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Two-dimensional (2D) spectra of the streamwise velocity component, measured at
friction Reynolds numbers ranging from 2400 to 26 000, are used to refine a model for
the logarithmic region of turbulent boundary layers. Here we focus on the attached eddy
model (AEM). The conventional AEM assumes the boundary layer to be populated with
hierarchies of self-similar wall-attached (Type A) eddies alone. While Type A eddies
represent the dominant energetic large-scale motions at high Reynolds numbers, the scales
that are not represented by such eddies are observed to carry a significant proportion of
the total kinetic energy. Therefore, in the present study, we propose an extended AEM
that incorporates two additional representative eddies. These eddies, named Type CA and
Type SS, represent the self-similar but wall-incoherent low-Reynolds-number features
and the non-self-similar wall-coherent superstructures, respectively. The extended AEM is
shown to better predict a greater range of energetic length scales and capture the low- and
high-Reynolds-number scaling trends in the 2D spectra of all three velocity components. A
discussion on spectral self-similarity and the associated k−1 scaling law is also presented.

DOI: 10.1103/PhysRevFluids.5.104606

I. INTRODUCTION

The logarithmic region, or the inertial sublayer, is the most important region within a turbulent
boundary layer at high Reynolds number, owing to its significant contribution to the overall
production of turbulent kinetic energy [1,2]. The importance of this inertia-dominated region has
motivated several studies to characterize the coherent energy-containing motions, or “eddies,” that
reside within this region of the boundary layer [2–8]. It is the notion of self-similarity of such
eddies that underpins a number of models for the logarithmic region of wall-bounded turbulent
flows. Among such models, those that are based on the attached eddy hypothesis of Townsend [9]
have gained significant popularity (see Refs. [10–20], among others).

The attached eddy hypothesis assumes the boundary layer as a random distribution of “persistent,
organized flow patterns” that are influenced by the wall and whose size scales with distance from
the wall. Based on the hypothesis, Perry and Chong [21] developed an attached eddy model (AEM)
by prescribing physical shapes to the self-similar structures. The key feature of the AEM is the
concept of a “representative attached eddy” and the boundary layer is modeled as an assemblage of
discrete but self-similar hierarchies of such eddies. Following Townsend’s hypothesis [9], the size
and population density of the eddies are directly and inversely proportional to their distance from
the wall, respectively. Further, based on dimensional analysis, Perry and Chong [21] reported such
hierarchies of geometrically self-similar eddies, over a range of length scales, to contribute equally
to the premultiplied turbulent kinetic energy. The authors hence proposed a k−1

x scaling in the one-
dimensional (1D) energy spectra as a characteristic of self-similarity. Here kx is the streamwise wave
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FIG. 1. (a) Two-dimensional spectrum of the streamwise velocity (u) at z+ = 2.6Reτ
1/2 for Reτ ≈ 26 000;

the blue contour lines represent kxkyφuu/U 2
τ = 0.25, 0.35, and 0.45. (b) 2D spectrum obtained from attached

eddy model with Type A eddies at same z+ and Reτ . The red solid and dashed lines denote the λy/z ∼ λx/z
scaling and λy/z ∼ (λx/z)1/2 relationship, respectively.

number. A refinement to the Perry and Chong model was made by Perry et al. [22] where the discrete
hierarchical organization was replaced with a continuous distribution of eddies, whose sizes varied
from 100 viscous units to the order of boundary layer thickness. Following that, several refinements
were made to the AEM based on experimental observations in order to better predict the Reynolds
stresses, energy spectra, structure functions, and higher-order moments (e.g., Refs. [12,23–28]).
A comprehensive review of the AEM and the various refinements made to the model to date is
provided by Marusic and Monty [29].

Insights on the three-dimensional geometry of self-similar eddies in turbulent boundary layers
have been obtained from recent high-Reynolds-number multipoint measurements. Baars et al. [30]
studied spectral coherence of synchronous near-wall and outer-region velocity signals and reported
that the structures that are coherent with the wall have a streamwise—wall-normal aspect ratio
of λx/z ≈ 14. Here λx and z denote streamwise wavelength and wall-normal distance, respec-
tively. Chandran et al. [31] conducted two-point measurements of streamwise velocity (u) in the
streamwise—spanwise plane in order to compute the 2D spectra as a function of streamwise and
spanwise wavelengths, λx and λy, respectively. At high Reynolds numbers, they observed that the
smaller length scales retained the low-Reynolds-number behavior with a nominal λy/z ∼ (λx/z)1/2

relationship between the streamwise and spanwise length scales. In contrast, the larger length scales
[λx, λy > O(10z)] were observed to transition toward a λy/z ∼ λx/z scaling that is representative
of self-similarity. They reported that the self-similar large scales have a streamwise—spanwise
aspect ratio of λx/λy ≈ 7 and their streamwise—wall-normal aspect ratio agreed with that of the
wall-coherent motions of Baars et al. [30]. More recently, Baidya et al. [32] extended the model
of Baars et al. [30] by also capturing the azimuthal or spanwise information of wall-coherent
structures in pipe and boundary layer flows at high Reynolds numbers and reported the self-similar
structures to follow an aspect ratio of 7:1:1 in the streamwise, spanwise, and wall-normal directions,
respectively.

Adopting the empirically observed aspect ratio of self-similar eddies, Chandran et al. [31]
showed that hierarchies of self-similar wall-attached eddies, named Type A (following the notation
of Marusic and Perry [23]), represented the energetic large-scale region of the 2D spectrum
reasonably well. This result is reviewed in Fig. 1, where the 2D spectrum obtained from the
AEM is compared against the experimental data at a friction Reynolds number of Reτ = 26 000
at z+ = 2.6Reτ

1/2, corresponding to the start of the logarithmic region [33]. (Here Reτ = δUτ /ν

and z+ = zUτ /ν, where δ is the boundary layer thickness, Uτ is the friction velocity, and ν is the

104606-2



SPECTRAL-SCALING-BASED EXTENSION TO THE …

kinematic viscosity.) The model, however, does not capture the entire range of energetic scales
that is observed experimentally. For example, Fig. 1 shows that the smaller-scale region of the
2D spectrum which followed an empirically observed λy/z ∼ (λx/z)1/2 relationship is not modeled
[region within the black dashed box in Fig. 1(b)]. Based on the recent high-Reynolds-number 2D
cross-spectrum data of Deshpande et al. [34], it was observed that Type A eddies model the energetic
scales in the logarithmic region that have a finite correlation at the wall. Their results suggest that
the smaller scales unresolved by Type A eddies are mostly wall incoherent. This is, they do not
physically extend or have a correlation with the viscous near-wall region. Furthermore, the model
also omits the contribution from the non-self-similar, very large scale attached motions [19,35,36]
that are characteristic of the superstructures in turbulent boundary layers.

The significance of these energetic scales that are unresolved by the attached eddy model
is emphasized in the recent investigations by Baars and Marusic [35,36]. Their studies employ
spectral-coherence-based filters to decompose the measured streamwise turbulent kinetic energy
into three spectral subcomponents: a wall-incoherent high-wave-number component and two wall-
coherent lower-wave-number components. The two wall-coherent subcomponents represent the
self-similar structures in the context of the attached eddy hypothesis and the non-self-similar very
large-scale motions. The authors report that a k−1

x scaling in the 1D streamwise spectra and the corre-
sponding log-law in the streamwise turbulent intensity profile [37], both indicative of self-similarity,
would be masked (for Reτ � 80 000) due to the overlap of the subcomponent energies. Hence, at
any practically encountered Reynolds number, a discussion of spectral self-similarity based on the
attached eddy model is incomplete when only considering the Type A spectral component.

Accordingly, the objective of the current study is to extend the attached eddy model by iden-
tifying and incorporating into the conventional AEM (i) the representative energetic small-scale
structures that are incoherent with the wall and (ii) the representative very large scale motions (or
global modes) that are characteristic of the superstructures in turbulent boundary layers. To this end,
based on the scaling of experimental 2D spectra of u for friction Reynolds numbers ranging from
2400 to 26 000, the significant spectral subcomponents are identified in Sec. II. The extension of the
AEM is discussed in Sec. III and the results are compared against the experiments in Sec. IV. Finally,
a discussion on spectral self-similarity based on the extended attached eddy model is carried out in
Sec. V. It is noted that throughout this paper, superscript “+” indicates normalization by viscous
length and velocity scales, ν/Uτ and Uτ , respectively. The streamwise, spanwise, and wall-normal
directions are denoted by x, y, and z, respectively, and u, v, and w denote the respective fluctuating
velocity components.

II. SCALING OF EXPERIMENTAL 2D SPECTRA

The extension of the AEM discussed in this paper is driven by the scaling of 2D spectra of u, mea-
sured from low (Reτ = 2400) to high (Reτ = 26 000) Reynolds numbers. These measurements were
conducted in the low-Re open-return boundary layer wind tunnel [38] and the high-Re boundary
layer wind tunnel [39] facilities, respectively, at the University of Melbourne. The 2D correlations
of u, and subsequently the 2D spectra of u, were computed using synchronous two-point hot-wire
measurements. Reference [31] provides full details of the experimental set-ups and measurement
technique, as they are not included here for brevity.

Figures 2(a) and 2(c) show the inner- and outer-flow scalings [22], respectively, of a contour of
constant energy (kxkyφuu/U 2

τ = 0.15) of the 2D spectra as a function of λx and λy. A constant energy
contour shows the spectrum of streamwise and spanwise length scales that contribute equally to the
turbulent kinetic energy. Their inner- and outer-flow scaling arguments are probed by normalizing
λx and λy with the wall height (z) and the boundary layer thickness (δ), respectively. Similarly,
Figs. 2(b) and 2(d) show the inner- and outer-flow scalings, respectively, of the energetic ridges of
the 2D spectra. The energetic ridge is computed as the maximum value of kxkyφuu/U 2

τ corresponding
to each streamwise wavelength, λx. The energetic ridge therefore indicates the aspect ratios (λx/λy)
of the dominant energy carrying structures at a given wall height and can hence be used as a tool

104606-3



CHANDRAN, MONTY, AND MARUSIC

100 101 102 103

100

101

102

100 101 102 103

100

101

102

10-2 10-1 100 101 102

10-2

10-1

100

10-2 10-1 100 101 102

10-2

10-1

100

(a) (b)

(c) (d)

FIG. 2. [(a) and (c)] Inner-flow scaling and outer-flow scaling, respectively, of the constant energy contour
kxkyφuu/U 2

τ = 0.15, and [(b) and (d)] inner-flow scaling and outer-flow scaling, respectively, of the energetic
ridges. The shaded regions in (a) and (b) represents the wall-coherent scales as per Baars et al. [30]. The
boundary layer thicknesses δ at Reτ = 2400 and 26 000, calculated by fitting the velocity profile to the
composite profile of Chauhan et al. [41], are 0.069 m and 0.337 m, respectively, and the friction velocities
Uτ at Reτ = 2400 and 26 000 are 0.545 m/s and 1.231 m/s, respectively.

to observe geometric self-similarity [31,40]. The various scaling laws of these energetic contours
and ridges, at different wall heights and Reynolds numbers, are inspected in order to prescribe the
geometry and organization of the various representative eddies in the extended AEM.

A. Wall-coherent self-similar motions

Following the definition provided by Baars et al. [30], wall-coherent structures in the outer region
are portions of velocity fluctuations which correlate with the velocity fluctuations very close to the
wall (or the wall-shear stress signature). Baars et al. [30] isolates these wall-coherent scales from
the broadband turbulence by employing an empirical filter that is based on 1D spectral coherence
(as a function of λx). They observed that the structures coherent with the wall have streamwise
wavelengths λx > 14z. These scales are represented by the dark-shaded region in Figs. 2(a) and
2(b). Note that identifying the exact boundaries of the wall-coherent region in a 2D spectrum would
require a 2D spectral-coherence-based filter obtained as a function of both λx and λy. Hence the
dark-shaded region is only an approximate reference for the wall-coherent scales, and some of
the very small and the very large spanwise length scales within this region are likely incoherent with
the wall. As discussed by Chandran et al. [31], the wavelengths of the large scales [λx, λy > O(10z),
hereafter referred to as the large-eddy region] tend to obey a relationship of λy/z ∼ (λx/z)m, where
the value of m approaches unity at high Reynolds numbers or as the measurement location is
moved closer to the wall (for z � ν/Uτ ). It can be observed from the inner-flow scaling of the
ridges [Fig. 2(b)] that the aspect ratio of such dominant large-scale structures that tend toward
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self-similarity with m = 1 is λx/λy ≈ 7. These large-scale self-similar structures that are coherent
with the wall are consistent with eddies described in Townsend’s attached eddy hypothesis. Addi-
tionally, when the wavelengths are scaled in δ as shown in Fig. 2(d), the ridges collapse at λx ≈ 7δ

and λy ≈ δ resulting in the same aspect ratio of λx/λy ≈ 7. Therefore, the largest wall-attached
self-similar structures have a characteristic “length” and “width” of roughly 7δ and 1δ in spectral
space. These dimensions also agree with the observations of Baidya et al. [32], where they found
that a self-similar eddy has an aspect ratio of 7:1:1 in the x, y, and z directions, respectively.

B. Wall-coherent non-self-similar very large scale motions

From Fig. 2(d) we observe that the large scales nominally grow self-similarly, i.e., λy ∼ λx, until
λx ≈ 7δ and λy ≈ δ. Beyond these limits, the ridge trends toward larger streamwise wavelengths
while maintaining a constant spanwise width of λy ≈ δ and with the energy dropping. At these
very large scales, a good collapse of the ridges is observed with outer-flow scaling, irrespective
of Reynolds number. This agrees with the findings of Tomkins and Adrian [42] that the structures
with the largest streamwise wavelengths organize with a spanwise spacing of λy = 0.75δ–0.9δ. This
spanwise spacing is also consistent with the width of the anticorrelations of streamwise velocity in
the spanwise direction observed by Hutchins and Marusic [5]. They reported that such events tend
to have long streamwise correlations; a characteristic typical of “superstructures” in boundary layer
flows. It can be noted from Figs. 2(a) and 2(b) that these outer-scaled length scales do not follow a
self-similar scaling with z. These structures are hence observed to be consistent with the “global”
modes of del Álamo and Jiménez [43], and the “wall-attached non-self-similar” motions of Hwang
and Sung [15] and Yoon et al. [19], that extend deep in the wall-normal direction. It is also noted that
even though the energetic ridges exhibit a good collapse in outer scaling for λx > 7δ [Fig. 2(d)], the
constant energy contours [Fig. 2(c)] collapse only within the logarithmic region (2.6Re1/2

τ � z+ �
0.15Reτ ). The contour corresponding to Reτ = 26000 and z+ = 125(< 2.6Re1/2

τ ) does not seem to
follow an energetic similarity. This trend is expected based on the findings of Baars and Marusic
[35], who showed that the energy contributed by the very large scale structures that are coherent
with the wall is roughly constant for 2.6Re1/2

τ � z+ � 0.15Reτ and reduces for z+ < 2.6Re1/2
τ .

C. Wall-incoherent wall-scaled motions

According to Baars et al. [30], wall-incoherent motions are characterized by a streamwise—wall-
normal aspect ratio of λx/z < 14 and correspond to the unshaded region in Figs. 2(a) and 2(b). In
agreement with recent studies [19,35,36,44], the contribution of wall-incoherent structures to the
turbulent kinetic energy, which is the area within the 2D spectra in the unshaded region in Fig. 2(a),
appears to be significant. Even though important across the Reynolds-number range studied here, the
relative energy contribution of these wall-incoherent structures is observed to be more significant
at low Reynolds number. Interestingly, as seen in Fig. 2(a), the wall-incoherent region of the 2D
spectra appears to follow a clear inner-flow scaling except for the very small Kolmogorov-type
scales. This suggests the existence of wall-detached energetic motions whose characteristic lengths
scale with distance from the wall. Moreover, the collapse of the constant energy contours suggests an
invariant inner-flow scaled contribution of these wall-incoherent wall-scaled motions to the turbulent
kinetic energy for all wall locations and Reynolds numbers considered here. Now if we focus on
the inner-flow scaling of the energetic ridges in this regime [Fig. 2(b)], then a good collapse is
observed and the ridges follow a λy ∼ λx behavior at these smaller scales [λx, λy ∼ O(z)], resulting
in an aspect ratio of λx/λy ≈ 1. Such a linear relationship at the scales O(z) was also reported by
del Álamo et al. [40]. Hence, at high Reynolds number, the empirically observed λy/z ∼ (λx/z)1/2

relationship (that was predominant at low Reynolds numbers) bridges the two λy ∼ λx relationships
observed at smaller [λx, λy ∼ O(z)] and larger [λx, λy > O(10z)] length scales.
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III. EXTENDED ATTACHED EDDY MODEL

In the previous section, we identified three major contributors to the turbulent kinetic energy
based on spectral-scaling arguments: (i) wall-coherent self-similar motions, (ii) wall-coherent very
large scale motions, and (iii) wall-incoherent but wall-scaled small-scale motions. Here we attempt
to extend the attached eddy model by assigning a representative structure and an organization to
each of the above identified subcomponents and name them as Type A, Type SS, and Type CA

eddies, respectively. Following prior experimental observations [45–47] and for simplicity, we
model the Type A, Type SS, and Type CA representative structures using packet eddies, where
hairpins at various stages of their self-similar growth are aligned in the streamwise direction [24,48].
In the present study, the packets are formed by aligning geometrically scaled “� hairpins” in the
streamwise direction at a growth angle of 10◦ [46] for all three representative structures. The spacing
between the hairpins are fixed for all three packet eddies and is equal to 0.1 H, where H is the height
of the eddy [Fig. 3(a)]. Each individual � hairpin within a packet is constructed using two vortex
rods with a characteristic radius of 0.02 H, and the no-penetration condition at the wall is enforced
by supplementing each vortex rod with its own mirror image at the wall. The height of the largest
eddy is δE , which is of the order of boundary layer thickness. The length (L) and the maximum
width (W) of the representative packet eddies are chosen to match the aspect ratios of the dominant
motions identified based on the scaling of 2D spectra from experiments in Sec. II. Consequently, the
values of [L/H, W/H] prescribed for Type A, Type SS, and Type CA eddies are [3.5, 0.5], [4, 0.3],
and [1, 1], respectively. (Monty et al. [49] has demonstrated the effect of varying the aspect ratio
of the representative eddy, L/W , on the computed 2D spectrum.) No other shapes for hairpins are
considered in the present study as the objective is to understand the scaling of representative packet
eddies rather than focusing on the exact form of individual hairpins. The organization of Type A,
Type CA, and Type SS eddies in the boundary layer is illustrated in Figs. 3(b) to 3(d), respectively.
The results obtained with Type A, Type CA, and Type SS structures are respectively color-coded
using shades of red, blue, and green, and the results from the composite model are represented with
shades of gray.

A. Type A

Type A eddies represent the wall-attached self-similar motions as conceptualized by Townsend
[9] and discussed in Sec. II A. The geometry of the representative packet [L and W , as illustrated
in Fig. 3(a)] is chosen such that the aspect ratio, L/W , is equal to the average aspect ratio of the
wall-coherent self-similar motions observed in the experiments, which is λx/λy ≈ 7. The boundary
layer is then populated with hierarchies of representative packet eddies that belong to different
stages of their self-similar growth [22]. For illustrative purposes, Fig. 3(b) represents a discrete
model with four different hierarchies of Type A eddies; the wall-normal extent of the largest and
the smallest eddies in the schematic being δE (∼ O(δ)) and δE/23, respectively. The curved boxes
[in Figs. 3(b)–3(d)] are illustrative of a cross-stream slice of the velocity field (y-z plane) from
the representative eddies and do not in any form represent the actual velocity field. Figure 3(b)
is similar to the physical model of Perry et al. [22] where the streamwise and spanwise extents
of the representative eddies scale with distance from the wall (z) and their probability density is
inversely proportional to z. However, it should be noted that unlike in Fig. 3(b), the actual simulation
assumes a continuous hierarchy of eddies with the heights of the largest and the smallest eddies
being HL = δE and H+

S = 100, respectively. Hence, following Perry et al. [22], the 2D spectra
resulting from this random distribution of self-similar eddies is computed as:

φuu

(
kxH, kyH,

z

HL
,

z

HS

)

U 2
τ

=
∫ HL

HS

�uu

(
kxH, kyH,

z

H
)

U 2
τ

P (H)d(H). (1)
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FIG. 3. (a) Geometry of Type A, Type CA, and Type SS representative packet eddies considered in the
extended model with their respective contribution to the streamwise velocity. The packet eddies are constructed
by aligning geometrically scaled �-shaped hairpin vortices in the streamwise direction at a growth angle of
10◦. L, W , and H are the characteristic length, width, and height of the eddies, respectively. [(b), (c), and (d)]
Schematics showing the organization of Type A, Type CA, and Type SS eddies, respectively. Type A (wall
attached) and Type CA (wall detached) follow a self-similar hierarchical organization, where the size and the
probability density of eddies are directly and inversely proportional to z, respectively. The largest Type CA

eddy is detached from the wall by ho. Type SS is organized as a single hierarchy with H = δE .

Here �uu is the hierarchy spectral function, which is the power spectral density of u for a hierarchy
of size H and averaged in the wall-parallel plane at a fixed z. P (H) = 1/H is the probability density
function. Further details on computing the flow statistics from AEM can be found in Perry et al. [22]
and Woodcock and Marusic [25].

Figure 4(a) shows the 2D spectrum of Type A eddies at z+ = 2.6Re1/2
τ for Reτ = 26 000

[similarly to Fig. 1(b)]. The solid and dashed black lines represent λy/z ∼ λx/z scaling and λy/z ∼
(λx/z)1/2 relationship, respectively, as observed in experiments. As discussed in the introduction,
Type A eddies model the large scales reasonably well. Figures 4(b) and 4(c) show the inner-flow
and outer-flow scaling, respectively, of contours of constant energy [= max(kxkyφuu/U 2

τ )/3] within
the logarithmic region, i.e., 2.6Re−1/2

τ � z/δ � 0.15. In the model, the height of the largest eddy,
δE (refer to Fig. 3), is used as the characteristic outer-flow length scale. This is in place of boundary
layer thickness, δ, in experiments. Representative of Townsend’s attached eddies, Type A eddies
follow both inner-flow and outer-flow scalings. Since the geometry of Type A eddies is selected
based on experimental data, the Type A spectra have energy at λx/z > 14 and the spectra grows
along λx/λy ≈ 7 while moving closer to the wall. Now, considering the outer-flow scaling (when
scaled in δE ) in Fig. 4(c), the large scales collapse at λx ≈ 7δE and λy ≈ δE , as in experiments (refer
to Sec. II A).
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FIG. 4. [(a), (e), and (i)] Two-dimensional spectra of u, [(b), (f), and (j)] inner-flow scaling, [(c), (g),
and (k)] outer-flow scaling, and [(d), (h), and (l)] profile of turbulence intensity of Type A, Type SS, and
Type CA representative eddies, respectively. Line contours represent a constant energy of max(kxkyφuu/U 2

τ )/3.
Dark shade to light shade is z/δ = 2.6Re−1/2

τ to 0.15. The blue dashed and solid line contours in (i) are
from the ho/H = 0 (attached) case and the ho/H = 0.15 case, respectively. The black solid and dashed lines
in (a), (e), and (i) denote the λy/z ∼ λx/z scaling and λy/z ∼ (λx/z)1/2 relationship, respectively.

Figure 4(d) shows the wall normal profile of turbulence intensity (u2
+

), which is obtained by
integrating the 2D spectrum along both the streamwise and spanwise length scales, i.e.,

u2
+ =

∫ ∞

0

∫ ∞

0

kxkyφuu

U 2
τ

d(ln λx )d(ln λy). (2)

Following from the attached eddy hypothesis, the turbulence intensity of Type A motions decay
logarithmically with increasing wall height.
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B. Type SS

Type SS eddy is representative of the wall-coherent superstructures [5], also referred to as very
large scale motions [50] or the “global” mode [43] that extends deep in the wall-normal direction.
Following the notion of packets aligning in the streamwise direction to form longer structures [50],
the Type SS representative eddy is constructed by aligning two packets as shown in Fig. 3(a). The
length (L) of the eddy is the total length of the two smaller packets put together. The growth angle of
each packet and the spacing of hairpins within the packet are consistent with the other representative
eddies. L and W are chosen such that the energy contributed by Type SS motions is restricted only
to the very large length scales [Fig. 4(e)]. Unlike the hierarchical structure of the Type A and Type
CA eddies, as shown in Fig. 3, the Type SS eddy is organized as a single hierarchy with the height
of the eddy H ∼ δE , thereby making its contribution “global” and non-self-similar with wall height
[Fig. 4(f)]. Following the discussion in Sec. II A, Fig. 4(g) shows that the energy contributed by
the Type SS eddy is concentrated at the fixed outer-flow scaled wavelengths of λx/δE ≈ 10 and
λy/δE ≈ 1, throughout the logarithmic region. A good collapse of the constant energy contours
with outer-scaling implies a roughly constant energy contribution of Type SS structures within the

logarithmic region and, consequently, the profile of u2
+

, as plotted in Fig. 4(h), has an almost zero
slope. We note that the profile is not perfectly flat owing to the shape of the representative eddy.
However, this subtle trend is found not to affect the logarithmic profile of turbulence intensity in the
composite model.

C. Type CA

Marusic and Monty [29] describe the wall-incoherent motions as Type C eddies that comprise
of Kolmogorov-type fine-scale turbulence and other wall-detached motions, some of which scale
self-similarly with z. In the present study, we only model the inviscid subset of Type C motions,
namely Type CA, which represent structures that are physically detached from the wall but obey a
distance from the wall scaling. For simplicity, a packet eddy with similar growth angle and hairpin
spacing as Type A and Type SS is considered for Type CA as well [Fig. 3(a)]. The organization of
Type CA eddies in the boundary layer is illustrated in Fig. 3(c) with a discrete model, showing four
different hierarchies. It should be noted that the organization of Type CA eddies is very similar to
that of Type A; the major difference being that the Type CA eddies are detached from the wall. The
separation from the wall of a hierarchy of eddies of size H ∼ δE is ho, and as illustrated in Fig. 3(c),
the wall-normal separation of any Type CA eddy must be a constant fraction of its wall-normal
extent. This implies that the separation from the wall of Type CA eddies scales with z. Therefore,
even when the legs of the hairpins do not extend all the way to the wall, Type CA eddies could be
regarded as “attached” in the sense of Townsend’s attached eddy hypothesis since their length scales
relate to the distance from the wall [29]. A similar organization was adopted for the Type B eddies
of Perry and Marusic [51] and Marusic and Perry [23], in order to model the “wake-structure” in
the outer layer.

The physical dimensions of the representative Type CA eddy, which includes L, W , and ho,
are chosen such that the energy contribution is concentrated at the smaller scales that followed the
λy ∼ λx relationship observed in experiments (Sec. II C). To illustrate the effect of offsetting eddies
from the wall on the 2D energy spectrum, we first consider a case with zero separation from the
wall, ho = 0, which is typical of Type A organization. This is represented in Fig. 4(i) with the blue
dashed line contour, which corresponds to a constant energy of max(kxkyφuu/U 2

τ )/3. For ho = 0,
at each wall height z, the eddies with wall-normal extent z � H � δE contributes to the turbulent
kinetic energy. Hence the contour is observed to span a broad range of streamwise and spanwise
length scales. Now if we consider a finite separation from the wall for the eddies, the 2D spectrum
shrinks to smaller values of λx/z and λy/z. The filled contour in Fig. 4(i) corresponds to a separation
of ho/H = 0.15. Due to the separation, at each wall height z, the energy spectrum has contributions
from eddies with wall-normal extent H � z and separations ho � z. Such an organization would
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imply that at all wall heights below the separation of the largest eddy, i.e., at all z < 0.15 δE , the
energy contribution is always from a fixed number of hierarchies. Consequently, when the length
scales are normalized by the distance from the wall, z, the constant energy contours collapse across
all wall heights within the logarithmic region [see Fig. 4(j)]. This results in an invariant distribution

of u2
+

for z < 0.15 δE , as shown in Fig. 4(l). Further, it is observed from Fig. 4(k) that the energy of
the Type CA eddies do not scale in outer units and shift to larger length scales while moving away
from the wall.

Marusic and Monty [29] reports the plausibility that self-similar but wall-incoherent energetic
structures could be the detached remnants of formerly attached eddies (Type A). Although beyond
the scope of the current kinematic model, an understanding of the mechanisms [4,46,47,52,53]
leading to the generation of Type CA motions is required, particularly in the context of AEM.

D. Extended AEM

The extended AEM constructed here is a composite model of Type A, Type SS, and Type CA

eddies. The 2D spectra from the AEM is hence computed as

kxkyφ
+
uu,COMP = (kxkyφuu,A + WSS × kxkyφuu,SS + WCA × kxkyφuu,CA)

U 2
τ,COMP

, (3)

where

U 2
τ,COMP = max(−uwCOMP) (4)

and

uwCOMP =
∫∫ ∞

−∞

⎧⎩(kxkyφuw,A + WSS × kxkyφuw,SS + WCA × kxkyφuw,CA)
⎫⎭

d(ln λx )d(ln λy).

(5)

Here kxkyφuu,A, kxkyφuu,SS, and kxkyφuu,CA represent the 2D spectrum of u from Type A, Type
SS, and Type CA eddies, respectively. WSS and WCA are the relative weightings for the energy
contributions from Type SS and Type CA eddies, respectively, in relation to the energy contribution
from Type A eddies. The values of WSS and WCA are chosen to be 0.4 and 14, respectively, in order to
match the shape of the composite 2D spectrum with experiments (discussed in Sec. IV A). The com-
posite friction velocity, Uτ,COMP is computed by forcing the inner-normalized peak Reynolds shear
stress in the logarithmic region to be unity [54], i.e., peak −uw+

COMP = max(−uwCOMP/U 2
τ,COMP) =

1. As represented in Eq. (5), uwCOMP is computed by integrating the composite 2D uw spectrum
across λx and λy. The same weightings (WSS and WCA) for the Type SS and Type CA contributions,
as in Eq. (3), are used in Eq. (5).

We note that the objective of introducing the relative weightings, WSS and WCA, in the composite
model is not to match the magnitude of kxkyφuu/U 2

τ with experimental values but to get the
distribution of energy among the correct length scales, i.e., to get the correct shape of the 2D
spectrum. The prescribed values for WSS and WCA do not vary with respect to Reynolds numbers,
wall locations, or the components of velocity and therefore do not affect the scaling arguments and
the conclusions drawn based on the extended model. However, we note that these weightings are
specific for the current representative eddies [Fig. 3(a)] and would change with the shape of the
hairpin, spacing between hairpins in a packet, strength of the vortex rods, etc. Further, the geometry
of candidate eddies and their associated weightings are specified based on the 2D spectra obtained
for turbulent boundary layers and hence any attempt to model the internal pipe or channel flows
would have to account for the large-scale differences due to the flow geometry [32,55,56].
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FIG. 5. Comparison of 2D spectra of u from the extended AEM with experiments at z+ = 2.6Re1/2
τ for

[(a) and (b)] Reτ ≈ 26 000 and [(c) and (d)] Reτ ≈ 2400. The line contour represents max(kxkyφ
+
uu)/4. In

(b) and (d) black, red, green, and blue contours represent composite, Type A, Type SS, and Type CA spectra,
respectively, and the gray solid and dashed lines are the references for λy/z ∼ λx/z scaling and λy/z ∼ (λx/z)1/2

relationship, respectively.

IV. RESULTS FROM THE EXTENDED AEM

A. Spectra of u

Figures 5(a) and 5(b) show the 2D spectra of u at Reτ ≈ 26 000 and z+ = 2.6Re1/2
τ from the

experiments and the extended model, respectively. The line contours represent max(kxkyφ
+
uu/4).

Additionally, in Fig. 5(b), the contributions of Type A, Type SS, and Type CA eddies to the
composite spectra is shown with red, green, and blue contours, respectively. It is observed from
Figs. 5(a) and 5(b) that the composite spectra obtained with the extended AEM captures the
major trends observed in the high-Re experimental 2D spectra. While the conventional AEM that
comprises Type A eddies alone [red contour in Fig. 5(b)] represents only the large scales in the
2D spectra, the extended model predicts a broader range of length scales from O(z) to O(10δ).
The λy/z ∼ λx/z behavior observed at the smaller length scales in experimental spectra and del
Álamo et al. [40] is now captured using Type CA eddies. The shape of the 2D spectra at very large
length scales is also comparable with experiments due to Type SS contributions. Interestingly, the
length scales, where Type CA and Type A spectra overlap, is observed to follow a near-square-root
[λy/z ∼ (λx/z)1/2] behavior. This agrees with experiments where the square-root relationship was
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observed to bridge the two λy ∼ λx relationships observed at smaller [λx, λy ∼ O(z)] and larger
[λx, λy > O(10z)] length scales, as discussed in Sec. II.

Contrary to high-Re spectra, the square-root relationship is predominant at low Re, even at
larger scales. Hence, the conventional AEM with Type A eddies alone does not predict the large
scales at low Re [red line contour in Fig. 5(d)]. Since the extended AEM incorporates the low-Re
characteristics with Type CA contributions, a better prediction is observed even at low Reynolds
numbers, as shown in Fig. 5(d). It is observed that at low Reynolds number (Reτ ≈ 2400), the range
of length scales for Type A is narrow compared to Reτ ≈ 26 000 and hence the scale separation
between Type CA and Type SS is less. Therefore, the Type A, Type CA, and Type SS energy spectra
overlap at the larger length scales, resulting in a trend similar to the λy/z ∼ (λx/z)1/2 relationship,
as observed in the experimental low-Reynolds-number spectrum [Figs. 5(c) and 5(d)]. The weaker
Type A contribution at low Reynolds numbers prohibits a transition of this square-root relationship
to a λy/z ∼ λx/z trend observed at high Reynolds numbers.

1. Inner-flow scaling of 2D spectra of u

The inner-flow scaling (z scaling) of the 2D spectra of u, obtained from the extended AEM
at Reτ ≈ 26 000 and computed at different wall heights, is shown in Fig. 6(b). The results are
compared against the experimental spectra [Fig. 6(a)] at matched Reynolds number and wall heights.
The comparison reveals a good agreement between Figs. 6(a) and 6(b) with the 2D spectra showing
a good collapse at the smaller streamwise and spanwise wavelengths [O(z) to O(10z)] for the wall
heights considered. Figures 6(c) and 6(d) show that this collapse is a result of the perfect z scaling of
the Type CA spectra and the small-scale end of Type A spectra. The Reynolds number invariance and
hence the low-Re trend at the small scales is effected by the Type CA contribution, which follows a
λy/z ∼ λx/z relationship. Within the region of collapse, this linear growth is observed to transition
toward a square root λy/z ∼ (λx/z)1/2 behavior when there is an overlap between the Type CA

and Type A energies. Now at wavelengths larger than (λx, λy) ∼ O(10z) in the large-eddy region,
the spectra deviate from the scaling and trend toward the λy/z ∼ λx/z relationship, as observed
in experiments. This transition toward a linear relationship in the large-eddy region is dictated by
Type A energy [Fig. 6(d)] and therefore the λy/z ∼ λx/z scaling is more pronounced, due to the
increasing contribution of Type A, as we move closer to the wall (or increasing Reτ at z � ν/Uτ ).
We note that a peel-off from the z scaling at the very small scales is not observed in the AEM since
the high-frequency Kolmogorov-type motions are not modeled.

Since 1D streamwise spectra has been a popular tool to observe self-similarity, the composite
1D streamwise spectra highlighting the contributions from Type CA, Type A, and Type SS eddies
is shown as Figs. 6(f), 6(g), and 6(h), respectively. Figures 6(f), 6(g), and 6(h) are obtained by
integrating Figs. 6(c), 6(d), and 6(e), respectively, across the whole range of spanwise length scales
λy as:

kxφ
+
uu(kx ) =

∫ ∞

0
kxkyφ

+
uu(kx, ky) d(ln λy). (6)

Figures 6(f), 6(g), and 6(h) are qualitatively comparable with the triple-decomposed spectra of Baars
and Marusic [35] [Fig. 15(f), 15(d), and 15(b) respectively in their paper] where the decomposition
technique used empirically obtained coherence-based filters. As observed by Baars and Marusic
[35], the maxima of the wall-incoherent small-scale (Type CA) energy is located at λx ∼ O(10z).
Additionally, beyond λx ∼ O(10z), the Type A spectra is observed to ramp up with its amplitude
increasing with decreasing wall height. The ramp-up of the Type A spectra at its small-scale end
scales with z, which is in agreement with the empirical observation of Baars and Marusic [35].
As indicated in Figs. 6(e) and 6(h), Type SS motions do not contribute to the wall scaling of the
composite spectra.
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FIG. 6. Inner-flow scaling of 2D spectra of u: (a) Experiments at Reτ ≈ 26 000. (b) Composite spectra from
the extended AEM at Reτ ≈ 26 000. [(c), (d), and (e)] Highlighting Type CA (blue), Type A (red) and Type
SS (green) contributions to the composite 2D spectra and [(f), (g), and (h)] highlighting Type CA, Type A, and
Type SS contributions to the composite 1D streamwise spectra. The line contours represent a constant energy
of max(kxkyφ

+
uu|z+=125)/4. The blue solid and dashed lines in (b) are the references for λy/z ∼ λx/z scaling and

λy/z ∼ (λx/z)1/2 relationship, respectively.

2. Outer-flow scaling of 2D spectra of u

The outer-flow scaling (δ scaling) of the composite 2D spectra of u, obtained from the extended
AEM, at Reτ ≈ 26 000 and computed at different wall heights is shown in Fig. 7(b) and are
compared against experiments [Fig. 7(a)]. As observed in experimental data, the composite 2D
spectra show a good collapse at scales larger than λx ≈ 7δE and λy ≈ δE for all wall heights
considered. As observed in Figs. 7(d) and 7(e), this collapse is due to the δ-scaled contributions
from the Type SS eddies and the large-scale end of Type A. Now as observed in experiments, for
λx < 7δE in the large-eddy region, the constant energy contour deviates from a perfect δ scaling
while following the relationship of λy/δ ∼ (λx/δ)m. The value of m is observed to transition from
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FIG. 7. Outer-flow scaling of 2D spectra of u when the wavelengths are normalized by the boundary layer
thickness δ (in experiments) or the height of the largest eddy δE (in AEM). Details of the plots are the same as
in Fig. 6.

0.5 to 1 [represented by dashed and solid blue lines respectively in Fig. 7(b)] as we move closer to
the wall. From Figs. 7(c) to 7(e), we see that this trend toward m = 1 with decreasing z is due to the
increased Type A contribution and thus the increased scale separation between Type SS and Type CA

energies.
The δ-scaled composite 1D streamwise spectra highlighting the contributions from Type CA,

Type A, and Type SS eddies are shown as Figs. 7(f), 7(g), and 7(h), respectively. Figures 7(f), 7(g),
and 7(h) are comparable with the triple-decomposed spectra of Baars and Marusic [35] [Fig. 15(e),
15(c), and 15(a), respectively, in their paper]. As observed by Baars and Marusic [35], the maxima
of the wall-coherent very large scale (Type SS) energy is located at λx ∼ O(10δE ). The roll-off at
the large-scale end of Type A spectra is observed to follow δ scaling in agreement with the empirical
observation of Baars and Marusic [35] for 2.6Re1/2

τ � z+ � 0.15δ+. As indicated in Figs. 7(c) and
7(f), Type CA motions do not contribute to the outer-flow scaling of the composite spectra.
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FIG. 8. [(a)–(d)] Comparison of the extended AEM with DNS of Lee and Moser [57] at Reτ = 5200 and
z+ = 2.6Re1/2

τ ; [(a) and (b)] spectra of spanwise velocity (v); and [(c) and (d)] spectra of wall-normal velocity
(w). [(e) and (f)] Spectra of v and w, respectively, as predicted by the extended AEM for Reτ = 26 000. The
line contours in all panels represent a constant energy of max(kxkyφ

+)/6. In (b), (d), (e), and (f) black, red,
green, and blue contours represent composite, Type A, Type SS, and Type CA spectra, respectively. The gray
solid and dashed lines denote λy/z = λx/z and λy/z ∼ (λx/z)1/2, respectively.

B. Spectra of v and w

In the present study, the extension to the AEM was driven by scaling of the 2D spectra of the
streamwise velocity u alone, since only u data are available at high Reynolds number. We can now
assess whether the extended AEM also provides better predictions for the spectra of the spanwise (v)
and the wall-normal (w) velocity components. The composite 2D spectra of v and w are computed
from the model similar to the computation of the spectra of u [Eq. (3)] with the values of WCA and
WSS remaining the same. The results from the model are compared with the DNS of Lee and Moser
[57] at Reτ = 5200 in Figs. 8(a)–8(d). We chose this dataset as it is the highest Re data available for
the 2D spectra of v and w. As in Figs. 8(a)–8(d), spectra of v and w from the extended AEM show
good agreement with DNS. It is seen from the DNS data that the dominant streamwise and spanwise
modes in both v and w spectra are O(z). These energetic modes are represented in the model with
the major contribution from Type CA eddies for the Reτ = 5200 case. As shown in Figs. 8(b) and
8(d), a model with Type A eddies alone (red line contours) represent the dominant modes at much
larger length scales in the v and w spectra (as also observed by Baidya et al. [27]) and misses a large
contribution to the overall energy. It is observed that the energy not represented by Type A eddies,
or the conventional AEM, is more significant for the v and w spectra in comparison to the spectra
of u.

At low Reynolds number (Reτ = 2000), Jiménez and Hoyas [58] reported from their DNS
of a channel flow that the energetic ridge of the 2D spectra of v and w follow a λy/z = λx/z
relationship in the log region. However, from the data at higher Reynolds numbers (Reτ = 5200,
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FIG. 9. Inner-flow scaling of 2D spectra of v from (a) the DNS of Lee and Moser [57] and [(b), (c), and (d)]
extended AEM highlighting the contributions from Type CA (blue), Type A (red), and Type SS (green) to the v

spectra, respectively, at z+ = 150, 2.6Re1/2
τ , and 3.9Re1/2

τ (dark to light shade, respectively). [(e)–(h)] Similar
plots in outer-flow scaling. The line contours represent a constant energy of max(kxkyφ

+
vv|z+=150)/6. The gray

solid and dashed lines denote λy = λx and λy ∼ (λx )1/2, respectively.

DNS), we see that in the v spectra, above scales O(10z), the λy/z = λx/z relationship transitions
to a square-root relationship of λy/z ∼ (λx/z)1/2, similarly to the trend observed in the 2D spectra
of u. This trend is expected as u and v spectra follow similar scaling laws [22]. To understand this
better, the inner-flow and outer-flow scaling of the composite 2D spectra of v is plotted in Fig. 9
highlighting the contributions of Type CA, Type A, and Type SS eddies. The predominant low-Re
trend of λy/z = λx/z is due to the Type CA contribution that scales with z. As observed for the
u spectra, the transition to a square-root relation appears to be at scales O(10z) where the Type
CA and the Type A energies overlap. At scales larger than O(10z), the shape of the 2D spectra is
dictated by Type A energy which seem to gradually transition toward a λy/z ∼ λx/z relationship.
However, the current Reynolds number (Reτ = 5200) is not high enough for this linear trend to be
conspicuous. Figures 8(e) and 8(f) show the predictions of v and w spectra from the extended AEM
at Reτ ≈ 26 000. Similarly to the large-eddy region in the spectra of u, the large scales [>O(10z)]
in a constant energy region of the v spectrum appear to begin to follow the λy/z ∼ λx/z scaling,
indicating self-similarity. A validation of this self-similar trend requires the measurement of the 2D
v spectra at high Reynolds numbers.

Unlike the u and v components, at a particular wall height z, only those eddies with heights
H ∼ z contribute to w spectra. Hence, as shown in Fig. 10, the w spectra follows a perfect inner-flow
scaling [22,27]. Since Type SS eddies have heights H ∼ δ, they do not contribute to the w spectra
in the log region [Figs. 10(d) and 10(h)].

While the current model, which is developed based on the scaling of the u spectra, captures the
key scaling arguments of the v and the w spectra, we note that further modifications are required
to better model the 2D spectra of all components of velocity. For example, tuning the shape of
the hairpins could possibly resolve the bimodal nature of the v spectra. However, such refinements
would require 2D spectra of v and w at high Reynolds numbers.
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FIG. 10. Inner-flow scaling of 2D spectra of w from (a) the DNS of Lee and Moser [57] and [(b), (c), (d)]
extended AEM highlighting the contributions from Type CA (blue), Type A (red), and Type SS (green) to the w

spectra, respectively, at z+ = 150, 2.6Re1/2
τ , and 3.9Re1/2

τ (dark to light shade respectively). [(e)–(h)] Similar
plots in outer-flow scaling. The line contours represent a constant energy of max(kxkyφ

+
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solid line denotes λy = λx .

V. DISCUSSION ON SPECTRAL SELF-SIMILARITY BASED ON THE EXTENDED AEM

As discussed in Sec. II, the large-eddy region of the 2D spectra of u follows the relationship
λy/z ∼ (λx/z)m, where the power-law coefficient “m” denotes the slope of the large-eddy region.
Since 1D spectrum is simply the line integral of the 2D spectrum, the large-scale plateau A1x in the
1D streamwise spectrum is the line integral of the large-eddy region across the range of λy. Similarly,
A1y in the 1D spanwise spectrum is the line integral of the large-eddy region across the range of
λx. Based on a simplified model of the 2D spectrum, Chandran et al. [31] reported that the ratio
A1x/A1y is equivalent to the slope of the large-eddy region, m. Further, based on experimental data,
they observed the value of m (= A1x/A1y) to monotonically increase with Reynolds number toward
1, with m = 1 indicating self-similarity. Here, using the extended AEM, we discuss a kinematic
perspective on this empirically observed trend of m with Reτ .

Figure 11(a) shows the plot of m vs. Reτ at z+ ≈ 150 from both experiments and the extended
AEM, and the red dashed line indicates self-similarity. The results from the extended AEM
follow the empirically observed Reynolds number trend reasonably well. We note that the values
are slightly overpredicted at low Reynolds numbers while matching well with experiments for
Reτ � 104. Agreeing with the empirical fit, the value of m obtained from the model is observed
to approach unity at Reτ ≈ 60 000. Here it is to be noted that a model comprising of Type A eddies
alone would always predict m = 1 irrespective of Reynolds number (red dashed line).

In order to understand the Reynolds number trend of m, we analyze the 2D spectrum with
the associated 1D streamwise and spanwise spectra at Reτ = 2400 (m ≈ 0.5) and Reτ = 60 000
(m = 1), obtained from the extended AEM, shown in Figs. 11(b) and 11(c), respectively. The
contributions of Type A, Type CA, and Type SS eddies are highlighted and color coded in the
figure. The plateaus in the streamwise and spanwise spectra, A1x and A1y, are also highlighted.
At Reτ = 2400 [Fig. 11(b)], there is less scale separation between the largest (Type SS) and the
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FIG. 11. (a) Variation of m versus Reτ at z+ ≈ 150 from experiments and the extended AEM. The solid
black curve is the empirical fit of the form m = 1 − C1exp(−Reτ /C2) from Chandran et al. [31], where C1 =
0.5 and the value of C2 is simply fitted to the data. [(b) and (c)] Two-dimensional spectrum and the associated
1D spectra at Reτ = 2400 and Reτ = 60 000, respectively, from the extended AEM. The energy contribution
of Type CA (blue), Type A (red), and Type SS (green) motions are plotted in (b) and (c).

smallest (Type CA) energetic motions, which result in an overlap of the energy contributions from
Type CA, Type A, and Type SS eddies for λx > O(10z) and λy > O(z). As discussed in Sec. IV A,
the λy/z ∼ (λx/z)1/2 relationship (m = 0.5) at such length scales is observed to be a result of
the overlap of subcomponent energies. The 1D streamwise and spanwise spectra are obtained by
integrating the 2D spectrum as given in Eq. (6). Therefore, the plateaus in the 1D streamwise and
spanwise spectra, A1x and A1y, respectively, are obtained by integrating the 2D spectrum along the
vertical and the horizontal dashed lines in Fig. 11(b), respectively. At Reτ = 2400, A1x and A1y have
contributions from all three spectral subcomponents: Type CA, Type A, and Type SS. Since Type
CA energy diminishes beyond [λx/z, λy/z] ∼ 10, its contribution to A1x at λx/z ∼ 100 is from its
roll-of and therefore is relatively low. However, for the plateau in the spanwise spectra A1y, which
is at λy/z ∼ 10, the contribution of Type CA is high and in proportion to that of Type A. Since Type
A and Type SS contribute similarly to A1x and A1y, the increased contribution from Type CA to A1y

results in A1y > A1x and, therefore, m < 1.
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FIG. 12. Spectra of u at z/δE ∼ 10−4 for an asymptotic high Reynolds number such that z � ν/Uτ . A
decade of k−1 plateau in both streamwise and spanwise spectra is highlighted. The small-scale and large-scale
bounds of the k−1 region is indicated in the plots. The energy contribution of Type CA (blue), Type A (red),
and Type SS (green) motions are highlighted.

The scale separation between the largest and the smallest scales increases with Reynolds number.
Referring back to Fig. 4, Type CA and the small-scale end of Type A follow inner-flow scaling while
Type SS and the large-scale end of Type A follow outer scaling. Therefore, with increasing Reynolds
number (or decreasing z/δ), Type SS spectra and the large-scale end of Type A spectra shift to
larger λx/z and λy/z. As seen from Fig. 11(c), at Reτ = 60 000, Type CA and Type SS spectra are
completely separated from each other at the wavelengths corresponding to the locations of A1x and
A1y which are λx/z ≈ 500 and λy/z ≈ 70, respectively. As a consequence, at this Reynolds number,
A1x and A1y have energy contributions only from the wall-coherent self-similar Type A motions
(spectra in red). Hence, from Fig. 11(c), λx/z ≈ 500 and λy/z ≈ 70 represent the length scales at
which a true k−1 scaling commences in a 1D streamwise and 1D spanwise spectra, respectively.
Even though a true k−1 scaling kicks in at Reτ ≈ 60 000, a decade of k−1 scaling may be revealed
only at even higher Reynolds numbers.

The prediction from the model at an extreme Reτ is shown in Fig. 12 where a decade of k−1

scaling is evident in both streamwise and spanwise spectra. The small-scale bound of the k−1 region
corresponds to the small-wavelength end of Type A energy that is no longer overlapped by Type
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CA contribution, i.e., where the “large-scale roll-off” from Type CA energy ends. Since this roll-off
scales with z, the k−1 region begins at fixed inner-scaled wavelengths, G1x and G1y, respectively,
in the 1D streamwise and spanwise spectra. Based on the results from the extended AEM, these
bounds are estimated to be λx/z = G1x ≈ 500 and λy/z = G1y ≈ 70, respectively. The limit in the
streamwise spectra agrees with Baars and Marusic [35], who estimated G1x ≈ 385. Similarly, the
large-scale bound of the k−1 region corresponds to the large-wavelength end of Type A energy
that is no longer overlapped by Type SS contribution, i.e., where the “small-scale roll-off” from
Type SS energy ends. Since this roll-off scales with δE , the k−1 region at the large scales would be
bounded by fixed outer-scaled wavelengths, G2x and G2y, respectively, in the 1D streamwise and
spanwise spectra. From Fig. 12, these bounds are estimated to be λx/δE = G2x ≈ 2 and λy/δE =
G2y ≈ 0.3, respectively. Therefore, a decade of k−1

x scaling would require G2x(z/δE )−1/G1x ∼ 10,
and a decade of k−1

y scaling would require G2y(z/δE )−1/G1y ∼ 10, or in both cases, z/δE ∼ 10−4

(Fig. 12). Considering z+ = 2.6Re1/2
τ in the logarithmic region, z/δE ∼ 10−4 would correspond

to an extreme Reτ ∼ 108. However, recent high-Reynolds-number studies [31,35,36,59] suggest
self-similar scales of motion to be evident even at z+ < 2.6Re1/2

τ when sufficiently far from the
wall (z � ν/Uτ ). In this context, we note that an equivalent scale separation could be achieved at
Reτ ∼ 106 at z+ � 100 (<2.6Re1/2

τ ).
We note that the conclusions from the current model are based on a perfect outer-flow scaling of

Type SS energy. The work of Baars and Marusic [35] reports very large scale energy contributions
to have a subtle trend with Reynolds number. The authors, however, report the trend to be weaker
than previous observations [5,56,60]. Even though the trend appears to be less significant within
the log region 2.6Re1/2

τ � z+ � 0.15Reτ , the asymptotic predictions would benefit clarity on the
outer-flow scaling arguments of very large scale motions.

VI. SUMMARY AND CONCLUSIONS

The AEM comprising only self-similar wall-attached eddies (Type A) is observed to represent
the dominant large scales in the logarithmic region only at high Reynolds numbers. However, when
compared to experimental data, the energy left unresolved by these Type A eddies is found to be
significant enough to dictate the trends of the 2D spectra, even at Reynolds numbers as high as
Reτ = 26 000. Therefore, an extension to the AEM is proposed by incorporating into the model
two additional types of structures that are major contributors to the turbulent kinetic energy in the
logarithmic region: (i) Type CA eddies, representative of the wall-incoherent, small-scale structures
that follow a self-similar distance from the wall scaling and (ii) Type SS eddies, representative of
the wall-coherent, very large scale (superstructure-like) motions or the global modes. The geometry
of these representative eddies and their organization within the boundary layer are identified based
on the experimentally observed inner-flow (z scaling) and outer-flow scaling (δ scaling) of the 2D
energy spectra of u.

When considering the energy spectra of u, v, and w that is obtained from the extended AEM,
in addition to the energy contribution from Type A eddies, there is the z-scaled energy contribution
from Type CA eddies at [λx ∼ z, λy ∼ z] and the δ-scaled energy contribution from Type SS eddies
at [λx ∼ 10 δ, λy ∼ δ]. Consequently, the model captured the experimentally observed trends of
the 2D energy spectra of all three velocity components reasonably well across a greater range of
energetic scales from O(z) to O(10 δ). The model also captured the empirically observed shift in the
trend of the energetic large scales in the 2D spectra of u from a λy/z ∼ (λx/z)1/2 relationship at low-
Reynolds numbers toward the self-similar λy ∼ λx scaling at high-Reynolds numbers. A discussion
on this Reynolds number trend is presented for the spectra of u, based on which self-similarity
would be evident with a λy ∼ λx scaling for a region of constant energy in the 2D spectrum, and
the associated k−1 scaling in the 1D streamwise and spanwise spectrum, only at Reτ � 60 000,
when a complete scale separation between the δ-scaled Type SS and the z-scaled Type CA eddies is
predicted to exist.
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