t, x) as an
independent boundary field (which does not depend on h). To vary the edge action (B6), we must
take into account that the variations and derivatives of the boundary density ρ̃ are related to the
boundary values of the variation of the bulk density ρ in the following way:

δρ̃ = δρ|y=h + δh ∂yρ|y=h,

∂t ρ̃ = ∂tρ|y=h + ∂t h ∂yρ|y=h,

∂xρ̃ = ∂xρ|y=h + ∂xh ∂yρ|y=h.
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Hence,

δSedge = νo

∫∫
dtdx

{
δρ

(
∂tφ√

ρ

√
1 + (∂xh)2 − ∂t h∂xh

)

+ 2δφ

[
∂t∂xφ −

√
ρ ∂xh ∂x∂t h√
1 + (∂xh)2

− ∂tρ + ∂t h∂yρ

2
√

ρ

√
1 + (∂xh)2

]

+ δh

[
2ρ ∂x∂t h + ∂tρ∂xh + ∂t h∂xρ + ∂t h∂xh∂yρ

− 2(∂x + ∂xh∂y)

(
∂tφ∂xh

√
ρ√

1 + (∂xh)2

)
+ ∂tφ∂yρ√

ρ

√
1 + (∂xh)2

]}
y=h

. (B7)

Combining the terms of δρ taken at the boundary from both bulk and boundary actions, we obtain
that [

vx + vy∂xh − ∂xh∂t h + ∂tφ√
ρ

√
1 + (∂xh)2

]
y=h

= 0. (B8)

Using the kinematic boundary condition, we can parametrize ∂tφ in terms of the hydrodynamic
fields (ρ, vx, h):

∂tφ = −[vx

√
ρ[1 + (∂xh)2]]y=h. (B9)

Plugging the kinematic boundary condition, Eq. (B4), together with Eq. (B9) into the equation
of motion for φ, we get that

[
− (∂x + ∂xh∂y)(vx

√
ρ[1 + (∂xh)2]) − ∂xh ∂x∂t h

√
ρ√

1 + (∂xh)2

− ∂tρ + (vy − vx∂xh)∂yρ

2
√

ρ

√
1 + (∂xh)2

]
y=h

= 0,

[
∂tρ + vx∂xρ + vy∂yρ

2
√

ρ
+ √

ρ(∂xvx + ∂xh∂yvx ) + vx∂xh∂2
x h

√
ρ

1 + (∂xh)2

+ ∂xh
√

ρ

1 + (∂xh)2
(∂x + ∂xh∂y)(vy − vx∂xh)

]
y=h

= 0,

[
− 1 + (∂xh)2

2
(∂xvx + ∂yvy) + (∂xvx + ∂xh∂yvx ) + ∂xh(∂xvy + ∂xh∂yvy)

]
y=h

= 0,

[[1 − (∂xh)2](∂xvx − ∂yvy) + 2∂xh(∂xvy + ∂yvx )]y=h = 0. (B10)

One can show with few lines of algebra that the term in the left-hand side of Eq. (B10) is
proportional to the tangent component of the dynamic boundary condition, that is,

nis jT
i j |y=h = 0, (B11)

where s j are the components of the edge tangent vector.
Finally, let us turn our attention to the variation with respect to h. From the bulk action, we

obtain the left-hand side of Eq. (B5). Combining (B3) with (B7) and using Eq. (B9), we obtain the
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following for the total variation with respect to h:
[

p

νo
− εi j∂i(ρv j ) + 2ρ ∂x∂t h + ∂tρ∂xh + ∂t h∂xρ

+ ∂yρ[∂t h∂xh − vx − vx(∂xh)2] + 2(∂x + ∂xh∂y)(ρvx∂xh)

]
y=h

= 0,

[
p

νo
− ρ ∂xh(∂xvx + ∂yvy) + ρ (∂yvx − ∂xvy + 2∂x∂t h)

− 2ρ ∂xh(∂xvx + ∂xh∂yvx ) − 2ρ vx∂
2
x h

]
y=h

= 0,

[p − νoρ (∂yvx + ∂xvy) + νoρ ∂xh(∂xvx − ∂yvy)]y=h =
√

1 + (∂xh)2 niTiy|y=h = 0. (B12)

This condition together with (B11) implies that both components of the stress at the surface are
vanishing niT i j = 0 and we recover both dynamical boundary conditions.

To conclude this section, we show that the action given by the sum of the bulk term (B1) and of
the boundary term (B6) reproduces both bulk equations of motion and proper boundary conditions
for the compressible two-dimensional fluid with odd viscosity and free surface. This action can be
used to derive the Hamiltonian structure for the fluid with free surface. We leave this problem for
future work.

APPENDIX C: LINEARIZED SOLUTIONS

In this section, we provide the derivation details of the linear surface wave dispersion and the
corresponding density and velocity profiles. In the following, we express all wave vectors in units
of k0 = cs/νo and frequencies in units of �0 = νok2

0 . Substituting the density and velocity (24) into
the the linearized dynamical boundary conditions (23), we obtain

2∑
α=1

Aα fα (k,�) = 0,

2∑
α=1

Aαgα (k,�) = 0, (C1)

fα (k,�) =
(

1 + 2mα�k

k2 − m2
α

− (
m2

α + k2
))

, gα (k,�) =
(

�
k2 + m2

α

k2 − m2
α

− 2mαk

)
. (C2)

These two equations define the eigenvalue problem for finding � and the corresponding amplitudes
A1,2. The decay rates mα are subject to the condition Re(mα ) > 0 and are given by the bulk disper-

sion relation (19), that is, m2
α − k2 = 1±√

1+4�2

2 for α = 1 and 2, respectively. It is important to know
that the system of equations (C1) and the relation (19) have exact PT symmetry, �(k) = −�(−k).
The surface wave dispersion is found by solving the compatibility condition of the equations (C1):

f2[k,�(k)]g1[k,�(k)] − f1[k,�(k)]g2[k,�(k)] = 0. (C3)

The solution has PT symmetry �(k) = −�(−k) and is plotted in Fig. 2, for � > 0.
To obtain the solutions in two limits, i.e., k 
 1 and k � 1, analytically, we write �(k) =∑
j a jk j . Substituting this form into Eq. (C3) and expanding it in the powers of k, we can find

a j by setting the coefficients for each power to zero. The first three terms can be written as

� ≈ −2(k2 − k3 + k4) + O(k5), for k 
 1, (C4)

� ≈ −
√

2k + 1

4
√

2

1

k
+ 1

8

1

k2
+ O(k−3), for k � 1. (C5)
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For k ≈ 0.650 551, another counterpropagating surface mode emanates out of the bulk continuum:

� ≈
√

2k − 1

4
√

2

1

k
− 1

8

1

k2
+ O(k−3), for k � 0.650 551. (C6)

Note that, the dispersion (C6) is just opposite in sign to the dispersion (C5) to all orders in the 1/k
expansion and differs from it only due to nonperturbative corrections, giving rise to the existence of
the vortical boundary layer.

Let us now focus on the long-wavelength limit k 
 1. Using Eq. (C4), we solve Eq. (C1) for the
amplitudes A1,2. Plugging it into Eq. (24) and restoring the dimensions, we end up with

n = −i
A

cs

(
2

k

k0
eky − ek0y

)
eikx−i�t , vx = iA(eky − ek0y)eikx−i�t , vy = A

(
eky − k

k0
ek0y

)
eikx−i�t ,

(C7)

where A is a free parameter defining the overall size of the wave. For completeness, we also give an
expression for the height of the surface, h = − iA

2νok2 eikx−i�t for k 
 k0.
The vorticity corresponding to Eq. (C7) is given to the leading order by

ω ≈ Ak0ek0yeikx−i�t . (C8)

Let us consider the incompressible limit of these linearized solutions. We fix the wave vector k
and the amplitude of the vertical velocity vy to be A. We then send cs → ∞ (k0 → ∞). We find
that the density is constant (n → 0) and the velocities vx and vy are finite in this limit everywhere
near the boundary, while the vorticity (C8) diverges near the surface ω ∼ k0 ∼ cs. Interestingly, the
tangent velocity vx taken exactly at the surface y = 0 vanishes in linear approximation and can have
only values of higher order in the amplitude A (beyond the linear approximation considered here).
However, at finite depth of the order of δ = 1/k0 → 0, the tangent velocity is finite and is of the
order of A. Essentially, one can say that in the incompressible limit the tangent velocity has a finite
discontinuity across the infinitesimal vortical boundary layer.

We plot the linearized bulk velocity and vorticity profiles for different values of k in Fig. 3.
The velocity profile given by the real parts of (C7) are represented in the form of streamlines. The
vorticity is plotted as a color density plot in the background of the velocity streamline plots. The
odd viscosity dominates the flow for small negative k shown in k = −0.2. The dimensionful surface
dispersion for small negative k is of the form � ∼ −2νok|k|. For intermediate and large negative
values of k the odd viscosity effects are suppressed and the dimensionful dispersion relation is
of the form � ∼ −√

2csk, which is independent of odd viscosity. More evidence of suppression
of parity-breaking effects at large k is shown by the emergence of a counterpropagating mode for
k � 0.655 01. For the critical value of k ≈ 0.655 01, we see that the vorticity penetrates deep into the
bulk due to the vanishing of the decay rate m becoming a bulk mode. Since the bulk and boundary
dispersion cross at this point, the disappearance of the boundary mode at low k can be understood
as due to a hybridization with the bulk.

In the k � k0 limit, the dispersion relation is of the form � = ±√
2csk. The density and velocity

profiles in this limit are of the following forms:

n = 2
√

2iA

cs
eikx−i�t e|k|y, vx = −2iAeikx−i�t e|k|y, vy = 2Aeikx−i�t e|k|y. (C9)

The vorticity for this case is confined within the length 1/k 
 1/k0 and is given by

ω = 4iAkeikx−i�t e|k|y. (C10)

Even though the dispersion and the profile seem to be independent of the odd viscosity νo, the
existence of a localized boundary mode is exclusively due to the presence of νo. This is due to the
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FIG. 3. Velocity streamlines overlaid over the vorticity profile are shown for different values of k = ±10.0,
±0.655 01, and −0.2. The lower right panel shows the dispersion of bulk (blue) and surface (red) waves.

fact that the tangent boundary condition resulting in the vortical boundary layer does not depend
on the scale of the odd viscosity. However, a nonvanishing tangent boundary condition is solely a
consequence of a nonzero odd viscosity.
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