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Sweep and ejection events in turbulent boundary layer flows have been explored for half
a century now to describe eddies impacting turbulent stresses. Yet, moving these studies
from their current diagnostic phase to a prognostic form remains a formidable challenge.
Here, a cumulant expansion is used to derive a link between the transport of shear stress
and the balance of local sweep and ejection events. Cumulant expansion is further used
to connect this transport to a metric of asymmetry in the streamwise velocity distribution.
These relations are employed to develop two so-called structural models for predicting
the turbulent stress transport, which is traditionally neglected in first-order closure of the
shear stress budget. Several datasets collected in rough-wall conditions are used to show
the importance of the transport term in the roughness sublayer and to demonstrate the
predictive skill of the two structural models. The model parameters are invariant to the
tested range of Reynolds number and surface roughness, indicating the structural similarity
between the velocity asymmetry, sweep/ejection balance, and stress transport may be
universal and independent of roughness. Finally, the implementation of the structural
models for improved closure schemes of the shear stress budget in modeling applications
and wall-modeling in large-eddy simulations are discussed.
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I. INTRODUCTION

In turbulent boundary layers, the turbulent motions transporting momentum [1] are classified as
one of two types of events: “ejections” and “sweeps” [2]. These events are commonly detected by
conditional sampling using quadrant analysis, which partitions the instantaneous turbulent momen-
tum flux into ejections, sweeps, inward interactions, and outward interactions [3–7]. Ejection/sweep
statistics along with their contribution to the time-averaged turbulent momentum flux have been
extensively measured for a multitude of flow conditions: canonical smooth- and rough-wall bound-
ary layers [8–11]; stratified atmospheric flows over vegetated surfaces [12,13] and complex terrain
covered by vegetation [14–16]; various canopy covers [17–26] including peatlands [27], urban
roughness sublayers [28,29], and street canyons [30]; convective boundary layers [31–33]; marine
boundary layers [34]; air-water exchanges [35]; and even flow below ice sheets [36], to list a few
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examples. A review of the history, development, usage, and extensions of quadrant analysis and
conditional sampling in turbulence is presented elsewhere [7,37].

Such quadrant analyses revealed that sweep events contribute more than ejections to the overall
turbulent shear stress in the buffer region of smooth-wall turbulent boundary layers [3,8]. Specifi-
cally, the contribution of sweeps is greater for z+ = zuτ /ν � 15, where z is the wall-normal distance
from the surface, uτ is the friction velocity, ν is the kinematic viscosity, and the transition point
z+ = 15 is also the location of the turbulence intensity peak [38]. Likewise, analyses of rough-wall
flows demonstrated unequivocally that sweeps are the primary contributor to the shear stress close
to rough surfaces (including vegetation cover), and that the relative contribution of the sweep events
increases both with increased surface roughness and with proximity to the surface [9,11,39–41].
In analogy to the smooth-wall buffer region, a number of studies have proposed that the extent
of the roughness sublayer (hereafter referred to as the RSL) [9] as well as the canopy sublayer
(hereafter the CSL) [15,21] are closely related to the region where sweep events are statistically
more significant than ejections in their contribution to the shear stress. Within the RSL and CSL,
flow statistics are directly dependent on the surface roughness or canopy properties.

Moving above the buffer region, RSL, or CSL, the contributions of sweep and ejection events to
the turbulent shear stress are approximately equal in the overlap or logarithmic (log) region where
the turbulent shear stress is constant [42]. In the outermost wake region of turbulent boundary
layers, ejection events dominate the transport of momentum [3,8,9]. While this emerging picture
has elucidated some aspects of the role of surface roughness and coherent motions in the transport
of momentum, it has not been exploited effectively in conventional turbulence modeling or wall
modeling in large-eddy simulations. Establishing links between quadrant analysis and Reynolds-
averaged turbulence modeling has been, to say the least, fraught with challenges that partly motivate
the present work.

A promising way forward from quadrant analysis is to model the probability density function
(pdf) of flow variables using a cumulant expansion method (CEM) such as Gram-Charlier ex-
pansions [5,43,44]. Gram-Charlier expansions represent the pdf as a Gaussian distribution shaped
with a series of adjustments arising from higher-order cumulants. For instance, the third-order
cumulant accounts for the distribution asymmetry in terms of the skewness and the fourth-order
cumulant accounts for the intermittency or flatness in terms of the excess kurtosis. The CEM can be
extended to additional dimensions to model joint probability density functions (jpdfs) of two or more
variables. Previous efforts used cumulant expansions of jpdfs to link the contributions of sweep and
ejection events to budget equations of turbulent statistics [8,9]. To illustrate, the turbulent kinetic
energy (TKE) budget equation for stationary and planar homogeneous conditions is considered.
This budget is given by

∂e

∂t
= 0 = −u′w′ ∂U

∂z
− ∂

∂z
[FTKE + p′w′] − ε, (1)

where t is time, e = 1
2 (u′2 + v′2 + w′2) is the instantaneous TKE, u′, v′, and w′ are the turbulent

velocity components in the streamwise (x), spanwise (y), and wall-normal (z) directions, respec-
tively, p′ is the turbulent pressure, primed quantities are fluctuations around the time-averaged state,

ε is the TKE dissipation rate, U is the mean velocity, and FTKE = 1
2 (u′2w′ + v′2w′ + w′3) is the

wall-normal transport of TKE by turbulence. In addition to the pressure and dissipation terms,
FTKE requires a closure model in a second-order closure framework. Using a CEM to model the
velocity probabilities in terms of third-order cumulants [5], Raupach [9] related the TKE transport
to sweeping and ejecting motions as

FTKE = a1�So
(
a2σ

2
u σw + a3σ

3
w

)
, (2)

where �So ∈ [−1, 1] signifies the relative fractional contributions of ejections and sweeps to the
turbulent momentum flux u′w′, σi is the root-mean square (rms) of the specified velocity component,
and a1,2,3 are constants determined from experiments.
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The value of the fractional stress contribution �So indicates whether sweeps are favored (�So >

0), ejections are favored (�So < 0), or the two are balanced (�So ≈ 0). The balance of ejections and
sweeps therefore determines the sign of FTKE in Eq. (2) and dictates whether turbulent kinetic energy
at a given wall-normal position is transported to or from the surface. The influence of ejections and
sweeps on net transport is a consideration that cannot be ignored in studies of the TKE budget [8],
especially in the RSL and CSL. In fact, the increasingly dominant role of sweeps in the RSL with
increasing roughness has already been pointed out by the pioneering work of Nakagawa and Nezu
[8], but translating this result to wall modeling has remained elusive.

Equation (2) also deviates from classical gradient-diffusion schemes conventionally used to
close third-order statistics through gradients in second-order moments [45]. Such gradient-diffusion
closure of third-order statistics (FTKE ∝ ∂e/∂z) remain the cornerstone of many operational at-
mospheric mesoscale models such as the Weather Research and Forecasting Model (WRF) [46]
despite well-known limitations within the canopy sublayer [22,47]. Eq. (2) has been referred to as a
“structural model” for FTKE as discussed elsewhere [48]. In essence, structural models assume that
the structure of turbulent eddies dominating ejections and sweeps are similar in all wall-bounded
flows (i.e., a form of structural similarity where a1,2,3 do not vary with roughness).

While ejection/sweep statistics and their contribution to the TKE budget have been closely stud-
ied [8,9], their role in the momentum flux budget and corresponding closure model approximations
have not been considered to the same degree, which is the compass of the work here. Note that
the terminology momentum flux and turbulent shear stress are used interchangeably in this study
to describe the covariance term u′w′. In classical gradient diffusion closure for the turbulent shear
stress (referred to as K-theory),

u′w′ = −KT
∂U

∂z
, (3)

where KT is the eddy diffusivity. A large corpus of experiments and theories support (3) in the log
region but K-theory is known to be insufficient in the RSL and CSL [22,49–52].

The present study uses cumulant expansions to seek a connection between the deviations from
gradient diffusion closure in Eq. (3), the turbulent transport term in the shear stress budget (analo-
gous to FTKE), and the imbalance in the contributions of ejections and sweeps to u′w′. An outcome
of this approach is a “structural” closure model to estimate the transport term that is traditionally
neglected in gradient-diffusion methods. A variant on the proposed structural model is then formu-
lated based on a simpler measure of asymmetry in the streamwise velocity, thereby bridging the
imbalance of ejection and sweep motions to the basic shape of the velocity probability distributions.
The purpose of the two models is to circumvent the failures of gradient-diffusion methods by pro-
viding an additional closure based on CEM to account for the transport term, which is particularly
relevant in the RSL and CSL. The general applicability of these two formulations of the structural
model is then analyzed using wind tunnel measurements and a publicly available direct numerical
simulation (DNS). Whether third-order CEM applies in such flows and to what extent the structural
model parameters (analogous to a1,2,3 in FTKE) are independent of surface roughness is discussed.

II. THEORY

A. Definitions and general considerations

In a neutrally stratified stationary and planar-homogeneous flow, the budget for the turbulent
momentum flux u′w′ is

∂u′w′

∂t
= 0 = −w′w′ ∂U

∂z
− ∂u′w′w′

∂z
+ p′

(
∂u′

∂z
+ ∂w′

∂x

)
− εuw, (4)

where εuw is molecular destruction of u′w′. The terms on the right-hand side of Eq. (4) are,
respectively, covariance production by the mean velocity gradient, vertical gradient of the turbulent
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flux transport term (to be analyzed here), pressure-velocity decorrelation, and decorrelation by
viscous effects. The viscous decorrelation εuw can be ignored at high Reynolds numbers when
compared to the pressure-velocity decorrelation [50].

A linear Rotta model, revised to include isotropization of the production term [45,53], is now
used to close the pressure decorrelation term and is given as

p′
(

∂u′

∂z
+ ∂w′

∂x

)
= −CR

u′w′

τ
+ CIw′w′ ∂U

∂z
, (5)

where CR is the Rotta constant and CI is the isotropization of the production constant predicted from
rapid distortion theory to be 3

5 [53]. The closure in Eq. (5), in combination with Eq. (4), yields an
expression for u′w′ given by

u′w′ = − τ

CR

[
(1 − CI )σ 2

w

∂U

∂z
+ ∂u′w′w′

∂z

]
, (6)

where τ = e/ε is a relaxation timescale estimating the time it takes for u′ to decorrelate from w′.
K-theory in Eq. (3) is now recovered when the flux-transport term ∂u′w′w′/∂z is neglected relative
to the production term, resulting in an eddy diffusivity KT = [(1 − CI )/CR]σ 2

wτ . This finding
resembles predictions of KT from Lagrangian structure function analysis that yield KT = 2σ 2

wTL,
where TL is the Lagrangian timescale as discussed elsewhere [53]. That is, KT scales with σw(σwTL )
or σw(σwτ ) as characteristic velocity and length scales instead of the mixing length closure KT =
[�m(∂U/∂z)]�m [54], where �m is a generic mixing length proportional to z in the logarithmic region
of boundary layers [55,56]. The connection between sweeps and ejections and u′w′w′, which is the
“parent term” responsible for the failure of gradient-diffusion theory across many flows [57,58], is
now considered using Gram-Charlier expansion and structural models.

B. Structural models for the turbulent momentum flux transport term

1. Model 1: Fractional stress contributions

As noted earlier, a measure to characterize the relative importance of ejections and sweeps (i.e.,
�So) on momentum fluxes is defined as [9]

�So = 〈u′w′〉|4 − 〈u′w′〉|2
u′w′ , (7)

where 〈u′w′〉|i is a conditional average of events in quadrant i, with quadrant 2 corresponding to
ejections (u′ < 0,w′ > 0) and quadrant 4 to sweeps (u′ > 0,w′ < 0). Explicitly, �So quantifies the
fractional difference between the contributions of ejection and sweep events to the overall time-
averaged flux u′w′, where the sign indicates whether sweeps (�So > 0) or ejections (�So < 0) are
favored. No threshold on the instantaneous values of u′w′ is used to compute �So, and hence the
subscript “o” is given to �S. Raupach [9] used a third-order CEM of the joint probability jpdf(u′,w′)
to link �So with the key statistical moments to be employed in closure modeling of the flow:

�So = M11 + 1

M11

√
2π

[
2C1

(1 + M11)2
+ C2

1 + M11

]
, (8)

where C1 and C2 are given by

C1 = (1 + M11)
[

1
6 (M03 − M30) + 1

2 (M21 − M12)
]

C2 = −[
1
6 (2 − M11)(M03 − M30) + 1

2 (M21 − M12)
]
, (9)

and the notation Mi j is used here to describe different statistical (mixed) moments of u′ and w′ as

Mi j = u′iw′ j

σ i
uσ

j
w

. (10)
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That is, M11 defines the correlation coefficient u′w′/(σuσw ), M30 and M03 define individual
skewnesses of u′ and w′, respectively, and M12 (associated with wall-normal turbulent transport
of flux) and M21 (associated with wall-normal turbulent transport of longitudinal velocity variance)
define third-order mixed moments. By substituting the constants in Eq. (9) into the CEM in Eq. (8)
and rearranging the terms, the final form is reached for the CEM linking �So to the statistical
moments:

�So = 1

M112
√

2π

[
M11

3
(M03 − M30) + (M21 − M12)

]
. (11)

In Eq. (11) the mixed moments (M21 − M21) have been shown to contribute more to �So than
the skewnesses 1

3 M11(M03 − M30) [59,60], allowing for the latter term to be neglected in favor of
a simpler, “incomplete” CEM. However, the skewness terms are retained here for completeness.
As a bridge to the failure of K-theory, a large corpus of experiments on momentum transport over
smooth surfaces and differing types of roughness elements suggest a linear relation between each of
the third-order moments. Specifically, M30 = buM12, M03 = bwM12, and M21 = buwM12 where the
respective constant values bu ≈ 2, bw ≈ −1.16, and buw ≈ −1 were presented elsewhere [9]. The
value buw ≈ −0.6 was also reported for flows within and just above dense canopies across a wide
range of thermal stratification conditions [24,27]. The validity of the linear relation and the values
for the constants bu,w,uw are evaluated in Sec. IV. Inserting these linear relations into Eq. (11) yields

M12 ≈ 2
√

2π
1
3 M11(bw − bu) + (buw − 1)

M11�So. (12)

For bu ≈ 2, bw ≈ −1.16, buw ≈ −1, and M11 ≈ −0.45, which is typical in turbulent boundary
layers, Eq. (12) yields a value M12 ≈ −1.5�So consistent with prior wind tunnel experiments over
various roughness types [9]. Using the definitions for Mi j , Eq. (12) is given in dimensional form as

u′w′w′ ≈ 2
√

2π
1
3 M11(bw − bu) + (buw − 1)

u′w′σw�So, (13)

which is a structural closure model for the flux transport term resembling FTKE in Eq. (2). As noted
above, the direct contribution from the skewnesses 1

3 M11(bw − bu) ≈ 0.45 is smaller than that of
the mixed moments (buw − 1) ≈ −2. The form of Eq. (13) suggests that u′w′w′ is proportional
to σwu′w′, not the stress gradient as assumed in conventional gradient-diffusion closure arguments
expressed as [45]

u′w′w′ ∝ −�m(e)1/2 ∂u′w′

∂z
. (14)

When ejections and sweep contribute equally to momentum transport, �So = 0 and u′w′w′ = 0.
That is, symmetry in momentum flux transport and validity of K-theory appear to be “entangled.”

2. Model 2: Streamwise velocity asymmetry

In a separate approach, the Gram-Charlier expansions can also be used to establish a link between
the stress transport and asymmetry in the streamwise velocity distribution pdf(u). Because of the
connection between the streamwise velocity distribution and u′w′w′ through the relation M30 =
buM12, the structural model can be cast with respect to the fraction of time with u′ < 0 (slow flow)
or u′ > 0 (fast flow) instead of with respect to the entire stress fraction. To illustrate, the fraction of
time the flow resides in a faster-than-average phase (u′ > 0) is


+ =
∫ ∞

0
pdf(û) dû, (15)
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where pdf(û) is the probability density function of the standardized velocity û = u′/σu, i.e., where
σû = 1. The parameter 
+ quantifies the distribution asymmetry, with 
+ > 0.5 indicating more
weak fast phases (u′ > 0) which are balanced by a longer low-velocity tail than the symmetric
case, yielding negative skewness. Oppositely, 
+ < 0.5 corresponds to a longer high-velocity tail
and positive skewness. To solve for 
+, a third-order Gram-Charlier cumulant expansion is used to
describe pdf(û) as

pdf(û) = G(û)

[
1 + 1

6
M30(û3 − 3û)

]
, G(û) = 1√

2π
exp

[
− 1

2
û2

]
, (16)

where G(û) is a standard Gaussian distribution. Evaluating the integral in Eq. (15) using the
expansion in Eq. (16) leads to the relation [59,61]


+ = 0.5 − 1

12

√
2

π
M30. (17)

With M30 = buM12 and bu independent of roughness [9], Eq. (17) can be rearranged as

M12 = (0.5 − 
+)
12

bu

√
π

2
, (18)

so that the simplified structural model is cast in fast-slow phases of u′ instead of an ejection-sweep
imbalance as

u′w′w′ ≈ 6
√

2π

bu
σuσ

2
w(0.5 − 
+). (19)

Equations (17)–(19) remain unchanged even when a fourth-order Gram-Charlier cumulant ex-
pansion is adopted for pdf(û). The experiments described next in Sec. III evaluate the applicability
of these two structural models given in Eqs. (13) and (19) and assess to what degree the parameters
depend on surface roughness and Reynolds number. The choice of using u′ instead of w′ for 
+
will be elaborated upon when discussing the validity of CEM. Briefly, it will be shown that the
probability distribution of w′ is more symmetric than the u′ counterpart, but with higher excess
kurtosis. Hence, measures of asymmetry are better captured by u′ instead of w′.

III. EXPERIMENTS

A. Flow measurements

The present analysis was conducted on previously published numerical and experimental datasets
summarized in Table I. The collection of turbulent boundary layer measurements span approx-
imately one order of magnitude in Reynolds number across multiple surface geometries, thus
providing a range in parameter space to evaluate the structural models introduced in Sec. II B.
The friction Reynolds number in Table I is defined as Reτ = δuτ /ν, where δ is the boundary layer
thickness. The thickness δ is taken to be the height where the mean velocity is 99% of the free-stream
value, i.e., δ = z(U = 0.99U∞). For rough-wall conditions, the surface roughness is parameterized
using the equivalent sandgrain roughness ks and the roughness height k. Determination of the flow
and surface parameters is detailed in the referenced source for each case.

The lowest Reynolds number case in smooth-wall conditions is the DNS of Sillero et al. [62].
The DNS case is included to validate the profiles obtained from experiments. The two additional
smooth-wall cases and the woven wire mesh cases were collected in the boundary layer wind tunnel
at St. Anthony Falls Laboratory (SAFL), University of Minnesota. The SAFL experiments include
cross-hotwire anemometry measurements of u and w across the full boundary layer thickness, and
complementary particle image velocimetry (PIV) measurements in the lowest 10 cm (25% of δ in
the mesh cases) [56]. The hotwire measurements are featured in later figures showing wall-normal
profiles of the boundary layer, while the PIV results are used for direct comparison of model
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TABLE I. Overview of smooth- and rough-wall boundary layer experiments used in the present analysis.
The cases span a range of friction Reynolds number Reτ = δuτ /ν and roughness Reynolds number k+

s =
ksuτ /ν, where δ is the boundary layer thickness, uτ is the friction velocity, ν is the kinematic viscosity, and ks

is the equivalent sandgrain roughness.

Data set Symbol Reτ k+
s ks/δ k/δ Source

Smooth wall DNS — 2000 – – – Sillero et al. [62]
Smooth wall 1 × 3800 – – – Heisel et al. [56]
Smooth wall 2 + 4700 – – – Heisel et al. [56]
Cylinders 1 © 8200 710 0.087 0.050 Raupach et al. [63]
Cylinders 2 ♦ 9000 840 0.094 0.048 Raupach et al. [63]
Woven mesh 1

�
10 100 430 0.043 0.015 Heisel et al. [56]

Woven mesh 2
�

13 900 620 0.045 0.015 Heisel et al. [56]
Sandpaper 1 � 12 100 64 0.0053 0.0025 Squire et al. [64]
Sandpaper 2 � 18 400 104 0.0056 0.0026 Squire et al. [64]

parameters due to a greater number of data points within the RSL. The rough-wall hotwire and
PIV measurements were taken at multiple positions within the woven mesh pattern to provide a
representative horizontal spatial average in the RSL.

The two cylinder roughness cases are from previous experiments in the University of Edinburgh
wind tunnel. These cases were digitized from results presented in both Raupach et al. [63] and
Raupach [9]. The cylinder roughness results are limited to the statistics presented in the original
studies; some cases were excluded from later figures because the published data were not available.

Finally, flow above sandpaper surface roughness was measured using PIV in the High Reynolds
Number Boundary Layer Wind Tunnel at the University of Melbourne. These measurements used a
high-spatial-resolution tower PIV configuration and were introduced in Squire et al. [64]. Detailed
parametrization of the sandpaper roughness geometry is given in a separate study [65].

While all of the rough-wall cases evaluated here are considered fully rough, the sandpaper cases
are closest to the upper limit of transitional roughness in terms of k+

s . The roughness length k is given
here by the approximate total height of the roughness geometry. Dimensionally, the heights are k =
6 mm (cylinders and woven mesh) and k = 0.9 mm (sandpaper). For rough-wall and canopy flows,
the zero-displacement position (z−d ) is commonly used to account for the shift in the boundary
layer away from the wall due to the surface asperities. For the woven mesh cases, d was assumed
to correspond to the average roughness height across the mesh geometry. For the sandpaper cases,
d was taken as half the roughness height [65]. The d for the cylinder cases was reported directly in
Raupach et al. [63].

B. Flow statistics

Wall-normal profiles of the first- and second-order velocity statistics are featured in Fig. 1. The
normalization of the profiles, i.e., by uτ and δ, reflects the relevant turbulent scaling parameters in the
outer layer above the RSL and buffer layer. In this work, the superscript “+” for velocity statistics
indicates normalization by uτ . There is generally good agreement in the outer layer velocity statistics
across flow cases, with the exception noted below.

The primary discrepancy observed in Fig. 1 is lower measured values of w′2 and u′w′ for the
smooth-wall experiments (×,+). These values may be underestimated due to the spatial sampling
volume of the Dantec hotwire X probe used for the smooth-wall and woven mesh experimental
cases. The “X” shape of the two wires and their separation distance yield a sampling volume that is
O(1 mm) (≈25 viscous units) in each direction. The underestimated w statistics may be attributed
to undetected turbulent motions smaller than the sampling volume. The underestimate is lesser
for the streamwise statistics for which a greater proportion of energy resides in the larger scales.
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(a) (b)

(c) (d)

FIG. 1. Wall-normal profiles of first- and second-order velocity statistics normalized by the friction velocity
uτ and boundary layer thickness δ: (a) deficit of the mean velocity U from the free-stream U∞; (b) streamwise
variance u′2; (c) wall-normal variance w′2; (d) turbulent shear stress u′w′. The data symbols, shown with
logarithmic spacing for clarity, correspond to the cases in Table I. Colors here and in later figures correspond
to the buffer or roughness sublayer (orange), logarithmic region (blue), transition from logarithmic to wake
region (purple), and outer wake region (black).

The sampling volume is also less limiting for the mesh cases due to the near-wall behavior being
governed by the roughness geometry rather than the relatively smaller viscous units.

Based on later results, the measurement resolution does not affect the model performance. This
suggests the model outcome and inputs have similar scale dependence and are limited by resolution
to the same extent. In other words, underestimates in the measured u′w′w′ model output may be
balanced by likewise underestimates in the inputs w′2 and u′w′.

In Fig. 1 and throughout, the following color-coded convention of the four main regions of the
turbulent boundary layer is adopted: (1) RSL and viscous buffer layer below the log region (orange);
(2) the log region up to 0.2δ (blue); (3) the lower portion of the wake region where there is a slow
departure from inertial behavior and z scaling of the flow statistics, up to 0.4δ (purple); and (4) the
outer portion of the wake region (black). The extent of the buffer layer in smooth-wall conditions
was taken to be approximately 3

√
δν/uτ [66]. The RSL was assumed to end where inertial dynamics

and the log region began in the Fig. 1 velocity statistics and third-order moments introduced later.
Previous studies have shown third-order statistics to be a good indicator for the extent of roughness
and canopy effects [21]. Based on trends in these higher-order statistics, the RSL height for the
cylinder cases is approximately zRSL ≈ 0.25δ. Thus, there is no canonical log region for the cylinder
cases. This absence has no bearing on the evaluation of the structural models.

The delineation of the wake region into two portions is due to the turbulent/nonturbulent inter-
face (TNTI) separating boundary layer turbulence from the free-stream condition. In instantaneous
flow fields, the TNTI can reach positions as low as the selected division point z/δ = 0.4 in
high-Reynolds-number conditions [67]. A strong decrease in the turbulent statistics in the outer
wake is apparent in Fig. 1. The effect of the free-stream condition on higher-order statistics (e.g.,
Mi j) and the structural model introduced above is not the main focus of the present work. We
purposely exclude the outer wake from later figures, except for wall-normal profiles where the outer
wake is easily distinguished from the other regions.

Figure 2 features the measured wall-normal profiles of M30 (streamwise velocity skewness), M03

(wall-normal velocity skewness), M12 (momentum flux transport), and M21 (streamwise variance
transport) using the same color coding as Fig. 1 for the regions. There is close agreement between
the DNS results and the experimental cases throughout the boundary layer, except for the RSL
where a deviation is to be expected. Each Mi j profile exhibits the same trend: the moment is close to
zero and relatively constant in the log region, the value increases significantly in the low-turbulence
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(a) (b)

(c) (d)

FIG. 2. Wall-normal profiles of third-order statistical moments Mi j of the velocity fluctuations, where i
corresponds to the order of u′ and j corresponds to w′ as defined in Eq. (10). The data symbols, shown with
logarithmic spacing for clarity, correspond to the cases in Table I.

outer wake, and there is a switch in asymmetry direction (i.e., sign) in the RSL. The change in sign
is not observed for M03 for the sandpaper cases in Fig. 2(d). This discrepancy is discussed further
with respect to a later figure.

The extensive RSL for the cylinder roughness (©,♦) is visually apparent in Fig. 2, where close
agreement with the remaining cases is observed only above 0.25δ. The Mi j profiles transition
directly from the RSL trend to the wake region behavior, and no log region is apparent as noted
previously. There is likely insufficient scale separation, i.e., large k/δ in Table I, for a canonical
overlap layer (log region) to develop [68].

The measured �So profile derived from quadrant analysis for all cases is presented in Fig. 3.
The �So profile shows remarkable collapse in the outer layer, consistent with other studies [8,9].
The collapse is also consistent with Townsend’s outer layer similarity [52,69], where the surface
conditions have negligible effect on the stress contributions in the log and wake regions.

As expected from the previously discussed literature, sweep events are the majority contributor
to u′w′ in the RSL (�So > 0), and ejections are dominant in the wake (�So < 0). The constant value
in the log region (�So ≈ −0.1) indicates ejections contribute more than sweeps, but the magnitude
of both contributions is roughly comparable. There is no Reynolds number trend in the fractional
stress contribution �So. The result suggests a composite profile for �So(z) is possible, however a
wider range of rough-wall experiments is required to parametrize the profile behavior in the RSL.

FIG. 3. Wall-normal profile of �So defined in Eq. (7) by the fractional contribution of ejections (u′ < 0,
w′ > 0) and sweeps (u′ > 0, w′ < 0) to the turbulent shear stress u′w′. Data symbols correspond to the cases
in Table I.
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FIG. 4. Ratio of the transport and production terms contributing to the momentum flux in Eq. (6). Gradient-
diffusion closure (K-theory), which neglects transport, is valid when the ratio is small. The left vertical axis is
based on CI = 0 (no isotropization) and the right CI = 3/5 (isotropization predicted by rapid distortion theory).

The wall-normal trend in �So closely mirrors the Mi j trends in the RSL, log region, and wake
region. The qualitatively similarity in the profiles is consistent with the dependence of �So on the
moments Mi j described in the CEM of Eq. (11), and suggests asymmetry in u and w is closely
related to the stress contributions quantified by �So. In the following section, the Mi j and �So

statistics are analyzed in closer detail to assess the structural models for u′w′w′.

IV. RESULTS

The results are presented in four subsections: the relative importance of transport to the shear
stress budget is first considered in the various regions to illustrate where the flux-transport can be
significant. The third-order CEM approximation and its utility in estimating �So is then evaluated.
The assumptions employed in the derivation of the model as well as the dependence (or lack thereof)
of the coefficients bu,w,uw on Reynolds number and roughness are then featured. Last, the structural
models are evaluated by comparing the model estimates against measurements of u′w′w′ for each
flow case.

A. Significance of turbulent stress transport

A central consideration of the present work is the relative contributions of the production and
transport terms to the shear stress in Eq. (6). Gradient-diffusion closure models and K-theory are
only valid when the transport ∂u′w′w′/∂z is small relative to the production (1 − CI )σ 2

w∂U/∂z.
Rather than calculate the full expression in Eq. (6), which requires an estimate of the relaxation
time, Fig. 4 shows a ratio of the measured transport and production terms to evaluate their relative
contributions. The vertical axes are scaled using two values for CI . The values provide approximate
bounds for the production term estimate, where CI = 0 indicates no isotropization of the production
and CI = 3/5 is the value predicted by rapid distortion theory [53].

As expected, the ratio is small, i.e., less than 10%, within the logarithmic region where K-theory
applies [50,52,53,70]. Transport is non-negligible in the RSL, however, where its contribution is
10%–25% of the production for the woven mesh depending on choices made about CI . These
estimates are close to values reported for a rod canopy at very high Reynolds numbers [22]. Note
that ratios larger than 25% may be observed closer to (and within) the roughness canopy or for other
roughness geometries.

Figure 4 confirms turbulent transport cannot be discarded in the closure of the stress budget
within the RSL and also in the outer wake. A useful analogy can be drawn to the much-studied
TKE budget: the log region is a form of equilibrium layer where there is negligible net wall-normal
transport of energy, referred to as nonlocal transport in atmospheric applications. Outside the log
region, the nonequilibrium is marked by net transport of TKE and also shear stress as seen in Fig. 4.
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FIG. 5. Example probability density functions (pdfs) of velocity fluctuations from the Reτ = 13 900 rough-
wall case at three wall-normal positions: (a) û = u′/σu and (b) ŵ = w′/σw . The measured distribution is
compared with a Gaussian distribution (· · · ), third-order CEM (- - -), and fourth-order CEM (—) based on
the measured statistical moments used in the calculations of cumulants.

In this sense, the roughness sublayer extent may be defined as the wall-normal distance required
to distribute (through transport) the stress imparted by the roughness before equilibrium conditions
can be reached. This definition has been used to delineate the CSL in flow over rod canopies situated
on hilly terrain [15].

B. Validity of the third-order CEM

Example probability distributions of û and ŵ are shown in Fig. 5 for the RSL (left), log region
(middle), and wake region (right). The measured probabilities are compared with a Gaussian
distribution, third-order CEM (used in the later analysis), and fourth-order CEM. The distribution
asymmetry is clearly apparent in the streamwise component û in Fig. 5(a). The asymmetry is
reflected by the listed 
+ values and is accounted for by the third-order CEM. The wall-normal
velocity ŵ in Fig. 5(b) is roughly symmetric and does not deviate appreciably from Gaussian,
except in the thickness of the probability tails that is accounted for by the fourth-order CEM.
While the fourth-order CEM modestly improves agreement with the measured pdf, the third-order
CEM is sufficient for describing asymmetry trends (e.g., as discussed for Figs. 2 and 3) and linking

+ with u′w′w′ in the structural model. Specifically, the fourth-order cumulant terms, in addition
to any other even-order cumulants, cancel out from the expression for 
+ in Eq. (17) as earlier
noted.

Instead of evaluating the CEM for joint pdfs of u′ and w′, Fig. 6 directly compares the prediction
of �So from Eq. (11) with measurements of �So from Fig. 3. Given the high coefficient of
determination R2 = 0.96, the CEM in Eq. (11) closely predicts the observed �So value. The
agreement between the measurements and the third-order cumulant expansion demonstrates the
ability of the CEM to capture the essential features in the joint pdf of u′ and w′ needed to predict
�So. These features are quantified through the third-order moments Mi j , which are further evaluated
in the following subsection. The success of the third-order CEM in Fig. 6 is consistent with prior
studies that showed the CEM prediction of �So to agree well with measurements for canopy flows
on flat and complex terrain, stratified atmospheric surface layer flows, and even flow below ice
sheets [15,16,22,24,36,60].
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FIG. 6. Comparison of the measured stress fraction �So with predictions by the third-order cumulant
expansion in Eq. (11). The dashed line (- - -) is a 1:1 relation indicating a correct prediction. Data symbols
correspond to the cases in Table I, where the outer wake region is excluded.

C. Links between Mi j , �So, and �+

One of the key results of Raupach [9] was the observed linear relations between all the third-order
mixed moments Mi j related to u′ and w′. Raupach [9] additionally suggested a linear relation
between Mi j and �So, consistent with the CEM prediction in Eq. (11) if M11 is constant. Figure 7
evaluates the relations between the third-order moments Mi j , including for two cylinder cases
(©,♦) from the original study [9]. The figure confirms the linear relations between Mi j for a wider
range of roughness geometry and Reynolds numbers.

The 95% statistical confidence intervals for each Mi j statistic are represented by the example
error bars in Fig. 7. The intervals were estimated from the mesh PIV cases using a bootstrap
resampling method [71]. The statistical uncertainty is due primarily to the number of independent
samples, i.e., PIV frames, and varies minimally with wall-normal distance or between the mesh and
smooth-wall cases. The intervals demonstrate the mixed products M21 and M12 have less uncertainty
and are more converged statistically than the skewnesses. Moderate scatter is observed for M03

across cases, where the wall-normal skewness remains positive for the sandpaper data in the RSL
as previously noted. However, this scatter is comparable to the confidence intervals and is not
interpreted here as a physical effect of the roughness.

Aside from this scatter, the consistency of the trends in Fig. 7 for a range of Reynolds number and
surface properties (i.e., smooth, cylinders, woven mesh, sandpaper) suggests the slope parameters
bu,w,uw are invariant and there is a generic similarity in the third-order moment relations. While
the roughness properties influence the magnitude of Mi j within the RSL as seen in Fig. 2, the
same relation between the statistics is maintained. The results therefore support the structural model

FIG. 7. Linear relations between the third-order moments Mi j in the roughness sublayer and logarithmic
regions. Dashed lines (- - -) represent the linear relations given by Raupach [9]. The error bars are estimated
95% confidence intervals for the mesh PIV cases. Data symbols correspond to the cases in Table I.
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(a) (b)

FIG. 8. Behavior of the parameters M11 and �So in Eq. (12). (a) Wall-normal profile of the correlation
coefficient M11 for (u′, w′). (b) Approximate linear relation between M12 and �So where the the dashed line
(- - -) is M12 = −1.05�So. Data symbols correspond to the cases in Table I, where the outer wake region is
excluded from (b).

simplification in Eq. (12), where the linear relations are used to express the model in terms of
�So and M21. The observed similarity may in part be due to similar coherent eddy structure in
high-Reynolds-number roughness sublayers; recent simulations found the sublayer to be populated
by diffuse larger-scale roller structures which are prominent in the inertial layer [72].

Linear regression fits were used to prescribe parameters bu,w,uw. However, the resulting values
depended on which regions of the boundary layer were included in the fit and whether the separate
fits were conducted on each data set (due to small nonzero intercepts for certain cases). At this
time it is unknown whether the intercepts are a physical result or an artifact of the experiments.
For M21 = buM30 and M12 = buwM21 there was no statistically significant difference from bu ≈ 2
and buw ≈ −1 [9]. A larger difference was observed for the fitted value bw ≈ −0.9 compared to
the original finding bw = −1.16. The most likely reason for the difference is the outer wake region
behavior as discussed in Sec. III B. There is a shift in the linear trends between Mi j in the outer
wake region, which we attribute to the influence of the free-stream condition on the flow statistics
and is the reason this region is excluded from the results. In contrast, the fitted relations in Raupach
[9] included points throughout a majority of the boundary layer thickness, such that these previous
relations may be affected somewhat by the distinct outer wake behavior.

In addition to the parameters bu,w,uw, the structural model for M12 in Eq. (12) includes the
correlation M11 and stress fraction �So that are evaluated in Fig. 8. Wall-normal profiles of

M11 = u′w′/σuσw are shown in Fig. 8(a). If outer layer similarity applies to u′2+
, w′2+

, and
u′w′+, then similarity should also extend to M11 in the outer layer. The values in Fig. 8(a) are
in good agreement with the previous cylindrical cases with M11 ≈ −0.45 [9], and the observed
differences between cases may be due to experimental uncertainties. The DNS profile suggests
M11 decreases moderately from −0.35 to −0.4 across the log region. This trend is consistent
with theoretical velocity profiles, i.e., streamwise variance decreasing logarithmically, constant
wall-normal variance and turbulent shear stress [69]. Due to the z-dependent trend in the log region,
in addition to possible geometry-specific decorrelating effects in the RSL, the M11 profile is an input
for the structural model and is not assumed to be a constant parameter except where noted.

If M11 is assumed to be constant, a linear relation between M12 and �So emerges from Eq. (12).
A comparison of M12 and �So is shown in Fig. 8(b). The approximation of the simplified linear
relation appears valid, which follows from the relatively constant M11 profile in Fig. 8(a). The slope
of the dashed line in Fig. 8(b) results from Eq. (12) with the bu,w,uw values listed in Fig. 7 and the
approximate coefficient M11 ≈ −0.35. The estimate aligns well with the observed comparison, and
the model prediction is further evaluated in the next section.

The central parameter of the second structural model is the asymmetry metric 
+ shown in Fig. 9.
The figure compares the relation between 
+ and the velocity skewnesses with the CEM prediction
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(a) (b)

FIG. 9. Relation between 
+ and the skewness of velocity fluctuations. (a) Comparison of 
+(u) and
streamwise skewness M30. (a) Comparison of 
+(w) and wall-normal skewness M03. The dashed lines
(- - -) are the expression in Eq. (17). Data symbols correspond to the cases in Table I, where the outer wake
region is excluded.

in Eq. (17). As expected, the agreement is better for the u component in Fig. 9(a) when compared to
the w component in Fig. 9(b) given that the pdf of u experiences greater asymmetry. The agreement
between the third-order CEM and measurements of M30 and 
+ is encouraging and suggests that
roughness geometry may not impact the relation between 
+ and M30. Taking this result together
with the relation between M12 and M30 in Fig. 7, the coefficient bu = 2 is also deemed insensitive
to surface roughness as it applies to the second structural model in Eq. (18).

D. Evaluating the two structural models

The evidence thus far suggests the linear relations between Mi j , �So, and 
+ are robust, and the
model coefficients bu,w,uw appear independent of the Reynolds number and roughness geometry,
even within the RSL. Having evaluated the individual parameters, the present section compares the
two proposed structural models against direct measurements of u′w′w′. Recall the first structural
model in Eq. (13) is based on �So while the second in Eq. (19) is based on 
+ (derived from the
streamwise velocity component u′ only). Rather than evaluating the models in terms of the statistical
moments, e.g., M12, we normalize both the structural models and the measurements of u′w′w′ by
u3

τ . With this normalization, the structural models are expressed as

u′w′w′+ ≈ 2
√

2π
1
3 M11(bw − bu) + (buw − 1)

u′w′+σ+
w �So ≈ 6

√
2π

bu
σ+

u w′w′+(0.5 − 
+). (20)

The performance of the two structural models is shown in Figs. 10(a) and 10(b). There is close
agreement between the model prediction and the measurements as indicated by the high coefficient
of determination (R2) values of the comparison. A majority of the model error appears to be due
to a small offset between the model and the measurements. The offset may be related to the small
nonzero intercept observed in previous linear relations such as in Fig. 7. Note that the offset has no
effect on the gradient ∂u′w′w′/∂z, which is ultimately the term of interest in the momentum flux
budget. Visually, the �So structural model appears more accurate in the RSL, though the R2 value
is comparable for both models.

In the log region, the profiles of u′w′+(z) ≈ −1 and σ+
w (z) ≈ 1.1 are relatively constant both in

theory and in the Fig. 1 measurements. Taking these values with M11 ≈ 0.35 and the fitted bu,w,uw

values, further model approximations yield the simplified expressions

u′w′w′+ ≈ 2.36�So ≈ 9.1σ+
u (0.5 − 
+). (21)
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(a) (b) (c)

FIG. 10. Comparison between modeled and measured momentum flux transport term u′w′w′. For the two
proposed structural models, the constants are bu = −2, bw = −0.9, and buw = −1. (a) �So model in Eq. (13);
(b) 
+ model in Eq. (19); (c) traditional gradient-diffusion model in Eq. (14) is added for reference. Each
axis is normalized by u3

τ . The dashed lines (- - -) are 1:1 relations indicating a correct prediction, except for
(c) where the dashed line is a linear regression. Data symbols correspond to the cases in Table I, where the
outer wake region is excluded.

That is, the transport term ∂u′w′w′/∂z is primarily driven by changes in asymmetry quantified by
∂�So/∂z or ∂
+/∂z. These gradients are small in the log region, as seen in Figs. 3 and 10(a), but
can be large within the RSL or even the viscous buffer region, which was studied here in less detail.
While the approximated constants u′w′+ ≈ −1 and σ+

w ≈ 1.1 appear to match RSL measurements
for the present rough-wall cases, the near-wall behavior of u′w′ and σw is likely modified by the
roughness, especially closer to the roughness canopy, which was not measured here. These constants
in Eq. (21) provide a simpler form of the structural models than in Eq. (20), but the simplification is
likely at the expense of predictive accuracy in the RSL.

To emphasize the skill of the proposed structural models, the traditional gradient-diffusion
closure in Eq. (14) is evaluated for comparison in Fig. 10(c). The comparison uses the mixing length
�m = κz in the log region and �m = κzRSL (a constant) in the RSL, where zRSL is the height of the

roughness layer. The average TKE was estimated as e = 1
2 × 3

2 (u′2 + w′2) for the experimental
cases where the spanwise velocity component v was not measured. Due to the proportional relation
in Eq. (14), the prediction was evaluated using a linear regression to data points in the log region
rather than a direct comparison against u′w′w′+. A finite bias is apparent in the gradient-diffusion
closure: the measured u′w′w′ is nonzero where ∂u′w′/∂z ≈ 0, leading to a nonzero intercept. This
bias is accounted for in the structural models that correctly predict the location for u′w′w′ = 0 in
Fig. 10(a,b). Whereas the structural models predict u′w′w′ within the RSL, the gradient-diffusion
closure for u′w′w′ deviates appreciably from measurements, likely in part due to the need for a
more realistic estimate of �m(z) in this region. Unlike �m(z), the structural model parameters bu,w,uw

appear independent of both z and roughness properties such that “tuning” model parameters is not
necessary to predict stress transport in the roughness layer. However, roughness types spanning
a wide range of statistical properties [73,74] including fragmented or “patchy” roughness [75,76]
and porous surfaces such as gravel beds [77] are needed to confirm the invariance of the model
parameters. We additionally note the present measurements do not include canopy roughness.

V. DISCUSSION

The utility of structural models for u′w′w′ as closure of the turbulent shear stress budget is
now discussed. The budget is simplified by first assuming M11 = u′w′/σuσw is constant as earlier
discussed. Using the first structural model from Eq. (13), the simplified momentum flux budget in
Eq. (6) reduces to a linear first-order nonhomogeneous ordinary differential equation with variable
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coefficients for the shear stress given as

A1(z)
du′w′

dz
+ u′w′

[
A2(z) − CR

τ (z)

]
= (1 − CI )σ 2

w

dU

dz
, (22)

where the last term on the right-hand side is the nonhomogeneous (or source) term (mechanical
production in this case), and coefficients A1(z) and A2(z) are related to �So as

A1(z) = 2
√

2π
1
3 M11(bw − bu) + (buw − 1)

σw�So,

A2(z) = 2
√

2π
1
3 M11(bw − bu) + (buw − 1)

d (σw�So)

dz
. (23)

When A1(z) �= 0, the mathematical form of Eqs. (22) and (23) can then be compactly represented
as

du′w′

dz
+ u′w′P(z) = Q(z),

P(z) = 1

A1(z)

[
A2(z) − CR

τ (z)

]
, (24)

Q(z) = 1

A1(z)

[
(1 − CI )σ 2

w

dU

dz

]
.

The general solution can be derived using the integrating factor method μ(z) to yield the shear stress
at an arbitrary wall-normal position z = zr :

u′w′(zr )μ(zr ) = u′w′(0)μ(0) +
∫ zr

0
Q(z)μ(z) dz, μ(z) = exp

[ ∫
P(z) dz

]
. (25)

The nonlocality of the relation between dU/dz and u′w′ is now evident. Specifically, to compute
the turbulent stress at one arbitrary position zr necessitates depth integration of Q(z) and P(z) from
z = 0 to z = zr , and thus information on the turbulent state at other (i.e., nonlocal) positions. The
determination of the precise shapes of Q(z) and P(z) necessitate knowledge of σw, τ (z), and �So

even when M11 is assumed to not vary appreciably with z. The focus here is on the shape of �So,
especially in the roughness sublayer, which is the least understood term in the list of variables
impacting Q(z) and P(z). Before discussing a possible generic shape for �So, a number of points
can be made. Equations (22) and (23) suggest that u′w′ is linearly related to dU/dz only when
d (u′w′σw�So)/dz = 0. Otherwise, the connection between u′w′ and dU/dz is nonlocal. In contrast,
K-theory predicts u′w′ = 0 for dU/dz = 0 as in Eq. (3). Returning to the �So profile, its shape
appears to be robust in canonical turbulent boundary layers as shown in Fig. 3, where the value
�So ≈ −0.1 is relatively constant within the log region. In the viscous buffer region, �So changes
sign consistently at z+ ≈ 15 in both previous studies [3,8] and the present DNS case, suggesting the
�So(z+) profile may be universal for the inner layer of smooth-wall flows.

While σ+
w does not vary appreciably in the RSL, the behavior of �So within the RSL is more

difficult to parametrize. Figure 11 shows the �So profile in the RSL, where position z is fixed
relative to the top of the RSL, zRSL. The position zRSL was determined based on the start of the
inertial dynamics, and the cylinder roughness cases are based on the third-order Mi j profiles as
previously discussed. The increasing importance of sweep events due to roughness—reflected by
∂�So/∂z— is related closely with the roughness and canopy sublayer extent as suggested in the
literature [9,15,21,78]. From Fig. 11, it is inconclusive as to whether the �So profile is invariant in
the upper portion of the RSL, or if the amplitude of �So is a function of the roughness. Additional
experiments are necessary to assess the sublayer trends in greater detail. A collapse of the curves
within the RSL could not be achieved using a single roughness parameter such as k instead of the

104605-16



VELOCITY ASYMMETRY AND TURBULENT TRANSPORT …

FIG. 11. Profiles of �So in the sublayer of the rough-wall flow cases, where the position is relative to the
RSL extent zRSL. Data symbols correspond to the cases in Table I.

diagnostic parameter zRSL. Similar to the extent of the RSL, it is likely that multiple roughness
parameters, e.g., geometric roughness density in addition to height, are necessary to fully describe
�So [52]. Nonetheless, Fig. 11 establishes �So as a function of the roughness and distance above the
roughness in the RSL, demonstrating the relevance of the structural model in rough-wall flows as
an alternative to neglecting transport entirely. While the present evidence does not provide a means
to determine �So a priori in the RSL, direct measurements of �So can be used to predict stress
transport through the structural model in Eq. (13). In short, the robust character of �So can offer an
extra closure constraint that may be exploited in Eq. (22), though a complete characterization of the
�So(z) profile is a topic better kept for a future inquiry. Such a characterization of �So, in addition
to general expressions for σw(z) and τ (z), is required to further advance the general solution in
Eq. (25).

The present results can be used as a blue-print to inform wall modeling in large-eddy simulations
or WRF. A common equilibrium wall model employed in simulations estimates the surface shear
stress using the closest grid point and a log-law formulation based on the gradient diffusion relation
in Eq. (3). It has been demonstrated here that this relation is insufficient if the first simulated point
is within the RSL or CSL, in which case a correction for the stress transport is warranted. Further,
Fig. 10 suggests the closure models for u′w′w′ based on �So and 
+ require less customization in
the RSL than existing gradient-diffusion stress models using a mixing length. The derived structural
models therefore provide a viable means to improve wall modeling within the sublayer. However,
specific challenges must be addressed prior to practical implementation of the structural models in
simulations. Foremost, the �So profile shape and amplitude must be defined parametrically using k
or ks to characterize the RSL behavior and the transition to the inertial log layer. Figure 11 indicates
such parametrization may be possible, at least for idealized “k-type” roughness geometries (i.e.,
roughness types where no recirculation exists within the spaces between the elements). The second
challenge is to then solve for the stress, which is not straight forward as evidenced by the nonlocal
connection between �So and u′w′ in Eq. (25).

The key stated advantage of the �So and 
+ structural models is the possible universality in
the model parameters, as opposed to the gradient-diffusion closure in Eq. (14) that requires tuning
of the mixing length �m(z) within the RSL. While not ideal, the assumed dependency u′w′w′ ∝
∂u′w′/∂z of the second-order gradient-diffusion closure may be deemed acceptable in Fig. 10(c) for
specific applications. Specifically, second-order gradient diffusion accounts for the general trend of
u′w′w′(z), despite error in the amplitude introduced by the choice of �m. The result suggests that the
connections explored here between surface roughness, velocity asymmetry, and the sweep/ejection
imbalance can be further related to gradients in the second-order statistics. For instance, the CEM
for �So in Eq. (11) can be simplified using gradient-diffusion closures for the third-order moments
rather than the linear relations employed earlier [22]. In this alternate simplification, there is a direct
connection between the behavior of sweeps and ejections and gradients in the turbulent energy and
shear stress.
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VI. CONCLUSIONS

When analyzing the momentum turbulent flux budget, it is shown that K-theory is valid where
gradients in the transport term ∂u′w′w′/∂z are small relative to the production term. This condition
is met in the logarithmic or equilibrium layer of the boundary layer, but transport is increasingly
important within the viscous buffer and roughness sublayer regions. To provide a means for
predicting stress transport in these regions, a link between the transport term u′w′w′ and asymmetry
in the velocity statistics was established here using third-order cumulant expansion. One of the main
assumptions in deriving this link is a proportionality between the third-order statistical moments
Mi j that does not vary with roughness values (i.e., bu,w,uw are universal constants). The asymmetry
manifests itself in a finite imbalance �So between the contributions of sweeps and ejections to the
momentum flux. The derived link between the turbulent flux transport term and �So is shown to be
analogous to other structural models representing the much studied transport of TKE (FTKE) near
rough and smooth walls.

The coefficients bu,w,uw in the derived structural model are shown here to be invariable with
surface roughness for the limited number of roughness geometries tested, implying that the effect of
roughness is entirely absorbed by �So. The roughness effect can alternatively be quantified using a
simpler metric of asymmetry 
+ based on the fraction of time where u′ > 0. The invariance of the
model relations within the RSL also implies a form of “structural similarity” where the turbulent
eddies maintain the same relations between u′w′w′, �So, 
+, and Mi j regardless of roughness and
Reynolds number. The two structural models proposed have been compared against wind tunnel
experiments and DNS for smooth and rough walls including two roughness geometries and one
decade range in Reynolds number. The agreement between measured and modeled u′w′w′ is quite
acceptable despite the numerous simplifications made.

While the structural model employing �So was discussed here in more detail due to its physical
implications, the diagnostic metric 
+ is simpler to measure than �So and the third-order moments
Mi j . Thus, the second model may be convenient to employ in practice to assess the significance of
the transport term. From a broader perspective, the link between 
+ and the flux transport term may
invite the use of telegraphic approximation and clustering properties in future work. Telegraphic
approximation has received some attention in the boundary layer meteorology and turbulence
literature [61,79–87] so as to establish analogies to concepts such as self-organized critically and
intermittency. However, no connection to classical turbulence closure modeling has been offered.
The work here may be viewed as an embryonic step in this direction.
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