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We report results of a series of high-resolution direct numerical simulations (DNSs)
of forced incompressible isotropic turbulence with the number of grid points and the
Taylor scale Reynolds number Rλ up to 12 2883 and ∼2250, respectively. The DNSs
show that there exists a scaling range (approximately 100 < r/η < 400), at which the
second-order two-point velocity structure functions S2(r) fit well with a simple power-law,
S2(r)/(〈ε〉r)2/3 = C2(r/L0)ζ , where r is the distance between the two points, η is the
Kolmogorov length scale, 〈ε〉 is the mean rate of energy dissipation per unit mass, and L0

is the integral length scale. The exponent ζ is constant independent from Rλ. However, the
coefficient C2 is dependent of Rλ or the viscosity. This implies that the power-law scaling
range of 100 < r/η < 400 for Rλ up to ∼2250 is not the so-called “inertial subrange” in
the sense that the statistics in the range are independent from the viscosity, as assumed in
various turbulence theories. This suggests that the constancy of the scaling exponent of a
structure function within a certain range does not necessarily mean that the exponent is the
scaling exponent in “the inertial subrange.”

DOI: 10.1103/PhysRevFluids.5.104608

I. INTRODUCTION

Underlying the celebrated work by Kolmogorov (1941) [1] (called K41) is the idea of the
existence of a certain kind of universality in the statistics of turbulent flows at high Reynolds
numbers (Re). Although the assumptions used in K41 are not all good, the idea of the existence
of universality itself is still at the heart of many modern theories of turbulence. The K41 theory
gives among others

SL
n (r) = CL

n (r〈ε〉)n/3 (1)
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within the inertial subrange (ISR) L0 � r � η, where SL
n (r) is the nth order longitudinal structure

function defined as

SL
n (r) ≡ 〈(�uL )n〉, �uL ≡ [u(x + re) − u(x)] · e, (2)

u(x) is the fluid velocity at position x; CL
n is a universal constant independent of r, ν, and Re; e is

a unit vector in an arbitrary direction; L0 is the characteristic length of scale of energy containing
eddies; η is the Kolmogorov length scale defined by η = (ν3/〈ε〉)1/4; ν is the kinematic viscosity;
and 〈ε〉 is the mean rate of the energy dissipation per unit mass.

As is well known, high Re turbulence exhibits strong intermittency at small scales. It is a
prototype of a wide class of intermittent phenomena in nature and technology, and has stimulated
extensive studies and ideas as seen in the development of the idea of fractals (e.g., Ref. [2]).
Kolmogorov himself later revised his theory to take into account the intermittency, and proposed
a refined similarity hypothesis (RSH) [3], which gives

SL
n (r) = CL

n (r〈ε〉)n/3(r/L0)ζ
L
n (3)

instead of Eq. (1), within the ISR, where ζ L
3 = 0, and CL

n and ζ L
n are constants independent of r, ν,

and Re. If intermittency effect is negligible, then ζ L
n must be 0 for any n in accordance with Eq. (1).

If the ISR is sufficiently wide (see NOTE shown below), then Eq. (3) for n = 2 gives

E (k) = K2〈ε〉2/3k−5/3(L0k)−μ2 (4)

in the wave-number space, where E (k) is the energy spectrum, k is the wave number, and K2 and
μ2 are appropriate constants independent of k and Re or ν. The K41 theory gives μ2 = 0.

Since the development of RSH, various theories on intermittency including multi-fractal models
have thus far been proposed (e.g., Ref. [4]). As with RSH, in these models, SL

n (r) takes the form of
Eq. (3). The difference between the models appears not to be in the form, but in the value of the
exponent ζ L

n . With these theories, the exponent ζ L
n is assumed to be universal in the sense that it is

determined by the intrinsic nature of the dynamics, but is not affected by the boundary or the initial
conditions under the appropriate conditions. This idea is supported by analytically solvable models
including Kraichnan’s passive scalar model [5].

Results of experiments and DNSs so far reported have suggested that ζ L
n is in fact not 0, except for

n = 3 (e.g., Refs. [6–9] for experiments and Refs. [10–14] for DNSs). However, it is to be recalled
that in any real turbulence, experiment and DNS, Re as well as L0/r and r/η are finite however large
they may be.

If ζ L
n is estimated to be nonzero in a certain range of r in experiment or DNS, then one might think

that it is due to the intermittency effect. However, this is not necessarily correct. To see this, consider,
e.g., SL

3 (r). It is shown rigorously under weak assumptions that ζ L
3 → 0 as r/L0, η/r, 1/Re → 0,

i.e., the estimate ζ L
3 �= 0 by any experiment or DNS is simply due to the finiteness of Re. One

should not confuse the corrections due to the finiteness of r/L0, η/r and/or 1/Re with the intrinsic
corrections due to the intermittency, which remains nonzero in the limit r/L0, η/r, 1/Re → 0. (e.g.,
Refs. [15,16]).

If the exponent ζ L
n or μ2 fits well to the value predicted by a certain theory, then one might

think that it gives a support for the theory. However, this is not necessarily correct. To see this,
consider, e.g., the energy spectrum E (k). It is known that μ2 ∼ 0 in a certain range of k such
that kη ∼ 0.1 − 0.2 (e.g., Refs. [17,18]). But this does not give the verification of the K41 theory.
A close inspection shows that the prefactor K2 in Eq. (4) estimated by fitting E (k) in the range
kη ∼ 0.1 − 0.2 to Eq. (4) with μ2 = 0 depends on Re, i.e., ν (e.g., Refs. [19,20]). If data with only
Rλ at most up to ∼200 are available, then such a fitting results in an overestimate of the so-called
Kolmogorov constant K2. The range should not be misidentified as the ISR assumed in the K41
theory.

In this respect, it is worthwhile to recall the results of a series of DNSs of forced incompressible
isotropic turbulence conducted on the K-computer with a number of grid points of up to 122883
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TABLE I. DNS parameters and turbulence characteristics at the final time step t = tF. The numbers such
as 2048 in the run-name are those of the grid points in each direction of the Cartesian coordinates. L0 is the
integral length scale, T (= L0/U ) is eddy turnover time, and U is the rms value of the fluctuating velocity.

Run Rλ kmaxη 105ν 102ε L0 104η tF/T

2048-1 732 1.01 4.40 7.07 1.23 10.5 4.7
4096-2 675 1.95 4.40 8.31 1.05 10.1 2.1
4096-1 1131 0.99 1.73 7.52 1.09 5.12 2.4
6144-1 1423 0.98 1.02 8.06 1.12 3.39 1.7
8192-1 1747 0.99 0.70 7.97 1.10 2.56 1.2
12288-1 2250 1.00 0.41 8.02 1.10 1.71 0.7

and a Taylor scale Reynolds number Rλ of approximately 2300 [21]. In the DNSs, the forcing is
at only a low k range. The DNSs showed that there is a wave-number range within which the
energy spectrum E (k) fits approximately well to the form Eq. (4) with nonzero μ2 in accordance
with previous studies [12,20,22]. In this paper, this series of DNSs is called K-DNS, and the range
is called a T-range, as in Ref. [21]. In the K-DNS, μ2 ≈ 0.12, and the T-range is approximately
5 × 10−3 < kη < 2 × 10−2. The coefficient K2 is independent of k in agreement with the theory.
However, a close inspection showed that it has a ν-dependence. Although the k-independence of
K2 is in accordance with Eq. (4), the dependence of K2 on ν is in conflict with the theories and/or
models in which K2 must be ν-independent. This suggests that even if there is a range showing
a simple power-law scaling in k, the range may be not the “ISR” supposed in the theories giving
Eq. (3).

The similar may also be the case in the r-space, and one may ask questions such as “Are the
Re, L0/r, and r/η in the experiments and DNSs so far made are sufficiently large to allow the
examination or assessment of the theories that give Eq. (3)?” “Are the estimates of the exponents
(ζ L

n )’s so far reported acceptable as those in the ‘ISR’ for which the theories are supposed to be
applicable?” The purpose of the present study is to obtain some idea regarding these questions on
the basis of the data by K-DNS.

NOTE: SL
2 (r) is uniquely determined by the spectrum E (k) in homogeneous isotropic turbulence,

and if E (k) is given by Eq. (3) for the entire range of k, then Eq. (3) for n = 2 is equivalent to Eq. (4)
for appropriate sets of constants K2, CL

2 , μ2, and ζ L
2 . From these facts, one might think that the rate

of convergence of SL
2 (r) to Eq. (3) with increasing Re must be similar to the rate of the convergence

of E (k) to Eq. (4). However, this is not necessarily correct, because the range in which E (k) is given
by Eq. (3), even if it in fact exists, must be finite, i.e., the range cannot be the entire k-range in any
real turbulence, and also because the rate of convergence of a function to a certain asymptotic form
with increasing Re may be in general different from that of the spectrum, as seen, e.g., in Ref. [23],
which shows that the rate of convergence of the Lagrangian structure function to scaling behavior
with increasing Re may be different from that of the spectrum.

II. NUMERICAL RESULTS

In this paper, we use the data by K-DNS and focus mostly on the second-order moment SL
2 (r).

For convenience, the DNS parameters are reproduced in Table I from Ref. [21]. (As regards Run
12288-1, the simulation time has been extended up to t = 0.7T . Table I shows updated data.) It
is much easier to obtain reliable statistics for SL

2 (r) than for SL
n (r) with n � 4 within the given

limitation of the computational resources provided.
In the analysis presented below, we estimate SL

n (r) by taking the average of SL
n (r) over three

different directions of e in Eq. (2) perpendicular to each other. As for SL
2 (r), we also use the
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FIG. 1. SLC
2 (r) and SLC

3 (r) at Rλ ∼ 730 in Run2048-1. The solid lines and shadow regions show the average
over several snapshots, and the standard deviations, respectively. The broken lines show several instances of
snapshot data. (a) Linear-log plot and (b) log-log plot.

following relation, which is valid for homogeneous isotropic turbulence:

SL
2 (r) = 4

3

∫ ∞

0
E (k)H (kr)dk, (5)

and compute SL
2 (r) from the given data E (k), where

H (ξ ) = 1 + 3 cos ξ

ξ 2
− 3 sin ξ

ξ 3
.

In the numerical integration of Eq. (5) with respect to k for ξ ≡ kr < 1, H (ξ ) is approximated
through the expansion H (ξ ) ∼ ξ 2/10 − ξ 4/280 + ξ 6/15120. The estimate by Eq. (5) was con-
firmed to agree well with the estimate without using E (k) (see Fig. 5).
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FIG. 2. (a) SLC
2 (r) and SLC

3 (r) as a function of r/η, and (b) the same as (a) but as a function of r/L0. For
“T-range” see the text.

A. Influence of simulation time and spatial resolution

Before proceeding to a detailed analysis of SL
2 (r), it is worth having some idea regarding the

potential influence of (i) the limitation of the simulation time and (ii) the spatial resolution in the
DNS. In Ref. [21], it was shown that the influence of (i) and (ii) on E (k) within the T-range is
insignificant under appropriate conditions. Although it is natural to assume this is also the case for
the influence on SL

2 (r), because SL
2 (r) is related to E (k) as in Eq. (5), let us confirm this first, along

the line of Ref. [21], as follows.
Figure 1 is provided to check the potential influence of the limitation of the simulation time,

and shows the compensated structure functions SLC
2 (r) and SLC

3 (r) at several time steps in Run
2048-1, where SLC

n (r) ≡ SL
n (r)/(r〈ε〉)n/3. The functions averaged over the time steps for t/T > 2.4,

as well as the corresponding standard deviations, are shown by the solid lines and shadowed regions,
respectively. It can be seen that, although the instantaneous structure functions at different times are
different to a certain extent at a large r/η range, the difference is not significant at smaller scales,
for example, at r/η < 500, as can be expected from the results of Ref. [21].

104608-5



TAKASHI ISHIHARA et al.

 0.1

 1

 1  10  100  1000  10000

S2
LC

S3
LC

0.8

r/η

T-range (a)

(r)

(r)

 0.1

 1

 0.0001  0.001  0.01  0.1  1  10

0.8

S2
LC(r)

S3
LC(r)

r/L

(b)

0

FIG. 3. The same as described in the caption of Fig. 2 but the vertical axis is in log-scale.

This suggests that the instantaneous structure functions SL
2 (r) and SL

3 (r) within the scale range
are not significantly different from the time average over a certain time range. We use the value of
the structure functions at the final time step in each run in the following discussion.

The influence of the resolution of the DNS was also confirmed to be insignificant within the scale
range of r/η < 500, by comparing SLC

2 (r) in Run2048-1 and Run4096-2 (Figs. 2 and 3). Both runs
are set at Rλ ∼ 700, but with different kmax, i.e., kmaxη ∼ 1 in Run 2048-1 and ∼2 in Run 4096-2.
This suggests that the structure function within this range is insensitive to the difference between
kmaxη ∼ 1 and kmaxη ∼ 2, as can be expected from the results of Ref. [21]. We use the DNS data
with kmaxη ∼ 1 in the following discussion of the range, unless otherwise stated.

B. Re-dependence of second- and third-order structure functions

Figures 2 and 3 show the compensated structure functions SLC
2 (r) and SLC

3 (r) for the six runs
listed in Table I. It can be seen that, within a certain range, at r/η ∼ 100 in Fig. 3(a), and r/L0 ∼ 0.1
in Fig. 3(b), SLC

2 (r) fits well the simple power-law scaling, and that, within the range, the curves
are not horizontal but slightly tilted. The existence of such a tilt can be expected from Ref. [21],
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FIG. 4. (a) Overhead view of SLC
2 (r) as a function of r/L0 and Rλ. (b) The same as described in the caption

of Fig. 3 but as a function of X = r/(L0R−1.09
λ ).

which shows that the compensated spectrum E (k)/[〈ε〉2/3k−5/3] is slightly tilted within the T-range.
The T-range in the k-space is converted using 2r = π/k to approximately 60 < r/η < 300 in the
r-space, the result of which is indicated in Figs. 2(a) and 3(a). It can also be seen in Fig. 2 that the
overlap of the curves within the tilted range (T-range) is not as good in Fig. 2(b) as in Fig. 2(a).
Figure 2(b) suggests that SLC

2 (r) within the T-range depends not only on r/L0 but also on Rλ.
Figure 4 a shows the dependence of SLC

2 (r) on Rλ and r/L0. It suggests that the
curves within the T-range are approximately on a single plane in the three-dimensional
[log10 Rλ, log10(r/L0), log10 SLC

2 (r)] space. The plane may be identified by following the method
in Ref. [21], as follows. Let the cross section of this plane and the plane given by SLC

2 (r) = γ be
expressed as

log10(r/L0) = α log10 Rλ + β, (6)

where α, β, and γ are constants. We can obtain the estimates of the constants α and β by first
setting γ as γ = 1.9, 1.92, 1.94, ..., 2.1, such that we can identify five points (for the five runs in
Table I) for each of the 11 values of γ , through which the five curves in Fig. 4(a) cross the plane
SLC

2 (r) = γ . We then obtain a set of estimates for α and β through the least squares fitting of Eq. (6)
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FIG. 5. K-DNS data of SLC
2 (r) and STC

2 (r) by EDNS(k) (◦), and by taking the average over the directions of
e (solid lines). The broken lines indicate model Eq. (10). (a) Linear-log plot and (b) log-log plot.

to the data of the five points. The 11 sets of (α, β ) thus obtained give α = −1.09 ± 0.07. The scaling
r/L0 ∝ (Rλ)α with α = −1.09 is shown with the solid lines on the (Rλ, r/L0) plane in Fig. 4(a).

The relation Eq. (6) implies that SLC
2 (r) within the T-range fits well a function of X ≡

r/[L0(Rλ)α]. This is seen to be consistent with Fig. 4(b), where the plots SLC
2 (r) as a function of

X with α = −1.09 are seen to overlap well within a particular range, for example, 50 < X < 200.
The least squares fitting of a straight line in Fig. 4(b) to the data of SLC

2 (r) within the range gives

log10 SLC
2 (r) = ζ L

2 log10 X + β ′, (7)

where ζ L
2 = 0.065 and β ′ = 0.168. The relation Eq. (7) is shown by the straight solid line in

Fig. 4(b), where 10β ′ = 1.47 is used.
These results imply that SLC

2 (r) fits well with

SLC
2 (r) = CL

2 (r/L0)ζ
L
2 , CL

2 ≡ c(Rλ)δ, (8)
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2 in Run12288-1, and by model Eq. (10). The dots show the experimental data of ζ L
2 by

Tsuji [24].

within the above range, where ζ L
2 = 0.065, c = 10β ′ = 1.47, and δ = 1.09ζ L

2 = 0.07. The compar-
ison of Eq. (8) with Eq. (3) shows that SL

2 (r) within this range fits well with the form Eq. (3) for
n = 2, with ζ L

2 = 0.065. However, CL
2 is not constant, but depends on Rλ, i.e., ν.

To understand the r-dependence of SL
2 (r) at a higher Rλ, it is instructive to recall the K-DNS

data for E (k). These data (Fig. 4(a) in Ref. [21]) suggest that, in a DNS with a high Rλ, a certain
wave-number range (F-range in Ref. [21]) is observed next to the T-range (at the lower-wave-number
side), in which EC (k) ≡ E (k)/〈ε〉2/3k−5/3 ≈ const (≈1.8), i.e., E (k) fits well with

EF (k) ≡ Ko〈ε〉2/3k−5/3, Ko ∼ 1.8. (9)

In addition, the width of the F-range extends toward the left, i.e., toward the lower wave-number
range, with an increase in Rλ. In view of these observations, let us assume here a simple model of
E (k) at Rλ → ∞:

E (k) =
{

EDNS(k), for kη � 0.007,

EF (k), for kη < 0.007,
(10)

where EDNS(k) is the spectrum E (k) obtained by the highest resolution in K-DNS, i.e., Run12288-1
(Rλ ∼ 2250). Figure 5 shows SLC

2 (r) obtained from Eqs. (10) and (5). Two kinds of K-DNS data
SLC

2 (r) in Run12288-1 are also included in the figure; one is by EDNS(k) and Eq. (5), the other is
by taking the average over three directions of e in Eq. (2) perpendicular to each other, but without
using EDNS(k) or Eq. (5). The two curves can be seen to agree well with each other.

Figure 6 shows the exponent ζ L
2 (r) = d[log SL

2 (r)]/ d (log r) in Run12288-1, and ζ L
2 through

model Eqs. (10) and (5). It can be seen that ζ L
2 is different from 2/3 at r/η � 400, but close to 2/3

at r/η � 1000. This suggests that the exponent at r/η � 400 should not be confused with that at
r/η � 1000. In other words, Rλ ∼ 2250 and r/η � 400 may be too small for an examination of the
“ISR” scaling. Figure 6 also includes the experimental data of ζ L

2 at Rλ ∼ 17060 by Tsuji [24]. The
model curve of ζ L

2 is seen to be close to the experimental data at large values of r.
Model Eq. (10) may also be used to obtain an estimate of the transverse structure function

ST
2 (r) ≡ 〈(�uT

r )2〉, where �uT
r is given by the right-hand-side of Eq. (2), but e is to be understood

as an arbitrary unit vector perpendicular to r. Here, ST
2 (r) can be related to E (k) through a

simple relation similar to Eq. (5). In addition, STC
2 (r) ≡ ST

2 (r)/(r〈ε〉)2/3 estimated by the model
along with STC

2 by DNS are included in Fig. 5. Figure 6 shows, in addition to ζ L
2 (r), the scaling
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exponent ζ T
2 (r) = d[log ST

2 (r)]/d (log r) estimated using model Eq. (10), as well as an estimate for
Run12288-1 (without using the model). As in the case of ζ L

2 (r), it can be seen that the exponent
ζ T

2 (r) at r/η � 400 should not be confused with those at r/η � 1000.

III. COMPARISON WITH MODELS

A. Models allowing Re-dependent CL
2

According to K41, the longitudinal structure function SL
2 (r) for r � L0 is given by

SL
2 (r) = (ν〈ε〉)1/2B

(
r

η

)
, (11)

where B(ξ ) is a universal function of only ξ ≡ r/η, independent of Re, and must satisfy

B(ξ ) → CL
2 ξ 2/3, as ξ → ∞, (12)

in which CL
2 is a universal constant independent of Re. As Re → ∞, η → 0, so that Eqs. (11) and

(12) yield Eq. (1) with n = 2, i.e.,

SL
2 (r) = CL

2 〈ε〉2/3rχ , χ = 2/3, (13)

in this limit.
Barenblatt and Chorin proposed the so-called incomplete similarity hypothesis, according to

which CL
2 and χ in Eq. (13) may be Re-dependent, in contrast to K41 (cf. Refs. [25,26], and

references cited therein). They argued that CL
2 and χ are given by

CL
2 = CL

2 (Re) = A0 + A1
1

ln Re
+ o

(
1

ln Re

)
, (14)

χ = χ (Re) = 2

3
+ α1

1

ln Re
+ o

(
1

ln Re

)
, (15)

respectively, for large Re, where A0, A1, and α1 are nondimensional constants independent of Re.
Equation (14) implies that as Re → ∞, the prefactor CL

2 → constant(=A0), in contrast to CL
2 in

Eq. (8). Thus, Eq. (8) is not explained by the theory that gives Eqs. (14) and (15).
Barenblatt et al. [27] noted “the prefactor · · · is also Re-dependent, as has indeed been observed

experimentally,” and referred Refs. [28,29]. In Ref. [28], Praskovsky and Oncley reported that no
measurable deviation from the −5/3 exponent in Eq. (4) with μ2 = 0 is found, while the prefactor,
i.e., the Kolmogorov constant K2 is weakly dependent on Re and the dependence is well described
by K2 ∝ R−0.20

λ . In Ref. [29], after surveying experimental results, Sreenivasan concluded as “the
Kolmogorov constant is more or less universal, essentially independent of the flow as well as
the Reynolds number.” This conclusion for one-dimensional energy spectrum is also applicable to
the three-dimensional one because of a simple relationship between the two spectra. These results
are different from Eq. (8) in which the prefactor CL

2 increases with Re.
Grossmann [30] considered D ≡ 〈δu · δu〉 [δu ≡ u(x + r) − u(x)] instead of SL

2 (r). In general-
izing the ideas originally propose by Lohse [31], he used

D = D(r) = (ν〈ε〉)1/2BD

(
r

η

)
, (16)

and analyzed the relationship between Eq. (16) and the expression for the normalized energy
dissipation rate

Cε ≡ 〈ε〉
U 3/L0

, (17)
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where BD(ξ ) is given by

BD(ξ ) = 1

3

ξ 2

[1 + (ξ/a)2]z
, (18)

a = a(Re) may depend on Re, and the exponent z need not be 2/3, in contrast to Batchelor’s model
[32] in which B in Eq. (11) is given by

B(ξ ) = 1

15

ξ 2

[1 + (ξ/a)2]z
, (19)

where

a = (
15CL

2

)3/4
, z = 2/3 (20)

are independent of Re.
In homogenous isotropic turbulence D depends on r only through r, and given by

D(r) = SL
2 (r) + 2ST

2 (r) = 3SL
2 (r) + r

d

dr
SL

2 (r). (21)

Hence, if SL
2 has a power law dependence ∝rχ , then we have from Eq. (21)

D(r) = (3 + χ )SL
2 (r). (22)

Equations (16), (18), and (22) imply that

D(r)

〈ε〉2/3r2/3
= (5 − 2z)

SL
2 (r)

〈ε〉2/3r2/3
∼ CD

(
r

L0

)4/3−2z

, at r/η � 1, (23)

where

CD = 1

3
a2z

(
L0

η

)4/3−2z

∼ const. × (Rλ)g, g ≡ 2zβ + y(4/3 − 2z), (24)

and we have put

a ∼ (Rλ)β, (25)

L0/η ∝ (Rλ)y, and used (ν〈ε〉)1/2ξ 2/3 = 〈ε〉2/3r2/3.
Note that the model Eq. (16) with Eq. (18) contains two parameters z and a, or equivalently two

parameters z and β, if we assume Eq. (25). It is therefore trivial that the scaling exponents implied
by Eq. (23) agree with those of Eq. (8) for certain appropriate values of z and β, i.e., if the exponents
z and β are so chosen that

4/3 − 2z = ζ L
2 , 2zβ + y(4/3 − 2z) = δ, (26)

for any given set of ζ L
2 and δ, then the scaling exponents given by Eq. (23) agree with those of

Eq. (8).
However, assuming the model Eq. (16) with Eq. (18) alone without any other constraint is not

sufficient to determine the exponent z and the parameter a or β in Eqs. (23) and (25). The model
alone allows not only the exponents that are consistent with Eq. (8), i.e., Eq. (26) but also any other
arbitrary exponents. Grossmann noted “Data anaysis favors κ = 0” (where κ is the exponent given
by Cε ∝ Re−κ ), and showed that if κ = 0 there are only two cases (i) ζ L

2 = δ = 0, and (ii) ζ L
2 �= 0,

and a depends on Re appropriately. In either case, CD is Re-independent (Refs. [30,31,33]). Thus,
Eq. (8) is not explained by the theory.

As regards the exponent z, in view of the fact that in Grossmann’s analysis, the assumptions (i)
Eq. (16) with Eq. (18) is applicable at r = L0, and (ii) D∞ ≡ D(L0)/U 2 is independent of Re, play a
key role, it looks natural to impose the constraint that the exponent z must be so chosen that Eq. (16)
with Eq. (18) fits well to the data of D(r) at r ∼ L0. However, it is not surprising that the statistics
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FIG. 7. DNS values of “a” given by Eq. (27) in Run 12288-1 as a function of r/η, with 4/3 − 2z = 2/3 or
4/3 − 2z = ζ L

2 = 0.065. The vertical arrow shows the position of r at r = L0.

in the energy containing range (∼L0) and in the ISR or T-range are different from each other. As
a matter of fact, as seen in Fig. 3, the slope of SL

2 (r) at r ∼ L0 is different from the slope in the
T-range. Therefore, the exponent z thus obtained by the fitting at r ∼ L0 would be different from the
exponent given by the T-range, i.e., 4/3 − 2z = ζ L

2 = 0.065 in Eq. (8).
As regards a = a(Re), similarly to z, it looks natural to impose the constraint that the crossover

a must be so chosen that Eq. (16) with Eq. (18) fits well to the data of D(r) at r ∼ L0. To get some
idea on this constraint, note that Eq. (16) under Eq. (18) is equivalent to

a = ξ

[�(r)ξ 2]1/z − 1
,

(
�(r) ≡ (ν〈ε〉)1/2

3D(r)

)
. (27)

Figure 7 plots the DNS data of a given by Eq. (27) vs. ξ = r/η. While a is assumed to be
independent of r in Eq. (18), it is seen in Fig. 7 that a given by Eq. (27) is not r-independent, and
a at r ∼ L0 is different from a in the T-range. The exponent δ thus obtained by the fitting at r ∼ L0

would be different from the exponent given by the T-range, i.e., Eq. (26).
It may be worthwhile to note that in Grossmann’s model, D(r) can depend on Re only through

one parameter, i.e., the crossover a, while an analysis of DNS data of the energy spectrum E (k)
at near dissipation range 0.5 < kη < 1.5 at Rλ up to 615 suggested that E (k) in the range is well
characterized by three parameters, but their Re-dependencies are different from each other, and the
approach of one of the parameters to a constant at Re → ∞ is very slow [34]. This suggests it
not surprising if the Re-dependence of D in the entire range of r and/or that of Cε are/is not well
represented by only one parameter a, even if Eq. (16) with Eq. (18) is a good approximation in a
certain sense or range.

B. Models of intermittency in the inertial subrange

There are theories of intermittency so far proposed, including Kolmogorov’s RSH and vari-
ous fractal models, which give estimates of the intermittency exponent ζ L,T

n in Eq. (3) for n =
1, 2, 3, · · · . In these theories, it is assumed that there is a certain range of r such that L0 � r � η

and SL
n (r) (n = 1, 2, 3, · · · ) fit well to the form Eq. (3) in the range, where ζ L

n and Cn are independent
of r, in the limit r/L0, η/r, 1/Re → 0. We call here such theories as “theories of intermittency in
the ISR” or shortly ISR-theories, and the range where the theories are supposed to be applicable
as “inertial subrange (ISR).” In these theories, Cn may depend on the large-scale flow conditions,
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in contrast to K41, but Cn are determined only by the large-scale flow statistics, so that Cn are
independent of Rλ, i.e., the viscosity ν.

The analysis in this study shows that SL,T
2 (r) fits well to a simple scaling law with a constant

exponent ζ L,T
2 in a range called T-range. The exponent at high Rλ is almost independent of Rλ. In

this sense, the DNS results for the T-range appear to be consistent with the ISR theories. However,
as seen in Eq. (8), the prefactor C2 depends on Rλ, i.e., on ν in the T-range. According to Eq. (8),
CL

2 ∝ (Rλ)δ with δ > 0, which implies CL
2 → ∞ as Re → ∞. To the authors’ knowledge, none of

the ISR-theories so far proposed accounts for such a dependence of C2 on Rλ, or takes in to account
of the ν-dependence of the “ISR” statistics. It is not clear whether the theories are compatible with
the ν-dependence in the “ISR,” and if they are, how to account the ν-dependence.

It is questionable that the ISR-theories for the ISR are compatible with such a ν-dependence or
divergence of C2 at Re → ∞. It is therefore also questionable that the T-range is the ISR to which
the theories are supposed to be applied. If the ν-dependence is incompatible with the ISR-theories
proposed for the ISR, then one may ask if it would make sense to assess the theories by comparison
of the exponents by the ISR-theories for the ISR with those by the data for the T-range, just like one
may ask if it would make sense to estimate the constants K2 and μ2 in Eq. (4) by the data for the
range at kη ∼ 0.2 (the so-called bump range).

Note that in a strict sense, the flows at large-scales are not exactly the same for different runs in
the series of DNSs in the present study. It is therefore not surprising if C2 is different for different
runs. However, the boundary conditions and the method of forcing are common in the runs, and the
turbulence characteristics such as 〈ε〉 and L0 listed in Table I are not so much different for different
runs. It is unlikely that the simple power-law dependence of Cn on Rλ as seen in Eq. (8) can be
attributed to the difference of the large-scale flow statistics for different runs in the series of our
DNSs, within the framework of the ISR-theories.

IV. RESULTS AND DISCUSSIONS

It is seen in Fig. 4 that SL
2 appears to have a neat scaling range (T-range) with r/η ∼ 400, and

the exponent ζ L
2 at Rλ ∼ 732 (in Run 2048-1) is not so much different from ζ L

2 at larger Rλ ∼
2250 (in Run 12288-1). From this, one might think that the values of r/η ∼ 400 and Rλ ∼ 1000
or 2000 are sufficiently large for us to have reasonable estimates of the exponents ζ L

n in the ISR,
or that the difference of the estimate at higher Re is not significant, so that it is only a matter of
precision. However, the question raised by Fig. 4 is on whether the T-range (i.e., the r-range such as
r/η ∼ 400) is really the “ISR,” the understanding of whose statistics is one of the main objectives
of various ISR theories, rather than the question on the precision of the estimate of ζ L

2 .
If the T-range is not the “ISR” and there is a “true” ISR somewhere else, then in view of the fact

that the influence of intermittency on Sn(r) is in general stronger for larger n, it is not surprising that
the scaling exponents ζ L,T

n for large n in the “false” ISR are significantly different from those in the
“true” ISR, even if the difference between ζ2’s in the two ranges is small for n = 2.

Regarding the existence of the “ISR,” it may be worthwhile to note that as seen in Figs. 5 and
6, a model based on DNS-data [see the discussion in the paragraph including Eq. (9)] at high Rλ,
as well as experiment suggest the possibility of the existence of a scaling range at r/η > 5 × 103,
where the exponents ζ L,T

2 are different from those in the T-range. One may ask whether there is
any scaling range where Cn and the exponents ζ L,T

n are ν-independent, and if such a range exists,
one may also ask whether the exponents in the range are the same as or different from those in the
T-range. Experiments and/or DNSs with high Re in future are hoped to give some idea on these
questions.

In conclusion, the results of this study show that even if there is a certain r-range where the
structure functions show simple scalings, the range is not the “ISR” in the sense that the statistics
are independent of Rλ or the viscosity, and that Rλ ∼ 2000 and r/η ∼ 400 may be still too small to
examine or to assess the theories of “ISR.” In this respect, it might be worthwhile to note that Rλ ∼
2250 in Run 12288-1 is considerably larger than Rλ ∼ 852 which is the largest value in experiments
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[6] used in the assessment of intermittency models in the textbooks by Frisch [4] and Pope [35]. In
view of Fig. 6, it looks that for the examination of the theories, r/η need be at least 1000 or so. In
this sense, DNSs and/or experiments with much larger Rλ and r/η are waited.
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