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In grid turbulence, not so far behind the grid, an average flow can be observed with
a close to sinusoidal velocity profile, corresponding to the wakes behind the grid bars.
The kinetic energy of this mean flow decays rapidly and a close to isotropic flow is
observed further downstream. We show how these wakes behind the grid bars influence
the downstream turbulence. In particular, we investigate the decay rate of kinetic energy,
the behavior of the normalized dissipation rate, and the sensitivity of the flow on initial
conditions. We show that the initial value of the ratio of the length scale of the turbulence
to the mesh-size determines the precise decay of the mean-flow and the generation of the
turbulent kinetic energy. We further show how a simple turbulence model can estimate the
degree of nonequilibrium and inhomogeneity of grid turbulence and how this model can
be extended to take into account disequilibrium observed in direct numerical simulations
of decaying isotropic turbulence.
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I. INTRODUCTION

Since the first experiments of Simmons and Salter [1] (see also Ref. [2]), the turbulent motion
behind a grid in a wind-tunnel has been investigated intensively in a large number of investigations
to study a variety of applications, such as wind energy [3,4], scalar mixing [5–7], transport of
particles [8,9], superfluid flows [10], or to study intrinsic features of the turbulence itself [11–15].
This summary mentions only a fraction of the immense literature on grid-turbulence.

The main reason for its popularity is that this type of flow is experimentally close to the
academic reference case of isotropic turbulence. Historically, grid-turbulence experiments were
therefore carried out avoiding systematically the region close to the grid, where a nonisotropic
and inhomogeneous production of kinetic energy by shear-layers behind the grid bars is present.
For instance, in early work [16] it was mentioned: “The range x/M < 20 is of course excluded
from the system of classification since the turbulence takes a little time to become uniform (in
the lateral direction) and isotropic.” M is here the mesh-size, and x is the distance from the grid
in the streamwise direction. Consequently, most studies on grid-turbulence investigated this far
downstream evolution (see, e.g., Refs. [11,12,17]).

However, in recent work [18] it was recognized that this zone, closer to the grid might be of
interest, since it allows the investigation of a transition region between a flow where production and
dissipation are both important, and a freely decaying, productionless flow further downstream. In
this region several interesting observations were made which were not in complete agreement with
classical pictures of self-similar decaying turbulence (e.g., Ref. [19]). Since then, critical assessment
by simulations and experiments of decaying grid-turbulence closer to the grid has opened the debate
of the nature of this nonequilibrium turbulence and its dependence on the grid-type [20–23].

One of the observations in the recent grid turbulence experiments [18] is that the normal-
ized dissipation rate is not constant in the near grid region. The normalized dissipation rate is
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defined by

Cε = εL
U3

, (1)

with L the integral length scale, ε the dissipation of kinetic energy and U the RMS velocity
fluctuation. In a recent work we explained some of the observations using a perturbation analysis of
the energy flux around an equilibrium state [24]. However, a full picture, including the influence of
the shear layers on the turbulence production and their influence on the decay rate of the turbulent
kinetic energy further downstream has not been given yet, except from a tentative study using the
EDQNM turbulence model [25]. The goal of the present investigation is to understand this transition
zone, close to the grid for the case of high-Reynolds number turbulence. We will show how the
kinetic energy of the turbulence is produced by the shear layers, and how the kinetic energy and its
statistical inhomogeneity evolves as a function of time.

This investigation will show that several salient features of near grid-turbulence, as observed
in recent investigations can be reproduced by one of the simplest existing turbulence models. In
particular, we shall answer to several of the standing questions, as summarized in the list of future
issues, which was dressed in Ref. [18]:

(1) What causes the sudden transition from the power-law evolution of Cε to an (almost) constant
value?

(2) What is the downstream distance where this happens?
(3) How can this downstream distance be estimated in terms of the geometry of the turbulence

generator and inlet Reynolds number?
In addition, we will answer the following questions:
(1) How does the peak of the kinetic energy relate to the total kinetic energy injected in the flow?
(2) How does the peak of the kinetic energy and its downstream distance from the grid depend

on the flow properties?
We can summarize our main objectives as follows: how does grid-turbulence depend on initial

conditions and how can we model the behavior?
In Sec. II we will show how the mean-field behind the grid bars can be described in a simple

manner. This mean-field loses its energy to the turbulent fluctuations, and this interaction is
described and modeled in Sec. III. In Sec. IV we show how nonequilibrium can be assessed
within a two-equation turbulence model. The cross-stream inhomogeneity of the kinetic energy is
addressed in Sec. V. The model which describes the interaction of the averaged grid-wakes and the
turbulent fluctuations is numerically integrated in Sec. VI for experimentally relevant parameters.
In Sec. VII it is shown how at short-times the amount of generated kinetic energy can be understood
by comparing the dynamics with homogeneous shearflow. The extension of the model to be able to
describe disequilibrium in direct numerical simulations of decaying isotropic turbulence is presented
in Sec. VIII. The results allow us to answer the above-stated open questions, which are replied upon
in the conclusions, Sec. IX.

II. A SIMPLIFIED DESCRIPTION OF THE MEAN FLOW

In the present work we will decompose grid-generated turbulence into a mean part (the wakes
behind the grid bars) and a fluctuating part [26], and we will investigate how the interaction between
the energy in these two components of the flow is influenced by initial conditions.

The mean flow indicated by U i is assumed unidirectional [in the streamwise (x) direction] and
varies in the cross-stream (y) direction. Obviously there are two cross-stream directions in the flow
behind a regular square-grid, but given the further approximations we introduce, considering one
direction is a fine enough description. We will measure the velocity-field in the frame of reference
moving with the wind-tunnel average speed U0, so that the mean-flow U i is zero when averaged
over the cross-stream direction. A sketch of the flow is given in Fig. 1.
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FIG. 1. Sketch of the geometry considered in the present investigation. A uniform incoming flow U0ex is
perturbed by a grid. The resulting flow is decomposed into a sinusoidal mean profile U (y) = Ux − U0 and a
fluctuating part.

The mean-flow is thus given by

U (x, t ) = U (y, t )ex. (2)

We now consider the case of regularly spaced grid bars as used in the majority of studies on grid-
turbulence. The spacing of the bars is M (the mesh length). The mean flow behind the bars will then
be periodic with a spatial period M. To some approximation we can then model the mean flow by

U (y, t ) = U (t ) sin

(
2πy

M

)
. (3)

This can be shown to be a good approximation even for more complicated passive turbulence-
generating grids [27]. Indeed, behind fractal grids the wakes were also shown to rapidly converge
to a sinelike shape.

Clearly Fig. 1 does not represent all possible shapes of grids. However, what we argue is that all
passive grids, fractal or not, will through their blockage generate shear-layers. Most grids will have
some spatial, large-scale periodicity, which can be grossly modeled by a sine-function. The case of
active grids [28,29] is particular since in this case, in addition to blockage, the rotating shafts of
the grid will induce a large transverse turbulent diffusion. The sinelike profiles are probably less
prominent for such grids if the stirring is intensive. We will come back to this issue later.

By prescribing the shape of the mean-flow, we have simplified the problem considerably. It will
now be possible to describe the interaction of the mean flow with the fluctuating turbulent field in
a fairly simple manner. We consider the kinetic energy of the mean field, averaged over one mesh
length,

K = 1

M

∫ M

0

1

2
U (y, t )2dy = 1

4
U (t )2. (4)

104607-3



WOUTER J. T. BOS

The evolution of this quantity is simply derived from the Reynolds averaged Navier-Stokes equa-
tions (see Appendix A),

K̇ = −p − D, (5)

where

p = − 1

M

∫ M

0
uv∂yUdy, (6)

and

D = 1

M

∫ M

0
ν(∂yU )2dy, (7)

with uv the Reynolds stress. The contribution of the turbulent diffusion in the cross-stream direction
vanishes in the energy balance since its integral over a period M is zero (see Appendix A, where we
derive this average balance from the pointwise evolution equations).

The fluctuating part of the turbulence, i.e., the turbulent flow that is studied in most investigations
of grid-turbulence, is governed by the balance (see Appendix A)

k̇ = p − ε, (8)

where

k = 1

M

∫ M

0

1

2
uiuidy (9)

and

ε = 1

M

∫ M

0
ν(∂ jui∂ jui + ∂ jui∂iu j )dy, (10)

where k and ε are the kinetic energy and dissipation rate of kinetic energy, both averaged over a
grid-period. The second part of the dissipation in Eq. (10) is the inhomogeneous part, which vanishes
in this description, where the turbulence is assumed periodic in the y direction and homogeneous in
the x and z directions in the moving reference frame.

We have therefore at this point a flow-field, described by the two quantities k and K , and their
equations contain the unknown terms uv and ε. We note that the formulation is in particular simple
because we consider the kinetic energy budgets averaged over a grid-period, and not pointwise, so
that the turbulent diffusion terms vanish. This simplification is no approximation, but a consequence
of the periodicity of the flow. To proceed we need to introduce a model.

III. MODELING THE TURBULENCE PRODUCTION

The most widely known turbulence model is the k-ε model [30]. To describe the turbulence,
equations are written for the quantities k and ε. In addition to its simplicity, it is known to give
good results both in self-similar decaying turbulence and in shear-flows, even though some precise
quantitative features are mispredicted [31]. Since we consider the transition zone between a simple
shear-flow and a freely decaying flow, the k-ε model seems to be the ideal starting point for our
investigation. Also, even though the ε equation is often critized as being nonphysical, in the case of
homogeneous turbulence in the presence of shear it can be derived using some plausible assumptions
[32].

We stress here that the goal is not to model the detailed flow around a grid bar, where vortex-
shedding and different types of flow structures depend on the detailed nature of the bar shapes.
In this very-near region, the exact modeling of the flow by simple engineering turbulence models
is very challenging. To correctly describe this region one needs a detailed description, taking into
account the influence of instationarity and anisotropy. In the present approach we focus on the
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periodic mean flow which is observed somewhat behind it. We admit therefore the existence of the
mean-flow, without attempting to accurately capture its genesis.

The k-ε model is an eddy-viscosity closure, where the Reynolds stresses are modeled by

uv = −νT ∂yU . (11)

The eddy viscosity νT is modeled as a function of k and ε,

νT = Cν

k2

ε
. (12)

The kinetic energy of the mean flow (constituted by the shearlayers behind the grid) is determined
by relation Eq. (5). The k − ε equations reduce in our description to Eq. (8) for the turbulent kinetic
energy and the ε equation,

ε̇ = ε

k
(Cε1 p − Cε2ε), (13)

with

p = Cν

k2

ε

1

M

∫ M

0
(∂yU )2dy. (14)

In principle, not only the mean flow is y dependent, but also k and ε are. The above expression
implicitly assumes a homogeneous distribution of k and ε. The error induced by this assumption is
estimated in Appendix B and does not exceed a few percents in the present case. The inhomogeneous
profile of the kinetic energy in the y direction is further considered in Sec. V.

To close the system, we need to determine the average squared shear which appears in Eqs. (7)
and (14) for D and p, respectively. We can obtain this quantity exactly by averaging the squared
gradient of the mean velocity profile given by Eq. (3) over the y direction,

1

M

∫ M

0
(∂yU )2dy = 2π2

M2
U 2 = 8π2

M2
K. (15)

Thereby, we have reduced our problem to the three ODEs,

K̇ = −k2

ε

K

M̃2

(
1 + C−1

ν

Re

)
, (16)

k̇ = k2

ε

K

M̃2
− ε, (17)

ε̇ = ε

k

(
Cε1

k2

ε

K

M̃2
− Cε2ε

)
, (18)

where M̃ = M/(
√

8Cνπ ) and Re = k2/(εν). In the following we will consider the high Reynolds
number case, where the last term in brackets of Eq. (16) is negligible. Evidently, since k and ε are
positive quantities, all quantities will eventually decay. We have therefore an initial value problem
depending on the values of K , M, k, and ε. Since we consider the high Reynolds number case, the
viscosity does not enter the system.

Further insights into this system are obtained by rewriting the equations of k and ε in their
original form, and the equation of the mean field as an equation for p

k̇

k
= ε

k

(
p

ε
− 1

)
, (19)

ε̇

ε
= ε

k

(
Cε1

p

ε
− Cε2

)
, (20)
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ṗ

p
= ε

k

(
(2 − Cε1)

p

ε
− (2 − Cε2) − k3

ε2M̃2

)
. (21)

A salient feature of this representation is that, apart from k, p, ε, the dynamics of the production
depend explicitly on the square of a length-scale ratio,

αL(t ) ≡ k(t )3/2

ε(t )

1

M̃
∼ L(t )

M
, (22)

where we introduce a length scale L ∼ k(3/2)/ε, characterizing the turbulence. For given values of
k, p, ε, the dynamics can thus be different depending on the initial value of αL. Clearly, this term
in the equations shows how the initial conditions explicitly affect the decay of grid turbulence. We
note here that in the experiments [18], it is also a ratio of a local parameter and a parameter linked
to the initial conditions which pilots the behavior of the turbulence. A similar observation was made
in Ref. [25], where a timescale ratio was identified which quantifies the influence of the initial
conditions. We note in this context that α2

L can also be interpreted as a timescale ratio, and we will
come back to this in Sec. VII.

It has long been argued that initial conditions might influence a freely evolving turbulent flow
for a long time [33]. The present description shows how this influence shows up in the evolution
equations of the turbulent kinetic energy. In real experiments a drastic way to increase the initial
value of this parameter is to use active grids [28,29]. Indeed, in active grids the typical length scale
of the turbulence is largely increased, since instead of developing gradually from instabilities in the
grid-wakes, the turbulent kinetic energy is immediately generated by the grid, at the expense of the
energy of the mean wake-flow. In the present investigation, to illustrate the importance of the initial
conditions on the turbulence, we will assess the influence of αL on the downstream turbulence.

IV. NONEQUILIBRIUM SCALING OF UNSTEADY TURBULENCE

In the absence of production, the k-ε model depends only on two parameters, k and ε. Therefore,
the turbulence is represented by a single length scale, determined by relation Eq. (1), or equivalently,
a single timescale k/ε. In unsteady flows, another timescale can be defined, determined by the
time-variation of the dissipation rate,

τε =
(

ε̇

ε

)−1

. (23)

It is this second timescale that becomes important when there is a significant imbalance between
production and dissipation.

In our recent theory [24] we acknowledged the importance of this second timescale in the descrip-
tion of unsteady turbulence. We decomposed a turbulent flow into an equilibrium part, consisting
in the turbulence which would result when an equilibrium is established between production and
dissipation (p − ε = 0), and the remaining, disequilibrium part k̃. In the equilibrium part of the
flow, the normalized dissipation [Eq. (1)] yields a constant value Cε0.

We found for the ideal case of high Reynolds number isotropic turbulence a relation between the
equilibrium and nonequilibrium parts, given by

k̃

k
= 2

9

ε̇k

ε2
. (24)

[This relation is straightforwardly obtained from the theoretical results [24] using their Eq. (13),
Eq. (21), and the integral from κ0 to ∞ of Eq. (10).] We use this relation here in the context
of turbulence behind a grid, which is not strictly isotropic. The isotropic contribution to the
energy cascade is however expected to be dominant with respect to anisotropic contributions in
grid-turbulence and the above expression should at least give a good order of magnitude estimate of
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the imbalance. Furthermore, when the shear-layers have decayed sufficiently, the resulting flow is
near isotropic (far enough behind the grid), so that the isotropic approach is at least justified there.

Since relation Eq. (34) depends on ε̇, for which the k − ε model gives an expression [Eq. (13)],
we find that

k̃

k
= 2

9

(
Cε1

p

ε
− Cε2

)
. (25)

Furthermore, we showed that the normalized dissipation can be expressed as a function of this
perturbation, leading to the relation

Cε

Cε0
=

(
1 + k̃

k

)− 15
14

. (26)

In the following we will use the k-ε model to compute k and ε, and we will determine the unsteady
perturbation k̃ a posteriori, using Eq. (25). This will allow us to estimate the nonequilibrium within
the context of a two-equation turbulence model. We note here that this is possible in a two-equation
model, since we have access to the values of k, ε, and ε̇. An even more reduced description,
using only one equation [34] does not provide enough information on the turbulence to assess the
imbalance in this way.

Before proceeding to a numerical assessment of the model we can already estimate the nonequi-
librium in the limiting case p = 0. For this case, Eq. (25) yields |k̃/k| = 0.43. The perturbation
k̃ does therefore not become excessively large and never exceeds 43% in the region beyond the
peak of the turbulent kinetic energy. Treating the nonequilibrium as a perturbation is therefore not
unjustified on these grounds.

V. CROSS-STREAM INHOMOGENEITY

It is possible within the present framework to estimate the inhomogeneity of the turbulence.
For this we write the kinetic energy balance without cross-stream averaging. Let us for simplicity
indicate the ensemble averaged kinetic energy, which has not been averaged over the cross-stream
direction, by k(y) = uiui/2, so that

k = M−1
∫ M

0
k(y)dy. (27)

The evolution equation for k(y) writes

∂t k(y) = p(y) + d (y) − ε(y). (28)

In this section the explicit dependence on y shows that ensemble averaged quantities are considered
which are not averaged over the cross-stream direction. The exact expressions of the different
contributions can be found in Appendix A. The term d (y) contains nonlinear (turbulent) diffusion,
pressure diffusion, and viscous diffusion. The term ε(y) is the dissipation. Within the k − ε model
d (k) is modeled as

d (y) = ∂y{[νT (y) + ν]∂yk(y)}, (29)

so that its cross-stream integral yields zero contribution. The viscous contribution will be neglected,
in line with the experimental observation [27] where the dominant terms determining the cross-
stream inhomogeneity are the production and turbulent transfer. The production p(k) is given by
Eq. (14) without the streamwise averaging, yielding, using Eq. (3),

p(k) = 8π2K

M2
νT (y)[1 + cos(4πy/M )]. (30)

We see that the frequency of the periodic part of the production is twice the grid-frequency, due to
the quadratic dependence on the mean velocity gradient. In the continuity of the foregoing analysis,
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we will make several simplifications. As for the mean-field, we will assume the kinetic energy to
reflect the periodicity of the production. We write, therefore,

k(y) = k + Ak cos(4πy/M ). (31)

Furthermore we will assume the turbulent diffusivity again to be given by Eq. (12), and therefore
independent of y, which is a very good approximation for Ak/k � 1. Finally, we will assume the
dissipation to be uniform in the y direction. These assumptions allow to evaluate the inhomogeneity
of the kinetic energy as a balance between the inhomogeneous production and turbulent diffusion.
The resulting expressions for the production and diffusion are then

p(k) = p + K

M̃2

k2

ε
cos(4πy/M ) (32)

and

d (y) = −2Ak

M̃2

k2

ε
cos(4πy/M ). (33)

Using these expressions, the equation for the amplitude of the variation of the kinetic energy is
derived by substracting the equation for k from the equation for k(y), yielding

Ȧk = 1

M̃2

k2

ε
(K − 2Ak )

= α2
L

ε

k
(K − 2Ak ). (34)

The amplitude-equation, written in this simple form, reflects the balance between inhomogeneous
production and cross-stream diffusion by turbulent fluctuations. It is clear from this balance that
when the mean-field K vanishes, the inhomogeneity will rapidly decay. Again it is the quantity αL,
representing the length-scale ratio of turbulence scale to grid-scale, which pilots the dynamics.

VI. RESULTS

A. Choice of the parameters

Equations (16)–(18) and (34) are integrated numerically in the high Reynolds number limit. The
model constants are given their classical values [30] Cε1 = 1.44, Cε2 = 1.92, and Cν = 0.09. The
results we obtain depend obviously on the values of these coefficients, but the qualitative physics
are fairly robust with respect to variations of these constants.

We have chosen initial conditions which are in the range of experimentally relevant values. To
characterize the grid-spacing, we have chosen M = 10 cm. The value of U is typically an order
of magnitude smaller than the mean flow velocity, which is of order 10 ms−1. We have therefore
set the average-field kinetic energy to K = 1 m2 s−2. The initial value of the fluctuating quantities k
and ε are hard to estimate. Indeed, they depend on the precise instability mechanisms of the grid-bar
wakes and the incoming turbulence intensity. We have therefore proceeded by taking two different
values for k. We define the turbulence intensity by

Ik = k

K
. (35)

Our first set of computations corresponds to the intensity Ik = 0.1. In the second set the initial
velocity fluctuations are an order of magnitude smaller than the mean-field amplitude, Ik = 0.01. We
note here that this intensity corresponds to the intensity of the kinetic energy fluctuations upstream
of the grid. The turbulence intensity measured in experiments corresponds to the maximum value
of the kinetic energy measured downstream from the grid, and it is shown in the following how this
downstream intensity depends on the initial conditions.
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FIG. 2. Temporal evolution of the kinetic energy of the turbulence for values of the lenghtscale ratio 0.01 �
αL (0) � 10. (a) Initial intensity Ik = 0.1; (b) Ik = 0.01. (c) Same results as in (b) but time is normalized by
tpeak and kinetic energy by kpeak. (d) Local power-law decay exponent of the kinetic energy n.

The initial values of ε are even harder to estimate than those of k. The variation of ε is in particular
important, since for given k and M, it determines the initial length-scale ratio αL(0), defined in
Eq. (22). The influence of this parameter on the dynamics constitutes one of the main issues of this
investigation. Very large values of αL(0) correspond to a strong transverse mixing of the turbulence
near the grid as expected in active grids. Small initial values correspond to the case where the wakes
are slowly perturbed by the developing turbulence, and the influence of the mean-flow, i.e., the
wakes, is present far behind the grid. This corresponds to small initial turbulent intensity with a
small initial lenght scale. Since the variation of this parameter is the key parameter in our study, we
have varied it over three orders of magnitude, in the range 0.01 � αL(0) � 10.

The initial values of Ik and αL are the physical control parameters of our system. The numerical
integration of three coupled ODEs is performed using an explicit Euler integration scheme. The
conservation of energy was estimated by monitoring the sum of the integral of the dissipation and
the total kinetic energy in the system. Time steps were set to 	t = 10−4. A typical simulation of
the system up to t = 100 takes several seconds on a common desktop computer. More complicated
numerics did not seem to be necessary.

B. Evolution of the kinetic energy and dissipation

In Figs. 2(a) and 2(b) we show the evolution of the turbulent kinetic energy for both turbulence
intensities we studied, and a wide range of values of αL(0). Clearly, it is shown that the results are
not very sensitive with respect to the choice of the initial turbulent intensity, at least for the values
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Ik = 0.1 and 0.01 which we considered. The influence of the initial length-scale ratio is observed
to change importantly the short-time behavior, where the kinetic energy can either grow or decay,
depending on the value of αL(0). Also the peak value of the kinetic energy is affected by the initial
conditions. The precise dependence of the peak-value and the peak-distance on the initial conditions
will be discussed in Sec. VII. We further see that for long times the model behaves as expected, with
a power-law decay

k ∼ t−n, (36)

where n = 1/(Cε2 − 1) ≈ 1.1.
In Fig. 2(c) the kinetic energy for Ik = 0.01 is replotted, normalized by its peak-value. Time

is normalized by tpeak, the time at which the kinetic energy peaks. Around the peak, the time-
dependence differs for the different cases. In particular, for small values of αL(0) a power-law
exponent steeper than the asymptotic value is observed. The local decay exponent, i.e., when the
function is approximated by a power law, is

n = −d log(k)

d log(t )
. (37)

This exponent is plotted in Fig. 2(d). It is observed that in the active grid limit [large αL(0)],
the decay exponent monotonically increases from n = 0 at the peak to n ≈ 1.1 for long times.
Only for small initial values of αL an overshoot is observed with maximum values of the order
of n ≈ 2.5. Note that other exponents could be found by fitting power laws with a well chosen
virtual origin. Such functional forms can fit the data over a longer range. A detailed discussion
of different methods to choose such a virtual origin can be found in Refs. [12,35]. Nevertheless, at
large distances downstream the grid the present model results will always converge to the asymptotic
value n = 1/(Cε2 − 1), and this is also observed in experiments on different types of grid turbulence
[20].

The mean-flow energy evolution is shown in Fig. 3(a). We observe, that irrespective of the
parameters, the mean-energy decays rapidly, reducing its value by approximately 10 orders of
magnitude in the interval 0 < t < 1. It is thus in this interval that the influence of the production
of kinetic energy by the shear-layer decreases from order unity to negligible. Clearly, it is this
very fast decay of the mean field that makes grid-turbulence such a good candidate to study freely
decaying isotropic turbulence. In the limit of large αL(0), the kinetic energy of the mean field is
thus rapidly absorbed by the turbulence. For this limit the flow approaches the freely decaying limit
for which an analytical solution exists. For further discussion of this analytical solution we refer to
Appendix C.

The straight lines in this semilogarithmic representation suggest an exponential decay. In the
present model this is not exactly the case. Indeed, in the absence of p the dissipation is proportional
to t−(n+1). From Eq. (16) we have that far enough behind the grid (where k and ε decay as power
laws),

K̇

K
∼ k2/ε ∼ t1−n, (38)

and since n is close to one, an almost pure exponential is observed at later times.
In Fig. 3(b) we show the evolution of the dissipation of turbulent kinetic energy. The qualitative

behavior ressembles that of the kinetic energy in most aspects. The overall shapes of the curves
are similar. But since we fixed the initial value of k and varied the value of αL(0), the initial
values of ε are not the same for the different runs so that the peak values of the dissipation behave
differently from those of the kinetic energy plotted in Fig. 2. For long times the expected power law,
proportional to t−(n+1) is observed in the region where p is small compared to ε.
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FIG. 3. Temporal evolution of (a) the kinetic energy of the mean field and (b) the dissipation of the
turbulence, for values of the lenghtscale ratio 0.01 � αL (0) � 10; initial intensity Ik = 0.01.

C. Nonequilibrium dissipation scaling

The equilibrium value of Cε [defined in Eq. (1)] is obtained when the production is equal to the
dissipation. Such a steady state, which is in addition isotropic is hard to obtain experimentally, but
in numerical simulations, forced isotropic turbulence in a periodic domain is a canonical flow [36].
The exact value might depend on the type of forcing, but for a given flow, for increasing Rλ the
value of Cε0 tends to a constant value [37]. In freely decaying isotropic turbulence, the normalized
dissipation rate at high Reynolds numbers tends to a different constant value, which depends weakly
on the initial conditions [38]. Indeed in the case of decaying turbulence, the spectral shape at very
small wave numbers determines the decay rate n, and modestly influences the exact value of Cε [38].

The reason that in decaying turbulence a constant value of the normalized dissipation is observed,
which is different from the value in forced turbulence, is that in the case of decaying turbulence,
where p goes to zero, the nonequilibrium will tend to an asymptotic value. In this self-similar state,
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FIG. 4. (a) Normalized dissipation rate for values of the lenght-scale ratio 0.01 � αL (0) � 10 and initial
intensity Ik = 0.01. (b) Production p of turbulent kinetic energy.

the energy spectrum in the large scales will adapt to a constant shape, different from the one in
the presence of a production mechanism. The shape of the modification of the energy spectrum in
free decay can be obtained from perturbative analyis around the Kolmogorov spectrum [24,39,40].
Integrating this correction to determine the nonequilibrium value of the normalized dissipation rate
yields [according to Eqs. (25) and (26)],

Cε

Cε0
=

(
1 − 2

9
Cε2

)− 15
14

≈ 1.8. (39)

In Fig. 4(a) we show our estimate of Cε/Cε0, as determined by Eqs. (25) and (26). The transition
from a monotonically rising value of Cε to a plateau-value is abrubt. The physical reason for this
is the rapid decrease of the production term as observed in Fig. 4(b). The production shows, as the
mean-kinetic energy, a rapid decay at later times. The time at which this decay sets in is increasing
with decreasing αL(0).
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FIG. 5. Inhomogeneity of the kinetic energy induced by the periodic profile of the turbulence production
term. (a) The maximum (k+ = k + Ak ; solid lines) and minimum values (k− = k − Ak ; dashed lines) of the
kinetic energy are shown for values of the lenghtscale ratio 0.01 � αL (0) � 10 and initial intensity Ik = 0.01.
Line types as in the previous figures. (b) The peak of the kinetic energy k+ at the cross-stream (y) position where
the kinetic energy is maximum, divided by its peak at the y position where the kinetic energy is minimum.

In the present flow, the constancy of the normalized dissipation, observed far enough behind the
flow, corresponds thus to the vanishing of shearlayers and their associated production p. Beyond
this downstream point the turbulence can therefore be considered statistically homogeneous.

D. Cross-stream inhomogeneity

The cross-stream-inhomogeneity, as modeled by Eq. (34) is shown in Fig. 5. In Fig. 5(a) we
show how the kinetic energy evolves at two cross-stream positions behind the grid, one position
where the production and thereby the kinetic energy is maximum (k+ = k + Ak), the other one
where the kinetic energy attains its minimum (k− = k − Ak). It is observed that in all cases, far
behind the grid, the kinetic energy becomes statistically homogeneous so that k+ ≈ k−. The time
where this happens depends on the initial value of αL. In the active grid-limit, the inhomogeneity
vanishes almost immediately behind the grid (see for instance Ref. [41]). In the other limit, the
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inhomogeneity persists for a longer time and the peaks of k+ and k− differ by a factor of order
2. This inhomogeneity is further quantified in Fig. 5(b), where it is shown how the ratio of the
peak-values at the different streamwise positions depends on the initial conditions.

Clearly, in the present flow, the inhomogeneity, production, and mean-kinetic energy are all very
closely related. These quantities thus all depend in the same way on the initial conditions, and they
all vanish far away behind the grid, where the flow becomes statistically homogeneous and where
the nonequilibrium k̃/k tends to a constant value.

E. Comparison with experimental results

The main goal of the present investigation is to illustrate in a qualitative way the main features
underlying the nonequilibrium observations in grid-turbulence. We have for that reason chosen the
simplest possible model allowing for nonequilibrium scaling in a simplified representation of grid-
turbulence. In that way we can illustrate which are the needed ingredients to reproduce the physical
phenomena. We are thus aiming for a qualitative agreement. However, since the principal motivation
of the present work were some puzzling experimental observations, we think it is valuable to attempt
a quantitative comparison with these results. Therefore, in this section we compare our simulations
with some experimental and DNS data. We stress that our goal is not to assess the performance of
the k-ε model or eddy-viscosity models in general.

A first observation is that far behind the grid a power law is observed in our computations. In
experiments the value of the power law exponent is in general n ≈ 1.2 [14,17,20]. We observe a
slightly smaller value [Figs. 2(a) and 2(b)], determined by the value of Cε2. We could have changed
its value to Cε2 = 11/6 to have this agreement, but we have preferred to keep the original values of
the constants in the model [30] which are fine-tuned to get an optimal agreement for a wide range
of flow-geometries.

A detailed comparison of the global quantities k and ε with values from literature is complicated
since very few experimental investigations have measured them in grid-turbulence. However, in a
recent numerical investigation [42] the turbulence generated behind a grid of cylinders was studied
and these quantities were reported. In Figs. 6(a) and 6(b) we compare the evolution of k and ε

(normalized by their peak values) to the DNS results. It is observed that just beyond the peak and for
about half of a decade in time, the DNS values for k and ε closely follow our results for αL(0) = 3.
After this time interval the kinetic energy and dissipation change their behavior in the DNS study
since the Reynolds number becomes very small. Indeed, the Reynolds number based on the mean-
velocity and the cylinder diameter in this investigation was of order 1200, which is small compared
to the experimental values which are typically of order 104. Our model assumes a large value of the
Reynolds number and is therefore not designed to capture this final regime of decay, corresponding
to the change of regime in the DNS results. However, the fact that the kinetic energy and dissipation
are simultaneously agreeing with the present model for the same set of initial conditions provides
confidence to our approach.

In Fig. 6(c), we compare the kinetic energy normalized by its peak-value at a cross-stream
location, where the kinetic energy is minimum, to measurements (same data as k− in Fig. 5). Note
that we do not compare exactly the same quantities. The data reported in the experiments [27]
concern the root-mean-square value of the longitudinal velocity-fluctuations whereas we consider
the kinetic energy. The normalization by peak-values kpeak and tpeak does correct somewhat for
this difference, but a detailed comparison of the averaged quantities in the experiment with our
model-approach would be valuable. The experimental measurements are taken at the centerline
between two grid bars, which is a location where the production is minimum. We therefore compare
with k−, where the production is minimum as well. We do thus not take into account the anisotropy
in our comparison, but we do consider the inhomogeneity.

It is observed that the data-points from the experiments fall in between the model-predictions
for 0.3 < αL(0) < 1. At long times all cases show the same power-law decay, as can be observed
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FIG. 6. (a) Temporal evolution of the kinetic energy of the turbulence for values of the length-scale ratio
0.01 � αL (0) � 10 and Ik = 0.01. (b) Evolution of the dissipation rate. Also shown in (a), (b) are DNS results
of flow through an array of cylinders [42]. (c) Kinetic energy at a cross-stream position where the production
of k is minimum, compared with data obtained from a fractal square grid (FSG) and a regular square grid (RG)
[27]. (d) Nonequilibrium of the flow as measured by the normalized dissipation, compared to experimental
data-points [18].

in in Fig. 5(a). The steeper-than-expected decay of kinetic turbulence (n > 1.2) does not appear
to persist for more than a decade, and is closely associated with the turbulence production and
thereby the inhomogeneity of the flow. A similar conclusion was drawn in Ref. [43], who showed
that the region where atypical decay behavior was observed (such as exponential time-dependence),
corresponds to a region where the turbulence cannot be considered to be statistically homogeneous.

We have also compared to data of the normalized dissipation rate [18], Fig. 6(d), where different
data-sets produced from wind-tunnel measurement behind a fractal grid are reported. Since we do
not exactly know how to match the initial conditions of the experiments with our simulations, our
comparison will be at best qualitative. Therefore, we have collapsed the asymtotic long-time value
of 1.8 with the experimental data, and we have shifted the data-points horizontally (in time) to
get a best agreement. This will only assess whether the transient toward the self-similar decaying
state in our model shows the same time-dependence as the one observed in the experiments, but it
will not assess the quantitative agreement. We observe that the best agreement is observed for the
same set of initial conditions where best agreement was observed in Fig. 2(c), i.e., for values of
0.3 < αL(0) < 1. This seems thus to be the correct order of magnitude for the initial length-scale
ratio to model passive grid-turbulence.

The present results illustrate qualitatively how a simple model approach can capture the main
features of turbulence in the nonequilibrium region behind a grid. A further investigation, focusing
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FIG. 7. (a) Peak values of the kinetic energy and (b) associated peak-times for 0.001 � αL (0) � 10 and
Ik = 0.01.

on a pointwise comparison between DNS and model results, would be valuable to assess the flow in
detail. Such a comparison is beyond the scope of the present investigation.

VII. SHORT-TIME EVOLUTION AND DETERMINATION OF THE PEAK-VALUE
OF THE KINETIC ENERGY

A remaining question is whether we can estimate how large a fraction of the kinetic energy of
the mean field is converted into fluctuating kinetic energy.

In Fig. 7(a) we show how the peak of the kinetic energy of the turbulence depends on the
parameter αL(0). It is observed that for large values of αL(0) almost all energy of the mean field
K is converted into turbulent fluctuations. This corresponds to the case where the length scale of
the turbulence is initially large, so that the mean field is immediately distorted by the turbulent
fluctuations. This limit corresponds in practice to active grid turbulence, where the rotating rods
enhance drastically the cross-stream diffusion.
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When the initial fluctuations are initially very small, an asymptotic value of roughly 30% of the
mean field energy is converted into turbulent fluctuations. The system seems to become independent
on the size of the initial fluctuations for this limit. In Fig. 7(b) the location of the peak is determined.
The quantity tpeak corresponds to the time-instant where the kinetic energy attains its peak value.
Obviously, this value cannot become negative. It is observed that in the limit where all the mean
field energy is converted into fluctuations, the peak is located very close to the grid. For decreasing
values of αL(0) this distance is located further downstream. We will now explain these observations.

From Eq. (16) we can deduce the typical timescale over which the mean flow evolves,

T =
(

1

K

dK

dt

)−1

= εM̃2

k2
. (40)

The typical timescale of the turbulence is τ ≡ k/ε. Comparing these timescales we find that in the
limit

τ

T
= k3

ε2M̃2
� 1, (41)

the mean flow evolves much slower than the turbulence. In this case the shear induced by the wakes
can thus be treated as a steady shear. Note that this timescale ratio is the square of the length-scale
ratio, αL.

In Fig. 8(a) we show how αL evolves. Clearly for small initial values of αL, its value becomes
of order unity approximately at t = tpeak, and before this time it is smaller. In the early times, the
turbulent flow behaves thus as turbulence subjected to a steady shear. The average value of this shear
is according to Eq. (15),

S ∼ K1/2

M
. (42)

It is well known that the k − ε model applied to steady shear predicts exponential evolution of the
kinetic energy and dissipation [31],

k ∼ k∗ exp(St), (43)

ε ∼ ε∗ exp(St). (44)

The values of k∗ and ε∗ are set by the asymptotic value of S∗ ≡ Sk∗/ε∗ ≈ 3. We can therefore
estimate the time at which the shear-layers start to decay, by comparing

τ

T

∣∣∣∣∣
t=t∗

= O(1) (45)

we find that

t∗ ∼ 1

S
ln

(
M̃2ε∗2

k∗3

)
. (46)

To find the peak value of the turbulent kinetic energy, we determine k(t∗) by combining (46) and
(43). This yields

k(t∗) ∼ ε∗2M̃2

k∗2 , (47)

which can be simplified to

k(t∗) ∼ K (t = 0)

S2∗
. (48)
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FIG. 8. Temporal evolution of (a) the lengthscale ratio and (b) the turbulent timescale τ = k/ε for
0.01 � αL (0) � 10 and Ik = 0.01.

This shows that the peak of the turbulent kinetic energy corresponds to a fixed fraction of the total
injected energy. In Fig. 8(b), we show the evolution of the turbulent timescale τ . It is observed that
for sufficiently small initial values of αL(0), τ is approximately constant for a short time-interval
0.2 < tpeak < 0.8. It is in this region that exponential increase of the kinetic energy and dissipation
[Eqs. (43) and (44)] is simultaneously observed.

The short-time evolution of the energy budget of the system can thus be accurately described
as homogeneous, steady shearflow and the asymptotic behavior of this system sets the peak of the
turbulent kinetic energy and the time instant where the peak occurs. This approximation is only
valid for small initial values of αL(0). We recall that the behavior in the other limit, of large initial
values of αL(0), is given by the analytical solution in Appendix C.

VIII. NONEQUILIBRIUM IN PERIODIC BOX TURBULENCE

As stated in the introduction, grid-turbulence was initially investigated as an experimental
realization of almost isotropic turbulence. In numerical simulations, decaying isotropic turbulence
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is most easily investigated by considering the evolution of Navier-Stokes turbulence in a triple-
periodic box, developing from isotropic initial conditions.

It was observed in numerical simulations [44], that even in this context, in the absence of
production, nonequilibrium scaling can be observed. The framework sketched in the foregoing,
where the imbalance is associated with the difference between production and dissipation cannot be
transposed directly to this case, since in the absence of production, the two-equation model used in
this work will only reproduce the analytical solution derived in Appendix C and the dissipation rate
constant Cε will not change from its asymptotic value.

The main reason for this difference is that, to characterize the nonequilibrium, one needs two
length scales (or timescales) corresponding to the energetic scales, which are in imbalance. For the
grid-turbulence case, one of the scales is the scale of the shear-layers, the other one the integral scale
of the turbulence. The reason that we can describe the present system so easily is that the shear-layers
are fixed in at least one spatial direction, so that ensemble averaging allows to isolate them from the
rest of the flow. In box-turbulence, when a large-scale contains a large amount of energy, this scale
could be compared to some extent to a superposition of randomly oriented shear-layers. This scale,
or coherent structure can then not isolated by spatial averaging, but it could be separated from the
remainder of the flow by spectral filtering.

To describe the nonequilibrium features of purely isotropic turbulence without production, the
model should thus be refined to take into account two scales. One way to do so is to consider a
2-scale model. The simplest refined model which does this is the 2-scale model first proposed in
Ref. [45], which writes in its simplest form,

k̇L = p − f (49)

k̇S = f − ε (50)

ḟ = f

kL
(Cf 1 p − Cf 2 f ) (51)

ε̇ = ε

kS
(Cε1 f − Cε2ε) (52)

where the kinetic energy is divided into a large-scale part kL and a small scale part kS . The sum
of Eqs. (49) and (50) yields Eq. (8). Instead of measuring the imbalance by a difference between
production and dissipation as in the foregoing, we now measure the difference between energy flux
f and energy dissipation ε. Indeed the flux from the large scales to smaller scales can be compared
to the energy flux from the shear-layers to the turbulence in the case of grid-turbulence.

In the absence of production, the case we are interested in here, three parameters need to be
defined. We take the simplest form here where these parameters have constant values, suggested in
the original paper: Cf 2 = 1.8, Cε1 = 1.08 and Cε2 = 1.15.

In Fig. 9 we show the results from an integration starting from initial conditions with energy
concentrated in the large scales, kL/kS = 102 and f /ε = 102. It is observed that at long times,
the kinetic energy tends to its self-similar decay k ∼ t−n and both the flux and the dissipation scale
proportional to t−(n+1). However for times t < 10, an important imbalance is observed where ε 	= f .
This imbalance can be represented by the change of the normalized dissipation rate. The perturbed
energy can be computed, combining expressions (34) and (52), as

k̃

k
= 2

9

k

kS

(
Cε1

f

ε
− Cε2

)
. (53)

which yields using expression (26) the behavior in Fig. 9(b). We see that the refinement of the model
allows to compute the imbalance in flows where the production is zero.

What is needed to take into account nonequilibrium is the existence of two separate length scales.
In the presence of the mean-flow, as in grid-turbulence, the ratio of the two lenghtscales is given by
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FIG. 9. Results from the two-scale model Eqs. (49)–(52). (a) Temporal evolution of the kinetic energy k,
energy flux f and dissipation rate ε. (b) Evolution of the normalized dissipation rate.

αL. In the absence of a mean-flow it is the lenghtscale associated with the large-scale flux which
can differ from the lenghtscale computed from the energy dissipation. To take into account this
difference, at least a two-scale model is needed, which allows to measure the length-scale ratio ε/ f .
In the absence of a two-scale description, the only parameters which determine the decay are the
initial values of k and ε and the decay will necessarily be given by the analytical solution described
in Appendix C. In simulations and experiments, this extra length scale can possibly in certain cases
be associated with coherent structures, an explanation proposed in [44] to account for the observed
imbalance. Indeed, energy at a certain length scale can be represented by coherent structures, or
shear-layers, the important point being that a certain scale contains an amount of energy larger (or
smaller) than the value it would have in self-similar decay.

We have not tried to compare the results of the two-scale model more in detail with results from
literature. Also, we do not claim that this is the most pertinent model. The goal of this article is not
to show quantitative agreement with all possible nonequilibrium flows. What we do want to show
is the general approach that allows to take into account nonequilibrium, and to measure and model
it in an as simple manner as possible. Therefore we do not use the two-scale model in the foregoing
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discussion on grid-turbulence, since the shearlayers already allow to introduce a second length scale,
and nonequilibrium can for that case already be measured using a standard two-equation model.

IX. CONCLUDING REMARKS

The main goal of this investigation was to obtain a better understanding of the influence of initial
conditions on grid turbulence and to show how the initial conditions influence the nonequilibrium
properties of the downstream turbulence. To achieve this goal we have shown how to describe,
statistically, the interaction of a mean field generated behind a grid with a spatially developing
turbulent flow. The application of an eddy-viscosity model allowed to identify a parameter αL,
proportional to the ratio of the mesh-size to the integral lenghtscale, which appears explicitly in
the evolution equations of the energy budget. It is this αL which is arguably large in active-grids, so
that the influence of the initial conditions in turbulence generated by such grids is rapidly negligible.
However for passive grids this parameter is smaller since the turbulence has to develop through the
interaction with the shear layers. In such flows the influence of the initial conditions is expected to
persist for longer time intervals.

The k − ε model turns out to be a convenient tool to understand and evaluate the energy budget in
near-grid grid turbulence. That such a simple model can reproduce features of the experiment is due
to several reasons. First of all, we consider integral quantities, such as the kinetic energy averaged
over a period of the grid. This average allows to remove the influence of turbulent diffusion from
our description. Secondly, the used model is known to give reasonable results for both shear flows
and free decay. The present flow does not contain more complicated effects (mean swirl, rotation,
pressure gradients, obstacles,...) and is therefore easier to predict than flows which do contain such
features.

The present work does by no means prove that the k − ε model contains enough physics to
describe more complicated flows. Already the choice of the model-parameters can be optimized
[46], and more complicated flow features might need different models. For instance, strongly
anisotropic flows would need at least the use of a Reynolds-stress closure [47]. Detailed insights
into the energy cascade might need multi-scale descriptions such as the two-scale model used in
the previous section, or a refinement of the model [48], or even more sophisticated closures such as
the Direct Interaction Approximation [49] and its derivatives [50–52]. For instance, the use of such
closures allows to reproduce the change of the far-stream decay exponent, by prescribing a particular
shape of the energy spectrum at the large scales. The present model does not allow this freedom and
the decay-exponent is determined by the value of Cε2. Obviously, the choice of the simplest possible
model cannot provide all the details of the flow. The choice of the model depends on the level of
desired precision and the present work shows that several global-quantities in grid-turbulence do
not need more complexity than the classical two-equation model to be qualitatively captured.

The insights obtained from the numerical integration of the model allow now to give answers to
the questions which were raised in the introduction.

(1) The sudden transition from the power-law evolution of Cε to a constant value is caused by
the rapid decay of the production term in this zone. The turbulence evolves here from a state where
the production is equal or larger than the dissipation, to a state where the production becomes
negliglible.

(2) The downstream distance where this happens depends on the initial length-scale ratio αL. In
particular, when this ratio is decreasing, the distance behind the grid where the kinetic energy peaks
increases.

(3) For active grids this distance is arguably much smaller than for passive grids.
(4) The peak of the kinetic energy is naturally bounded by the total kinetic energy in the flow. The

minimum fraction of the mean energy converted into turbulent kinetic energy tends to a constant of
order 0.3 for small values of αL(0).

We showed that in this latter limit, of small initial value of the length-scale ratio, the time-
dependence of the kinetic energy directly behind the peak of the kinetic energy is steeper than the
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asymptotic power-law exponent, the opposite trend being observed for large values of αL(0). This
same quantity pilots also the inhomogeneity of the production, and thereby the inhomogeneity of
the cross-stream kinetic energy profile.

We showed that the nonequilibrium, as quantified by the normalized dissipation, can be evaluated
a posteriori from the results of the k − ε model. The next challenge is to use this estimate to improve
the performance of the model in cases where the nonequilibrium deteriorates its performance. One
application is the modeling of turbulent flow around obstacles, since the nonequilibrium affects the
spreading of the radial extent of the wake (see for example Ref. [53]). This seems an excellent
subject for further research.

APPENDIX A: DERIVATION OF THE EQUATIONS FOR K AND k

We start from the incompressible Navier-Stokes equations,

∂tUi + Uj∂ jUi = −∂i� + ν∂2
j Ui, (A1)

and ∂iUi = 0. We decompose the flow into an ensemble averaged part and a fluctuating part
Ui = U i + ui and the pressure divided by density is � = � + π . The three components of the
fluctuating velocity are indicated by (u1, u2, u3) = (u, v,w). Furthermore we consider the case
where the mean flow is unidirectional, homogeneous in the x-direction and varying in only one
direction y perpendicular to the flow direction x,

U i = U (y)δi1. (A2)

For grid-turbulence this means that we are moving in a reference frame with constant velocity U0.
The equation for the mean field then reads

∂tU = −∂ juu j + ν∂2
y U . (A3)

The equation for the fluctuations reads,

∂t ui + U∂xui + v∂yUδi1 = −∂ j (δi jπ + uiu j ) + ν∂2
j ui, (A4)

so that the kinetic energy of the mean field and of the fluctuations obey

1

2
∂tU

2 = −∂ j (Uuuj ) + uv∂yU + ν∂2
y

(
1

2
U

2
)

− ν(∂yU )2, (A5)

and

1

2
∂t uiui + 1

2
U∂xuiui + uv∂yU = −∂ j

(
δi juiπ + 1

2
uiuiu j

)
+ ν∂2

j

(
1

2
uiui

)
− ν∂ jui∂ jui. (A6)

The turbulence is considered statistically homogeneous in the x− and z-direction. All gradients of
averaged quantities then vanish in these directions, leading to

1

2
∂tU

2 = −∂y(Uuv) + uv∂yU + ν∂2
y

(
1

2
U

2
)

− ν(∂yU )2, (A7)

and

1

2
∂t uiui = −uv∂yU︸ ︷︷ ︸

p(y)

−∂y

(
vπ + 1

2
uiuiv

)
+ ν∂2

y

(
1

2
uiui

)
︸ ︷︷ ︸

d (y)

− ν∂ jui∂ jui︸ ︷︷ ︸
ε(y)

. (A8)

On the right hand side of this last equation we have the three different contributions to the kinetic
energy, production p(y), diffusion d (y) and dissipation ε(y). These two equations give the precise,
pointwise evolution of the kinetic energy of the flow with a cross-stream mean profile, in a reference
frame moving with the mean-velocity. If we want to simplify, we have to know more on the mean-
profile. In a periodic grid, of whatever type with a periodic spacing, the mean field will be periodic.
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Integrating the kinetic energy over one period, all terms which can be written as the gradient in the
y direction will cancel out. Defining the average kinetic energies,

K = 1

2M

∫ M

0
U

2
dy, (A9)

k = 1

2M

∫ M

0
uiuidy, (A10)

we have

K̇ = −p − D, (A11)

and

k̇ = p − ε, (A12)

with

p = − 1

M

∫ M

0
uv∂yUdy, (A13)

ε = ν

M

∫ M

0
∂ jui∂ juidy, (A14)

D = ν

M

∫ M

0
(∂yU )2dy. (A15)

Equations (A11) and (A12) are thus exact for flows with a mean flow which is unidirectional and
homogeneous in the streamwise direction and with a transverse periodic variation.

APPENDIX B: ASSESSMENT OF THE INFLUENCE OF INHOMOGENEITY
OF k AND ε ON THE MODEL PREDICTIONS

In this section we will assess the error induced by the assumption that the turbulent kinetic energy
and its dissipation are homogeneously distributed in the transverse (y) direction.

We indicate for brevity the transverse average of a quantity

〈F 〉 ≡ 1

M

∫ M

0
Fdy. (B1)

In the model equations, the production term was determined by

p = Cν

k2

ε
〈(∂yU )2〉. (B2)

Strictly speaking, the transverse average should also concern the quantities k, ε, but this would
complicate the resolution of the ODE model and we have therefore neglected this transverse
dependence of k and ε.

We check here the error induced by this assumption, by computing the ratio,

Rp =
〈

k2
y

εy
S(y)2

〉
k2

ε
〈S(y)2〉 , (B3)

where ky, εy are the pointwise, y-dependent kinetic energy and dissipation, respectively. By defini-
tions k = 〈ky〉 and k = 〈εy〉. The validity of the approximation of homogeneous k and ε depends
then on the y-dependence of ky and εy.

We assume, as for the mean velocity a periodic distribution for ky and εy,

ky = k

[
1 + γk cos

(
4πy

M

)]
, εy = ε

[
1 + γε cos

(
4πy

M

)]
, (B4)
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FIG. 10. Analytical solution for the temporal evolution of the turbulent kinetic energy for freely decaying
turbulence for different initial values of the ratio t0 = k(0)/ε(0).

where the spatial frequency is chosen to match the frequency of the squared mean-velocity gradient.
From the experimental results [27], Figs. 6(a) and 6(d), we observe that the values of γk and γε do not
exceed 0.3 for x > 1.8xpeak and that in most of the nonequilibrium region this value is significantly
lower, γ < 0.1. Using these maximum values, the absolute value of Rp does never exceed 3%. Two
other quantities appear in the ε equation, kS2 and ε2/k. For these two terms we have also verified
the error induced by the assumption of homogeneity and the errors induced are similarly never
exceeding 3%. The assumption that we can use the values of k and ε instead of ky and εy in the
model are valid within a few percent.

APPENDIX C: ANALYTICAL SOLUTION FOR THE KINETIC ENERGY
IN THE ACTIVE GRID LIMIT

The total energy of the flow, corresponding to both the fluctuating energy plus the mean field
does not have a source term once the flow has passed the grid. Indeed, summing Eqs. (A11) and
(A12), the overall budget is evolving according to

K̇tot = −εtot, (C1)

where Ktot = K + k and εtot = D + ε. In principle, in the present investigation D can be neglected
compared to ε. The k-ε model reduces now to

K̇tot = −ε, (C2)

ε̇ = −Cε2
ε2

k
. (C3)

This system is not closed, and in the present investigation we have modeled the repartition of energy
between K and k. Let us now consider the limiting case, which was identified for αL(0) � 1. In this
case, which we coined the active grid limit, the energy is almost immediately transferred to the
turbulence such that Ktot ≈ k. For this case the above system has an analytical solution

k

k(0)
=

(
t + t0

t0

)−n

, (C4)

with n = 1/(Cε2 − 1) and t0 = nk(0)/[ε(0)]. This expression is plotted in Fig. 10, for different
values of t0.
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