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By using direct numerical simulations of up to a resolution of 512 × 512 × 32 768
grid points we discover the existence of a metastable out-of-equilibrium state in rotating
turbulence. We scan the phase space by varying both the rotation rate (proportional to the
inverse of the Rossby number, Ro) and the dimensionless aspect ratio, λ = H/L, where L
and H are the sizes of the domain perpendicular and parallel to the direction of rotation,
respectively. We show the existence of three turbulent phases. For small Ro but finite λ, we
have a split cascade where the injected energy is transferred to both large and small scales.
For large λ and finite Ro there is no inverse cascade and the energy is transferred downscale
in Fourier space only. Surprisingly, between these two regimes, a third phase is observed
as reported here. Consequently, for certain intervals of Ro and λ, energy is no longer
accumulated at arbitrarily large scales; rather, it stops at some characteristic intermediate
length scales from where it is then redistributed forward in Fourier space, leading to a
flux-loop mechanism where the flow is out of equilibrium with vanishing net flux and
nonvanishing heterochiral and homochiral subfluxes. The system is further characterized
by the presence of metastability explaining why previous numerical simulations were not
able to detect this phenomenon, requiring an extremely long observation time and huge
computational resources.

DOI: 10.1103/PhysRevFluids.5.104603

I. INTRODUCTION

Statistical systems can develop critical behavior, with abrupt macroscopic changes at varying
some control parameters, like temperature or magnetic field [1]. Averaged quantities can show
discontinuous or continuous variations across the critical lines/points where the transition occurs in
the phase space. Experimental and numerical realizations can be affected by long transients gener-
ated by the presence of metastable states corresponding to local minima of the (free) energy [2,3].
Many attempts have tried to transfer such descriptions to out-of-equilibrium systems quantitatively
[4,5]. The critical behavior of stationary systems in the presence of energy injection mechanisms,
dissipation, and nonvanishing fluxes remains a major topic of current research in fluid dynamics and
granular and active matter and lacks systematic theoretical understanding [6–8]. A paradigmatic ex-
ample of a (phase) transition is the laminar/turbulent jump observed in Poiseuille and Couette flows
when changing the forcing intensity [9–11]. In this paper, we investigate the important case of rotat-
ing turbulence where the control parameter, given by the intensity of the Coriolis force, affects the
symmetries of the macroscopic flow without injecting energy [12–16]. In this setup, it is known that
for sufficiently weak rotation rate, �, the system behaves as 3D homogeneous and isotropic turbu-
lence transferring energy to small scales only (forward energy cascade), while for � above a critical
value, �c, 3D fluctuations are suppressed, the flow becomes quasi-2D, and energy is transferred with
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a split cascade to large scales also [7,17]. As the domain size H in the direction of rotation becomes
larger, �c increases [18–20]. Arguments based on wave-turbulence theory suggest that the inverse
flux vanishes in the infinite volume limit, predicting that limH→∞ �c → ∞ [21]. More recently,
considering an asymptotic form of the governing equations for large �, it was shown that �c ∝ H
[22]. However, for finite � we do not know the precise functional dependence of the boundary
�c(H ) or the nature of the transition. Despite the importance of such questions for many geophysical
and engineering applications we still do not have a satisfying understanding of any of them. In this
paper, we report about an even richer phenomenology due to the existence of a region in the (λ, Ro)
phase space, where turbulence develops a third macroscopic out-of-equilibrium metastable state,
characterized by a flux-loop cascade, where the flow organizes to spontaneously stop the tendency
to condensate energy in larger and larger scales and enters a stationary regime characterized by the
presence of a quasiordered array of turbulent columnar vortices, akin to a vortex crystal [23].

II. PHYSICAL AND NUMERICAL SETUP

We begin by considering the flow in a rectangular periodic domain with aspect ratio λ ≡ H/L
and dimensions 2πL × 2πL × 2πH in a rotating frame where rotation is along the direction with
dimension 2πH . The governing equations for the incompressible velocity field, u, are

∂t u + u · ∇u + 2� × u = −∇P + ν�u + f, (1)

where ν is the kinematic viscosity, f is an external forcing, and 2� × u is the Coriolis force produced
by the frame rotating with intensity �. The forcing term f used is divergence free and is a delta-
correlated random process, which in Fourier space can be written as

〈 f̂ (t, k) f̂
∗
(t ′, q)〉 = f0�(k f )δk,qδ(t − t ′), (2)

where �(k f ) is a stepwise function that is equal to one between the modes with amplitude k f and
k f + 2. The amplitude chosen was f0 = f1/λ (see Table I for values), so that the total injection rate
ε = 〈 f · u〉 remains fixed, where 〈•〉 means an average over the forcing realization or on the whole
fluid volume. In order to reduce viscous effects and be able to push the inertial range and thus have
a wide enough range for the inverse cascades but at the expense of generating bottlenecks at high
wave numbers [24], we used a hyperviscosity model where the momentum equations takes the form

∂t u + u · ∇u + 2� × u = −∇p + ν(−1)α+1�αu + f (3)

with α = 2.
In the present work, we keep k f L = 20 fixed (except when explicitly noted), using λ as con-

trol parameter. Besides λ the other two nondimensional quantities are given by Rossby, Ro =
ε1/3k2/3

f �−1, and Reynolds, Re = ε1/3k−4/3
f ν−1, numbers. Time-evolving quantities are shown as

a function of t̃ = t/τ f where τ f = (εk2
f )−1/3 is the characteristic time associated with the forcing.

The equations are solved using a parallel pseudospectral code (see details in Ref. [25]) using grids as
big as 512 × 512 × 32 768 for the largest aspect ratio λ = 64. It is important to stress that accessing
high aspect ratios is key to attack the infinite volume limit in the direction parallel to rotation and
to assess potential singular effects induced by a finite separation of the 2D plane at k‖ = 0 from the
3D modes with k‖ > 0 in Fourier space [26]. We also fixed L = 1 and ε = 1. In Table I we provide
a list of all parameters used in each of the simulations presented in this paper.

III. RESULTS

A. Identification and characterization of macroscopical states

Figure 1(a) summarizes the main results of our paper, showing the existence of three dif-
ferent macroscopic phases of the rotating flow in the (λ, Ro) space, consisting of (1) a pure
forward-cascade regime, (2) a new flux-loop regime (the choice of name will become obvious later),
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TABLE I. All simulations were produced with a horizontal resolution of Nx = Ny = 512, box size L = 2π ,
hyperviscosity of order α = 2, forcing wave number in the range range [k f , k f + 2] with k f = 20, forcing
amplitude f0 = f1/λ with f1 = 1.66, viscosity ν = 4 × 10−7, energy injection rate of ε = 2.02, and Reynolds
number defined on the forcing scale Re = 125 (see main text). The parameters shown in the table are the box
aspect ratio λ = H/L, the number of collocation points in the vertical direction Nz, rotation rate �, Rossby
number defined in terms of the energy injection properties, Ro = (ε f k2

f )1/3/�, and the regime the simulation
is in.

λ Nz � Ro Regime t f /τ f

1 512 37.5 0.204 Split 764
1 512 34 0.225 Split 601
1 512 33 0.232 Split 373
1 512 30 0.255 Split 1041
1 512 26 0.294 Split 565
1 512 22.5 0.340 Split 938
1 512 20 0.382 Split 469
1 512 18.75 0.408 Split 1480
1 512 17 0.450 Flux loop 649
1 512 15 0.510 Flux loop 1065
1 512 15 0.501 Flux loop 9418
1 512 13.5 0.566 Flux loop 1161
1 512 12.5 0.611 Flux loop 2997
1 512 11.6 0.659 Forward 1215
1 512 10.8 0.708 Forward 1203
1 512 10 0.764 Forward 1480
1 512 7.5 1.019 Forward 3249
2 1024 40 0.191 Split 229
2 1024 32 0.239 Split 470
2 1024 30 0.242 Split 1380
2 1024 28 0.274 Split 1088
2 1024 15 0.481 Split 1887
2 1024 27.5 0.278 Flux loop 657
2 1024 26.4 0.290 Flux loop 615
2 1024 22.5 0.340 Flux loop 663
2 1024 18 0.425 Flux loop 747
2 1024 16.5 0.464 Flux loop 657
2 1024 14.5 0.528 Flux loop 440
2 1024 13.9 0.551 Flux loop 1760
2 1024 12.5 0.613 Forward 1025
4 2048 70 0.109 Split 663
4 2048 60 0.128 Split 871
4 2048 50 0.153 Flux loop 778
4 2048 42.5 0.180 Flux loop 1019
4 2048 30 0.249 Flux loop 2298
4 2048 27.5 0.279 Flux loop 856
4 2048 20 0.383 Flux loop 1049
4 2048 15 0.507 Flux loop 6398
4 2048 13.9 0.551 Forward 1749
4 2048 12.5 0.613 Forward 1116
8 4096 30 0.246 Flux loop 1519
16 8192 30 0.246 Flux loop 1296
32 16384 30 0.244 Flux loop 1136
64 32768 30 0.247 Flux loop 988
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TABLE I. (Continued.)

λ Nz � Ro Regime t f /τ f

8 4096 15 0.511 Forward 3510
16 8192 15 0.480 Forward 1531
32 16384 15 0.481 Forward 1507
64 32768 15 0.479 Forward 1181

and (3) a split-cascade regime. In Fig. 1(b) we show for the subset of simulations with λ = 1 and at
various Ro the isotropic energy spectra, defined as

Ek (t ) = 1

2

∑

k�|k|<k+1

|ûk(t )|2,

where ûk(t ) are the Fourier coefficients of the velocity field, evaluated at the end of each respec-
tive simulation. The direct cascade regime (black dashed lines) does not develop any large-scale
fluctuations and peaks at the forcing scale. The split-cascade regime (blue dash-dotted curves)
showcases both forward and inverse cascades, and the simulations are stopped when the peak at
the largest horizontal scale, k � 1, is well developed. The novelty here is given by the flux-loop
phase (solid green lines) showing an intermediate spectral behavior. In this case, the energy spectra
are much more irregular, break self-similarity, and have their largest peak at an intermediate wave
number, k � 5. To emphasize this the inset of Fig. 1(b) shows the evolution for the integral
length (�/L)−1(t̃ ) = L

∫
kE (k, t̃ ) dk/

∫
E (k, t̃ ) dk. It tends to three distinct values depending on

the case: the full box size L for the split-cascade case, an intermediate value � ∼ L/5 for the flux
loop, and � ∼ 1/k f for the forward cascade. Finally Fig. 1(c) shows the evolution of the total
energy, E (t̃ ) = ∑

k Ek (t̃ ), for some of the most characteristic (λ, Ro) values. The energy in the
forward cascade saturates quickly to a small value. In the split-cascade regime, the energy increases
constantly. For the flux-loop cases, all curves change concavity approaching saturation at times well
before any sign of saturation is observed for the split-cascade case.

FIG. 1. (a) (λ, Ro) Phase space. Different symbols represent the three macroscopic turbulent cascade
phases: forward, flux loop, and split. Red continuous lines are a guide for the eye to distinguish the three phases.
Red dotted lines represents possible asymptotics behavior in the limit Ro → 0 and λ → ∞ (see discussion in
the text). The time evolution of the energy of the simulations marked with empty symbols is shown in panel (c).
(b) Instantaneous energy spectra for fixed aspect ratio, λ = 1, at different Rossby numbers 0.1 � Ro � 1. For
flux-loop and direct cascade cases the spectra are plotted in the stationary regime; for the split-cascade regime
we used the final time when we stopped the simulation. All spectra are evaluated at t f , the final time of each
respective simulation. Inset: time evolution of the integral scale �(t̃ )/L for some of the simulations. (c) Time
evolution of the total energy, E (t̃ ), for some characteristic (λ, Ro) values [represented with empty symbols in
panel (a)]. Line colors distinguish the three phases following the same color code of symbols in panel (a).
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FIG. 2. (a–c) Visualizations of the parallel component of the vorticity for a split-cascade case, a flux loop
case, and a forward-cascade case, respectively. The direction of the rotation axis and the forcing length are
shown in (a). The three simulations have λ = 1 and Ro = 0.25, 0.50, and 0.71, respectively. (d–f) Total and
chirally decomposed fluxes, for the three regimes shown in the top row.

In Figs. 2(a)–(c) we show visualizations of the vorticity projection in the direction of the rotation
axis for three characteristic data sets representing the three different phases at late times, and in
the Supplemental Material we show movies comparing their time evolutions (see Appendix B and
Ref. [27]). In the split-cascade regime [Fig. 2(a)], the system forms many corotating columnar
vortices which eventually merge into one. In the forward-cascade regime [Fig. 2(c)], no large-scale
coherent vortical structures are formed, as expected. In the new flux-loop regime [Fig. 2(b)], the
columnar vortices form but do not merge and get quasistuck in a lattice-like structure that persists in
time (the movie in the Supplemental Material [27] shows this explicitly). Similar structures, deemed
“vortex crystals,” have been observed in systems like 2D point vortices [23,28], 2D turbulence
[29–31], Bose-Einstein condensates [32,33], and even Jupiter’s atmosphere [34]. In particular,
asymmetric states where the system resembles a crystal with defects, like what is shown in Fig. 2(b),
have been shown to be equilibria of corotating point vortex systems [23,28]. Note that in 2D
randomly forced turbulence there is a symmetry between positive and negative vorticity. As a result,
the kind of structures that we observe here are connected to the asymmetry between corotating and
counterrotating vortices introduced by rotation and 3D effects.

It is worth noting that the vortex crystal state is formed in the absence of any large-scale damping
term to suppress the inverse cascade. The stationarity of the energy spectrum then implies that
the total inverse energy flux at k < k f has to be zero. Nonetheless, the spectrum is far from the
Ek ∝ k2 shape predicted by a simple equilibrium distribution [35,36]. To resolve this puzzle we
show in Figs. 2(d)–(f) the total energy flux, �k = −i

∑
|k|�k

∑
p+q=k(û−k · ûp)(k · ûq), and its exact

decomposition in homochiral and heterochiral subcomponents, �k = �hom
k + �het

k , built in terms
of Fourier triads including modes with the same or opposite helicity signatures (see Appendix A
and Refs. [26,37] for a discussion about the importance of hetero- and homochiral properties for

104603-5



P. CLARK DI LEONI et al.

FIG. 3. Time to bidimensionalization t∗ as a function of Rossby number for aspect ratio λ = 1. Inset: Ratio
of the energy in the quasi-2D modes a function of time.

the energy cascade direction). In order to reduce fluctuations, fluxes are averaged on stationary or
quasistationary time windows. As one can see, the forward cascade [Fig. 2(f)] does not show any
exotic behavior; both the total flux and its subcomponents are zero in the k < k f range [38,39].
For the split-cascade phase in the range k < k f [Fig. 2(d)] we have the usual negative total flux as
a result of the negative contributions from the two helical subcomponents (in a quasi-2D regime
helicity does not play any role, and homo- and heterochiral channels are expected to be identical
[40,41]). The interesting and nontrivial result is shown in Fig. 2(e), where the total flux for k < k f is
zero, as it must be if the statistics are stationary, but it is the result of a balance between the forward,
�het

k > 0, and the inverse, �hom
k < 0, subflux contributions. Hence the name of a flux-loop state [7].

This highly intricate flux-loop balance is an out-of-equilibrium effect and has already been observed
in 2D but three-component flows [40] and in rotating flows with only three-component motions [42]
where similar peaked spectra were found.

From previous figures it is clear that the inverse cascade and the flux-loop phase are the results of
a competition between a tendency to become 2D-like contrasted by some residual 3D structures that
push energy forward. It is therefore interesting to assess the dynamical effects of these contrasting
forces. To do that, we measured the typical time it takes the energy to become concentrated near
the k‖ ≈ 0 plane, defined as the instant of time, t∗, when the ratio E (2D)(t∗)/E (t∗) becomes 0.5,
where E (2D)(t ) = ∑

|k·�|<1
1
2 |ûk|2 is the energy in quasi-2D modes. In the inset of Fig. 3 we show

the evolution of E (2D)(t̃ )/E (t̃ ) as a function of time for four different values of Ro. For both the split
and the flux-loop cases the flow asymptotically approaches quasi-2D states. The main panel of Fig. 3
shows the time t̃∗ versus Ro in a log-linear plot at fixed λ. When entering the flux-loop region, t̃∗
becomes extremely large and increases with Ro faster than exponentially, indicating the presence of
a possible divergence at the critical value of Roc � 0.65. The transition from the split to the forward
cascade as a function of the Rossby number has been also analyzed in a recent important study
[20], but with runs that evolved until t∗ = 30 only, and thus miss the development of the flux-loop
regime. In fact, the critical Rossby number reported in Ref. [20] is around the same value where we
see the transition from split to flux-loop cascades, and the growth rates they report (measured by the
rate of change of the vertical correlations) depend exponentially on Ro, the same way t̃∗ does for
Ro < 0.4. We note that t̃∗ indicates the time that the system becomes quasi-2D and starts to transfer
energy inversely that is well before the split or the flux-loop state is fully developed. For this reason
t̃∗ shows a smooth transition between these two states and diverges only when the forward-cascade
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regime is approached. Different observables, based, for example, on the integral length, are more
suitable to distinguish the properties of the split and flux-loop cascade.

B. Metastability

An important characteristic of the vortex crystals formed in the flux-loop regime is that they are
metastable, in the sense that the flow is trapped in this state for very long times (but can escape due to
fluctuations) and its appearance depends on the initial conditions and forcing history. Both of these
properties have been checked explicitly. The first one was checked by taking a stable simulation
under the flux-loop regime and sufficiently decreasing Ro. We found that this action destabilized
the vortex-crystal, forced the columns to merge, and made the system switch to the split-cascade
regime. However, the opposite is not true. When Ro is increased back to its initial value the system
does not return to the crystal state.

The second characteristic was checked by analyzing simulations with the same parameters but
different initial conditions and forcing history. We found that some simulations were able to stabilize
around a vortex crystal state, while others could not. In Fig. 4 we show an example coming from
two simulations performed with the same parameters (1, 0.45) but starting with different initial
conditions. In Fig. 4(a) we show the evolution of the total energy along with the visualizations of
the parallel component of the vorticity at different times in the insets, and in Fig. 4(b) we show
the energy spectra corresponding to both simulations, with the evolution of the integral scale also
shown in the inset. The simulation denoted with a solid green line forms a stable vortex crystal and
gets stuck in the flux-loop phase. The simulation denoted with blue line and round markers forms
a vortex crystal for a short time but then becomes unstable and switches to a dual-cascade regime.
Similarly as to what happens in the movie in the Supplemental Material [27], the vortices present in
the simulation start to merge when the system transitions to the split-cascade regime. We note that
the energy in the simulation entering the flux-loop regime has not yet saturated, nonetheless as its
integral scale has saturated and the peaks in its spectra are stable we can assess that the simulation
has reached the flux-loop state.

C. Robustness with respect to box size and Reynolds numbers

We present three figures showcasing the robustness of the flux-loop state when changing box
size and Reynolds number. In Fig. 5(a) we show the energy spectra for two simulations with λ = 1
and Ro = 0.5, but different Reynolds numbers. The simulation denoted with the solid line was
performed with all the parameters as Table I, while the simulation denoted with the dashed line
was performed using twice the linear resolution in every direction, so Nx = Ny = Nz = 1024 and
with a viscosity of 8 × 10−8. The inset shows the evolution of their respective integral lengths. The
flux-loop state, characterized by a peak spectra and small value of the integral length, is achieved for
both cases. In Fig. 5(b) we show the energy spectra for two simulations with λ = 16 and Ro = 0.25,
but different Reynolds number too. Here the difference in the Reynolds number stems from the
simulations being forced at a different wave number, where data shown with a dashed line are
forced at k f = 9, instead of k f = 20 as in all other simulations. The inset shows the evolution of
their respective integral lengths. Again, the flux loop is sustained even when changing the forcing
scale. Finally, in Fig. 5(c) we show the energy spectra for two simulations with the same Reynolds
number and aspect ratio, but that are forced at different wave numbers. One simulation is forced at
k f = 20 and has Ro = 0.5, while the other is forced at k f = 30 and has Ro = 0.43. The evolution
of their integral scales is shown in the inset, where the two curves overlap. As in the other two
examples, the flux-loop state is sustained when perturbing the system. In this case, making the
forcing scale smaller is akin to making the system larger.
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FIG. 4. Results from two simulations with the same parameters, (1,0.45), but that started from different
initial conditions. (a): Evolution of the total energy. The solid green line indicates the simulation that stays in
the flux-loop regime. The blue line with round symbols indicate the simulation that showed a brief flux loop
but then changes to a dual cascade. The insets show visualizations of the parallel component of the vorticity
field. (b) Energy spectra for the two simulations, with the same labels as (a). The inset shows the evolution of
the integral scale for each simulation.

IV. CONCLUSIONS

By using huge high-performance-computing resources we have studied the (λ, Ro) phase space
of rotating turbulence up to a resolution of 512 × 512 × 32768 grid points. We found the existence
of a metastable flux-loop regime, where the inverse energy cascade is stopped by a delicate balance
between hetero- and homochiral triadic nonlinear interactions, leading to metastable vortex-crystal-
like states. These states are stable for very long times but can transition to the inverse cascade regime
if perturbed strongly enough.

Observations of multiple large-scale, self-organized turbulent states are becoming more and more
common in the turbulent literature, having been observed in bounded flows [43], in anisotropic
sheared turbulence [44], in swirling flows [45], and in magnetohydrodamic flows [46]. They play a
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FIG. 5. (a) Energy spectra for two simulations with parameters (1,0.5) but different resolution. The
simulation with Re = 125 was performed on a grid of 5123 points, while the simulation with Re = 2000
was performed on a grid of 10243 points. (b) Energy spectra for two simulations with (16,0.25) but forced
at a different wave number. The simulation with Re = 125 was forced at k f = 20, while the simulation with
Re = 620 was forced at k f = 8. (c) Energy spectra for two simulations with Re = 125 and λ = 1. One was
forced at k f = 20 and has Ro = 0.5, while the other was was forced at k f = 30 and has Ro = 0.43. The insets
of all three figures show the evolution of the respective integral scales of each simulation.
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key role for both fundamental aspects, suggesting the existence of multiple attractors in the system
and applied ones, leading to huge variations in the global energetic balance for tiny changes in
the control parameters. The present study relates these metastable states with the boundaries of
two different states (forward and split cascading) in a phase diagram making the connection with
classical phase transitions.

Several important issues remain open, such as the functional behavior of the critical lines that
separate the different phases, the robustness of the metastable states in the limit Ro → 0, λ → ∞,
and λ → 0 [see dashed red lines in the phase-space summary of Fig. 1(a)], and the distribution of
the exit times from the crystal state. Furthermore, although the results shown here were found to be
robust and stable with respect to changes in the Reynolds number and box size (see Fig. 5), further
investigations reaching larger Re and larger box sizes would be desirable.
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APPENDIX A: HELICAL DECOMPOSITION

In this Appendix we provide the definition of the helical fluxes calculated in Figs. 2(a)– 2(c).
For this purpose we exploit the decomposition of any incompressible 3D flow into helical modes
proposed in Refs. [37,47]. From the incompressibility assumption it follows that u(x) is a solenoidal
vector field, hence its Fourier modes û(k) depend only on two linearly independent degrees of
freedom, and we can decompose the velocity field as

ûk(t ) = û+
k (t ) + û−

k (t ) = û+
k (t )h+(k) + û−

k (t )h−(k), (A1)

where h±(k) are the orthogonal eigenmodes of the curl operator, and hence each Fourier mode of
the velocity field satisfies

ik × ûsk
k = skûsk

k , (A2)

with sk = ±. The homochiral energy fluxes are made out of triads with the same chirality:

�hom
k =�

(+,+,+)
k + �

(−,−,−)
k , (A3)

�
(±,±,±)
k = − i

∑

|k|�k

∑

p+q=k

(
û±

−k · û±
p

)(
k · û±

q

)
, (A4)

while the heterochiral is given by all resulting triads with two Fourier modes of opposite chirality:

�het
k = �k − �hom

k , (A5)

where �k is the total energy flux defined in the main text as

�k = −i
∑

|k|�k

∑

p+q=k

(û−k · ûp)(k · ûq). (A6)

APPENDIX B: VIDEO MATERIAL

A visualization of the evolution of the inverse and flux-loop cascades can be found in the
uploaded video [27]. The movie provided shows the evolution of the inverse and flux-loop cascades.
The movie consists of volume renderings of the vorticity component along the direction of rotation,
ωz, as a function of time for three different simulations obtained with (Ro, λ): (0.25,1) split cascade
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(left panel);,(0.51,1) split/flux loop (center panel), and (0.58,1) flux loop (right panel). Notice the
metastable regime shown in the center panel where the inverse cascade first stops in a quasivortex
crystal state and then suddenly restarts, due to 3D vortex merging. In the bottom row of the same
video we present the energy spectra and total energy evolution for the same three simulations. Notice
that while energy increases in both the split-cascade and the flux-loop regimes, the rate of change
of the energy is considerably different between the two.
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