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We consider the use of probabilistic neural networks for fluid flow surrogate modeling
and data recovery. This framework is constructed by assuming that the target variables
are sampled from a Gaussian distribution conditioned on the inputs. Consequently, the
overall formulation sets up a procedure to predict the hyperparameters of this distribution
which are then used to compute an objective function given training data. We demonstrate
that this framework has the ability to provide for prediction confidence intervals based on
the assumption of a probabilistic posterior, given an appropriate model architecture and
adequate training data. The applicability of the present framework to cases with noisy
measurements and limited observations is also assessed. To demonstrate the capabilities
of this framework, we consider canonical regression problems of fluid dynamics from the
viewpoint of reduced-order modeling and spatial data recovery for four canonical data
sets. The examples considered in this study arise from (i) the shallow-water equations,
(ii) a two-dimensional cylinder flow, (iii) the wake of a NACA0012 airfoil with a Gurney
flap, and (iv) the NOAA sea surface temperature data set. The present results indicate that
the probabilistic neural network not only produces a machine-learning-based fluid flow
surrogate model but also systematically quantifies the uncertainty therein to assist with
model interpretability.
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I. INTRODUCTION

The uses of machine learning (ML) have been attracting attention for various applications within
the fluid dynamics community. In particular, ML approaches hold great potential for extracting
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complex nonlinear relations embedded in fluid flow data [1–5]. For example, the successes of
ML have been observed in several investigations into the development of closure models for
large-eddy simulation [6–9] and Reynolds-averaged Navier-Stokes simulation [10–15] where direct
numerical simulation (DNS) or experimental data have been used to improve conventional alge-
braic or differential-equation-based closures [16]. On many occasions, physics-informed turbulence
closure models have proven superior for canonical flows when compared to classical turbulence
models with their restrictive hypotheses. However, the generalization of such models for broader
applicability and their uncertainty quantification is only recently beginning to be explored [17,18].
Another promising avenue for ML is for addressing the challenges of conventional reduced-order
models (ROMs) [19,20]. Recent literature has demonstrated the capabilities of time-series methods
from ML [21–26] for reduced-space temporal dynamics prediction as well as nonlinear subspace
identification using image processing techniques [27–32]. A core motivation for exploring the use
of ML methods for ROMs stems from the fact that intrusive ROMs depend on the resolution of a
quadratic nonlinearity in proper orthogonal decomposition (POD) space [33], which is particularly
computationally challenging in high-dimensional systems dominated by advection-type behavior.
This leads to diminishing returns for equation-based ROMs when a large number of POD modes
need to be resolved. There is a large volume of literature devoted to the stabilization (or closure)
of intrusive ROMs when there is improper spectral support to resolve all frequencies [34–37].
Machine learning methods have also been used to learn these stabilizations to allow for hybrid
modeling tasks where intrusive ROMs are corrected by data [38,39]. This allows the ROM user
to balance the growing computational complexity of modal retention with data-driven corrections.
Another limitation of POD-based ROMs comes into play when there is incomplete knowledge of
the governing equations. This is encountered frequently when it is desirable to build emulators
from experimental data. While less invasive ML methods may still be employed to act as correc-
tions to equation-based models, there is considerable interest in directly building an efficient and
accurate emulation framework using the data alone. These ROMs are often termed nonintrusive
and have shown promising results for several applications where there may be a lack of underlying
knowledge about the governing equations and data sets may suffer from incomplete observations
[23,40–42].

In addition to turbulence closures and ROMs, we have also seen successful applications
for ML in fluid data estimation and reconstruction problems [43–49]. These efforts have re-
vealed that ML, due to its inherent ability to capture nonlinearity [50–52], is well suited to
spatial flow data reconstruction and outperforms linear-reconstruction methods such as gappy
POD [53] and linear stochastic estimation [54]. More recently, these investigated methods
have also been applied to particle image velocimetry data [55–57] and understanding an in-
terpretable relationship in between the predicted results and input data by focusing on vortical
motions [58].

Despite the aforementioned efforts, there are limited studies on interpretable ML methods,
particularly for the widely used neural networks. This is partly due to the fact that most ML methods
are utilized as black boxes, which make point predictions. A maximum likelihood estimation of
the loss function (usually a mean square error or cross-entropy cost function) via gradient descent
methods is usually executed for training, resulting in any trained neural network predicting the target
values in a deterministic fashion.

An alternative approach to obtain probabilistic outputs is to use Bayesian inference [59]. This
approach relies on interpreting each trainable parameter of the network to be a random variable
that may be sampled from (for each prediction). This leads to an output that can be characterized
with a probability density function. Such Bayesian neural networks (for examples, see reviews
in [60–63]) have been studied with various estimation schemes and applications. However, a
Bayesian inference of the model parameters of the neural network is often prohibitively expensive in
deeper architectures. Therefore, several approximations using variational inference [64–67], Monte
Carlo dropouts [68,69], Gaussian process approximations [70,71], kernel analog forecasting [72],
and maximum a posteriori estimation [73] are utilized to find the posterior of the weights during
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training. Most importantly, in the absence of such devices, a simple neural network result does not
account for reliable uncertainty quantification, model selection, or convergence requirements. The
view of reliability for predictions is further crucial for more practical applications, which require
transparency and accountability.

In the present paper, we utilize a class of neural networks which assume that the predictions
(in this case the observable) are generated from a distribution instead of providing just the best
estimate. A broad class of such frameworks is referred to as mixture density networks (MDNs) [74].
Several variants of this method [75–77] have been developed over the years and many have been
successfully applied in various scientific applications (for instance, in [78–80]). The probabilistic
neural network (PNN) we incorporate is a special case of MDN when the estimate is a single
Gaussian distribution, instead of a mixture of Gaussians.

We then consider its applicability for several canonical problems of fluid dynamics. While the
nature of the distribution is user defined and may be interpreted as an addition hyperparameter, we
utilize a unimodal Gaussian distribution. An attractive property of these networks is that a notion
of uncertainty quantification is built into their architectures and any prediction for an observable is
accompanied by an estimate for the corresponding uncertainty. This is obtained by assuming that the
network predicts the mean and the variance of the posterior density function given the inputs it sees.
The target is then compared to the mean of this density to compute a negative log-likelihood-based
distance metric (which is minimized).

The major highlights of this investigation are summarized as follows.
(i) We propose the use of a probabilistic neural network architecture for efficiently embedding

uncertainty quantification into data-driven tasks relevant to fluid flows.
(ii) We execute several tests to assess the strengths of the probabilistic framework for model

order reduction, forecasting, and spatial field recovery across different applications.
(iii) We also assess the robustness of the network architecture in the presence of noisy data and

incomplete information.
The present paper is organized as follows. The probabilistic neural network is introduced in

Sec. II. In Sec. III we apply the framework to representative problem settings for the ROM and
spatial fluid data recovery. We offer concluding remarks and future perspectives in Sec. IV.

II. PROBABILISTIC NEURAL NETWORKS

Conventional neural networks approximate an arbitrary mapping from inputs to outputs using a
number of trainable parameters called weights. However, such networks provide discrete classes as
either outputs (for classification problems) or continuous outputs (for regression). Generally, a full
description of the output, i.e., an output estimated as a probability distribution function (PDF) for
given inputs, is absent is such estimations. The MDNs, initially proposed in [74], aim to approximate
this conditional probability distribution, where the PDFs of the output, conditioned on the inputs, are
learned. The PDF is assumed to be a Gaussian mixture distribution [81]. This output is effectively
a posterior estimate that quantifies the uncertainty of the estimation of a previously unseen data
point.

Mixture density networks are not the only network architecture to provide uncertainty estimates.
Bayesian networks remain an active field of research [60,62,82,83], with focus on scalability and
interpretability of the posterior estimate. The probabilistic neural network framework we utilize
is a special case of MDNs where the conditional probability estimate is assumed to a Gaussian.
While MDNs with a large number of mixture components may approximate any arbitrary posterior
estimate, it is achieved at a cost of computational expense and a larger requirement of training data.

Network framework

Predictions provided by neural networks for inputs x (such as the sensor measurements in Fig. 1)
generally are determined from the minimization of a loss function as a function of weights E (w)
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FIG. 1. Representative schematic of the probabilistic neural network. We consider the flow reconstruction
from sensor measurements of a two-dimensional cylinder wake (Sec. III C 1) as an example problem.

(e.g., the mean square error). Such calculations between the truths yt (such as the whole field in
Fig. 1) and the predicted values from the network yp(x) lack a probability distribution of p(yp|x).
Hence, the error bars on the estimates are typically absent in dense neural network outputs. To
quantify uncertainty of the neural network estimates, the multidimensional surface of the loss
function E (w) has to be explored in addition to finding the global minimum.

To obtain the posterior of estimates p(yp|x), one may sample the network weights, thus providing
a fully Bayesian inference on the parameter estimates. However, this method is computationally
expensive unless the networks are shallow. For this reason, obtaining the probability distribution
functions of the predictions in a computationally feasible manner is a challenging problem. To
address this issue, we approach this problem by avoiding sampling altogether. Instead of mapping
the neural network from inputs F : x → y(x), one could define the mapping as F : x → (μ, σ ),
where the mean μ and standard deviation σ parametrize a Gaussian probability distribution function
N (μ, σ ). This approach ensures that the outputs p(yp|x) = N (μ(x), σ (x)) are accompanied by
uncertainty estimates assuming the errors are Gaussian.

For more complex probability distributions that depart from the Gaussian distribution, one may
parametrize the mapping distribution accordingly. One straightforward extension is the Gaussian
mixture model with the mapping F : x → (π1, μ1, σ1, π2, μ2, σ2, . . . , πN , μN , σN ), where πi is
the mixing probability for each Gaussian component satisfying the condition

∑m
i=1 πi = 1. The

distribution function in this model is a linear combination of several Gaussian components given by

p(y|x) =
m∑

i=1

πi(x)N (μi(x), σi(x)). (1)

The value of m is generally prespecified based on the expectation of a posterior distribution. For
example, if the output distribution is expected to be bimodal, one may select m = 2. The main
advantage of this Gaussian mixture modeling, however, is that extremely complicated complex
distributions can be approximated as a mixture of Gaussians with a large number of mixing
components (large N). Alternatively, the number of mixing components can also be independently
optimized along with the learning rate, decay rate, and other hyperparameters of the training scheme.
It should be noted that the training of the MDN itself is supervised. However, mixture probabilities
that are obtained from a fully trained network correspond to different clusters in the data that are
learned in an unsupervised fashion.

Since our PNN provides a distribution of the estimation p(yp|x) instead of a point prediction of
yp, the loss function has to be chosen accordingly to utilize the full distribution of the prediction.
This results in a crucial improvement of conventional neural networks. We choose to maximize
the average likelihood of the training data, which captures the full information about the entropy
between the distribution of the training data yt and the corresponding prediction yp. Hence, in
practice, our model F (x; w) is trained to obtain the optimized weights w by minimizing the error
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Algorithm 1. Training procedure for probabilistic neural network F .

1: w ← Initialize network parameters
2: while E is not converged do
3: Update probabilistic neural network
4: x ← Random minibatch from data set
5: for xk in x do
6: Compute Gaussian mixture parameters: (πk, μk, σk ) ← F (xk ; w)
7: Compute predictive distribution: p(yk,p|xk ) ← (πk, μk, σk )
8: end for
9: Compute negative log-likelihood: E ← − logL
10: Update network parameters: w ← Adam(∇wE, w)
11: end while

function E given in terms of the average log-likelihood L such that

w = argmin
w

[E], where E ≡ − logL = −
K∑

k=1

p(yk,p|xk ) log p(yk,t ), (2)

with k indicating each data point in the training data and K denoting a number of training samples.
The term p(yp,k|xk ) in the error function is evaluated for each data point using the output of the
network given in Eq. (1).

Cross entropy is a common error function used for classification problems using neural networks.
In a continuous limit (i.e., in regression problems like ours), the cross entropy reduces to the mean
square error between the outputs of the neural network and the targets. On the other hand, the
negative log-likelihood shown in Eq. (2) also reduces to the mean square error when mean pre-
dictions alone are considered (i.e., in point predictions instead of probability distribution outputs).
In other words, the log-likelihood and cross entropy are analogous cost functions in regression
and classification problems, respectively [84]. Thus the likelihood maximizing model is equivalent
to minimizing the cross entropy H (p(yp|x), p(yt )). Hence our framework incorporates a generic
loss prescription that can be applied to a wide variety of problems and specifies a representative
uncertainty in the machine-learned estimates.

Our implementation of a PNN is shown for one of the applications (Sec. III A) in Fig. 1. In this
example, the inputs x ∈ R5 to the network model are the sensor measurements. These are mapped
to the targets yp whose truth values are a whole wake field of a two-dimensional cylinder yt of
dimension 13 440. The network for the example of Fig. 1 is a fully connected dense network with
eight layers and the number of neurons per layer being 5 → 64 → 128 → 256 → 512 → 1024 →
2048 → 13 440 × 3. The last layer (13 440 × 3) corresponds to (π1, μ1, σ1) for each grid point that
parametrizes the predictive conditional distribution p(yp|x) for the whole wake field, and the error
function is calculated using Eq. (2). We remind the reader that we use only one Gaussian center
in this investigation and focus on one value each of mean and variance (μ1 and σ1), which implies
π1 = 1 corresponding to each target. We utilize the same number of Gaussian centers (i.e., only
one) for all our assessments hereafter. As an example, if three Gaussian centers were utilized, the
final layer of the above map would have dimensions of 13 440 × 3 × 3 corresponding to (πi, μi, σi )
for i = 1, 2, 3 and

∑3
i=1 πi = 1.

For updating the weights w, we use the Adam optimizer [85]; the training procedure of the
PNN is summarized in Algorithm 1. We note that we do not attempt to optimize the parameters
of the network architecture for each problem setting in the present study. Our primary objective
here is to demonstrate the applicability of the probabilistic model to quantify the uncertainty
of machine-learned estimations for canonical fluid flow problems. One may consider the use of
theoretical optimization methods such as Hyperopt [86] and Bayesian optimization [23,87] to
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FIG. 2. Different canonical test cases considered in the present work.

further enhance the accuracy of the estimation which can be improved. A sample code for the
present model is available online [88]. The code for the present study has been written in house by
utilizing TENSORFLOW 2.2.0 on PYTHON 3.7. The present computation for the probabilistic neural
network is performed on NVIDIA Tesla V100 GPU.

III. RESULTS

In this section, we demonstrate the capabilities of the PNN introduced in the preceding section
through a variety of experiments. These experiments are (i) the prediction of POD coefficient evo-
lution given initial conditions (Sec. III A) and (ii) the instantaneous estimation of POD coefficients
from local sensor measurements (Sec. III B). Next we consider the applications to spatial fluid data
recovery given by (a) the estimation of sensor measurements from other sensor placements and (b)
the estimation of whole flow fields from local sensor measurements for three example problems:
(1) a two-dimensional cylinder wake at ReD = 100 (Sec. III C 1), (2) a two-dimensional wake of a
NACA0012 airfoil with a Gurney flap at Rec = 1000 (Sec. III C 2), and (3) the NOAA optimum
interpolation sea surface temperature data set [89] (Sec. III C 3). The broad spread of potential
applications can be observed through flow fields from our chosen data sets as seen in Fig. 2.

A. Parametric surrogates

In the following, we review the POD technique for the construction of a reduced basis
[19,90–92] for our observed variable. This is for the express purpose of easily implementing a
data-driven recovery of the system evolution in reduced-space. The POD procedure is tasked with
identifying a space

X f = span{ϑ1, . . . ,ϑ f }, (3)

which approximates snapshots ϑi optimally with respect to the L2 norm. The process of ϑ generation
commences with the collection of snapshots in the snapshot matrix

S = [
q̂1

h q̂2
h · · · q̂Ns

h

] ∈ RNh×Ns , (4)

where Ns is the number of snapshots and q̂i
h : T × P → RNh corresponds to an individual snapshot

in time of the discrete solution domain with the mean value removed, i.e.,

q̂i
h = qi

h − q̄h, q̄h = 1

Ns

Ns∑
i=1

qi
h, (5)

with qh : P → RNh the time-averaged solution field. Our POD bases can then be extracted effi-
ciently through the method of snapshots where we solve the eigenvalue problem on the correlation
matrix C = ST S ∈ RNs×Ns . Then

CW = W�, (6)
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where � = diag{λ1, λ2, . . . , λNs} ∈ RNs×Ns is the diagonal matrix of eigenvalues and W ∈ RNs×Ns

is the eigenvector matrix. Our POD basis matrix can then be obtained by

ϑ = SW ∈ RNh×Ns . (7)

In practice, a reduced basis ψ ∈ RNh×Nr is built by choosing the first Nr columns of ϑ for the purpose
of efficient ROMs, where Nr � Ns. This reduced basis spans a space given by

Xr = span{ψ1, . . . ,ψNr }. (8)

The coefficients of this reduced basis (which capture the underlying temporal effects) may be
extracted as

A = ψT S ∈ RNr×Ns . (9)

The POD approximation of our solution is then obtained via

Ŝ = [
q̃1

h q̃2
h · · · q̃Ns

h

] ≈ ψA ∈ RNh×Ns , (10)

where q̃i
h : T × P → RNh corresponds to the POD approximation to q̂i

h. The optimal nature of
reconstruction may be understood by defining the relative projection error

∑Ns
i=1

∥∥q̂i
h − q̃i

h

∥∥2

RNh∑Ns
i=1

∥∥q̂i
h

∥∥2

RNh

=
∑Ns

i=Nr+1 λ2
i∑Ns

i=1 λ2
i

, (11)

which exhibits that with increasing retention of POD bases, increasing reconstruction accuracy may
be obtained. Our first application of PNNs will be tasked with predicting q̃i

h given information about
parameters that control the evolution of the system.

1. Inviscid shallow-water equations

Our first example considers the two-dimensional inviscid shallow-water equations which are a
prototypical system for geophysical flows. The governing equations are hyperbolic in nature and are

∂ (ρη)

∂t
+ ∂ (ρηu)

∂x
+ ∂ (ρηv)

∂y
= 0, (12a)

∂ (ρηu)

∂t
+ ∂

∂x

(
ρηu2 + 1

2
ρgη2

)
+ ∂ (ρηuv)

∂y
= 0, (12b)

∂ (ρηv)

∂t
+ ∂ (ρηuv)

∂x
+ ∂

∂y

(
ρηv2 + 1

2
ρgη2

)
= 0. (12c)

In the above set of equations, η corresponds to the total fluid column height and (u, v) is the hori-
zontal flow velocity of the fluid averaged across the vertical column. Furthermore, g is gravitational
acceleration and ρ is the fluid density fixed to be unity. Equation (12a) represents conservation of
mass and Eqs. (12b) and (12c) define the conservation of momentum. For simplicity, we define
q = [ρη, ρηu, ρηv]T and we use η and ρη interchangeably hereafter. We also point out that there is
no linear diffusion term in the above shallow-water equations. This implies that our system evolution
is solely advection dominated with any dissipation occurring as a result of numerical viscosity alone.
Our initial conditions are given by

ρη(x, y, t = 0) = 1 + exp

[
−

(
(x − x̄)2

2(5e + 4)2
+ (y − ȳ)2

2(5e + 4)2

)]
,

ρηu(x, y, t = 0) = 0, ρηv(x, y, t = 0) = 0, (13)

while our two-dimensional domain is a square with periodic boundary conditions. These initial con-
ditions r = [x̄, ȳ] (−0.5 � {x̄, ȳ} � 0.5) correspond to the parameter controlling the spatiotemporal
evolution of the dynamical system.
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FIG. 3. Information of the data set for the shallow-water equation. (a) Schematic for the generation of
training and testing data. Given inputs of r (i.e., the location of an initial Gaussian perturbation to η), the
machine learning ROM is tasked with predicting the evolution of 40 POD coefficients over ten snapshots in
time. The prediction is one shot. (b) Convergence of reduced representations to the true field with increasing
M. The values underneath each field indicate the normalized L1 error norm ε = |ηtrue − ηPOD|/|ηtrue − 1|.

Our data generation process utilizes full-order solutions of the above system of equations until
t = 0.1 with a time step of 0.001. Our full-order model uses a fourth-order-accurate Runge-
Kutta integration scheme and a fifth-order-accurate weighted essentially nonoscillatory (WENO)
scheme [93] for computing state reconstructions at cell faces. The Rusanov Riemann solver is
utilized for flux reconstruction after cell-face quantities are calculated. The reader is directed to [94]
for further discussion of the temporal integration scheme and [95] for details on the WENO scheme
and the Riemann solver implementation in two-dimensional problems.

The procedure for generating the training and testing data is illustrated in Fig. 3(a). A hundred
different locations r = [x̄, ȳ] are chosen for full-order simulations. We note that these 100 locations
are chosen by Latin hypercube sampling. Out of the 100 simulations for which snapshots are
obtained, 90 simulations are set aside for the purpose of training machine learning frameworks
and for POD basis generation. Each simulation is sampled ten times temporally to obtain a total of
900 training snapshots for POD basis generation. Coefficients obtained by projecting these training
simulations onto the POD bases are configured to be the target data for training the machine learning
frameworks. For accurately capturing the evolution of the perturbation, we choose M = 40 as
the number of POD coefficients with the normalized L1 error norm ε = |ηtrue − ηPOD|/|ηtrue − 1|
of 0.401, as shown in Fig. 3(b). All our assessments for the machine learning frameworks are
performed on snapshots obtained from the ten simulations kept aside for the purpose of testing.
Also, our assessments are performed solely for the η flow field. We emphasize this point, since we
assume that the other key variables ρηu and ρηv are not available for observation. This aligns with
practical applications for fluid dynamics where constraints of cost or safety make it impractical to
observe all the physics of a system. We also draw attention to the fact that the initial condition
of the entire system is conditioned on a Gaussian excitation to ρη alone. Since the other conserved
variables are never observed for generating training data, the framework cannot be expected to work
if there are unseen perturbations to their initial conditions.

We first assess the ability of the proposed PNN for predicting the evolution of the shallow-water-
equation dynamics given an input of q = [x̄, ȳ] alone. For this task, we have a two-dimensional
input space q and a 400-dimensional output space at = [a1, a2, . . . , a10] corresponding to 40 spatial
POD coefficients aι = [aι

1, aι
2, . . . , aι

40] over ten time steps so as to account for the entire trajectory
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FIG. 4. Coefficient estimations of two representative test simulations by the present framework with the
shallow-water equation showing error bars for two standard deviations around the mean as parametrized by a
Gaussian distribution. Final time field reconstructions using estimated POD coefficient means are shown on
the right-hand side of each coefficient evolution. True indicates the reference field with 40 POD modes.

of the η dynamics. Following Eq. (1) and Fig. 1, the problem setting here can be formulated as

{π (q), μ(q), σ (q)} = F (q), p(at |q) =
m∑

i=1

πi(q)N (μi(q), σi(q)). (14)

For the purpose of effective training, all POD coefficients are scaled between 0 and 1. A schematic
for this task and its assessment is shown in Fig. 3(a).

The coefficient estimations from the present framework for two representative simulations are
shown in Fig. 4. The 400 coefficients are presented sequentially with 40 coefficients representing
the information needed to reconstruct the flow field at one time instant. The coefficients are
also accompanied by confidence intervals spanning two standard deviations on either side of the
predicted means and represent the uncertainty quantification mechanism built into the probabilistic
neural network. The dissipation of the coherent structures at later snapshots also leads to a reduced
prediction of uncertainty by the framework, whereas at earlier snapshots, much larger uncertainty
is observed due to the presence of coherent distortions of the solution field. The corresponding field
reconstructions using the mean coefficients can be seen on the right-hand side of each coefficient
evolution where qualitative agreement with the true simulations is clearly observable. We obtain a
normalized L1 error norm of 0.843 for the reconstructed field of test simulations.

At this juncture, we provide some remarks on the nature of the system that is emulated. The
initial and boundary conditions for this particular shallow-water-equation experiment represent a
tightly controlled traveling-wave problem that is translationally invariant. Different realizations of
the initial condition lead to translationally shifted trajectories. We also note the presence of mirror
symmetries with respect to x = x̄ and y = ȳ coupled with a rotational symmetry of π/2 rad about the
origin. We caution the reader that the current ROM strategy is devoid of any symmetry-preserving
mechanisms. In fact, the projection of the true field onto the 40 dominant POD modes breaks the
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FIG. 5. POD coefficients and entire field of NOAA sea surface temperature. The value underneath the
contour is the L2 error norm εPOD = ‖Tref − TPOD‖2/‖Tref‖2.

aforementioned symmetries and thus leads to the lack of symmetry preservation within the training
data itself. However, our motivation for a first assessment of our PNN on this system stems from
the well-known fact that ROMs obtained from POD-based compression are severely limited in their
ability to forecast on these simple traveling-wave systems [41,96] and require special treatment with
intrinsic knowledge of the flow dynamics. Also, the surrogate model proposed here is conditioned
on the initial flow field of ρη alone. Thus, this framework represents a promising approach for
incomplete observations of geophysical dynamics where complete knowledge of physics is almost
always impossible. We further this claim by actual experiments on remote sensing data sets later in
this study.

2. NOAA sea surface temperature

To demonstrate the applicability of the PNN to practical applications, let us consider the NOAA
sea surface temperature data set. The field data here have the spatial resolution of 360 × 180
based on a one degree grid and is obtained from satellite and ship observations without adequate
knowledge of underlying governing equations. We use 20 years of data (1040 snapshots spanning
years 1981 to 2001) as the training data set, while the test data set is prepared from 874 snapshots
spanning from 2001 to 2018. This test setting is extrapolation in time but not physics, since the data
set has influence of seasonal periodicity. The aforementioned problem setting follows the work of
Callaham et al. [97], who attempted to reconstruct fluid flow fields from local sensors using sparse
representations. Following Callaham et al. [97], the input sensors for the baseline model are chosen
randomly from the region of 50◦ S to 50◦ N.

For the task of constructing a parametric surrogate for forecasting the sea surface tempera-
ture (SST), the PNN attempts to predict the temporal evolution of four POD coefficients aι =
[aι

1, aι
2, aι

3, aι
4] over 100 weeks at = [a1, a2, . . . , a100] from the local sensor measurements on the

first week snapshot s1, i.e., initial information. The problem setting is expressed as

{π (s1), μ(s1), σ (s1)} = F (s1), p(at |s1) =
m∑

i=1

πi(s1)N (μi(s1), σi(s1)). (15)

As shown in Fig. 5, the reconstructed field with four spatial POD modes shows qualitative agreement
with the original data globally, while the seasonal patterns at the global scale can be captured with
modes 1, 2, and 3 and stochastic fluctuations may be represented with mode 4 [98].

The baseline results predicted from ten input sensors are summarized in Fig. 6. The peri-
odic trends represented by modes 1, 2, and 3 can be reasonably captured from only ten sensor
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FIG. 6. Prediction of POD coefficient evolution from sensors at the first snapshot. Representative temporal
evolution and the reconstructed field with POD eigenvectors at the first, 40th, and 80th weeks are shown.

measurements on the first snapshot while telling us the confidence interval of its estimation. Note,
however, that the predicted temporal evolution of mode 4, which represents more stochasticity than
that of the first three modes, exhibits further greater deviation compared to the reference. This result
provides motivation to examine the influence on the number of input sensors, as discussed in the
rest of this article.

We investigate the dependence of the prediction accuracy on the number of input sensors, as
shown in Fig. 7. The curve starts to match with the reference data on increasing the number of input
sensors, which can be particularly seen with mode 3 in Fig. 7(a). Similar trends can be confirmed
in both Figs. 7(b) and 7(c), which show the reconstructed fields and L2 error norms. Regarding the
standard deviations presented in Fig. 7(d), the estimated uncertainties show no significant difference
over the covered number of inputs, while decreasing by adding the training snapshots. This is due
to the fact that the confidence interval of the present framework is not a barometer for error but a
measure of the quality of the training data. This point can also be found in the later examples.

B. Field reconstructions through POD coefficient estimation for the shallow-water equations

In this section, we demonstrate the capability of the proposed framework to reconstruct the
state of the field by random sampling in the domain. Similar to the preceding section, we task
the probabilistic neural network with predicting the POD coefficients a. Our inputs, however, are
now given by sensor measurements s of the field in addition to a time stamp qt that indicates the
progress to the final time of the evolution. Hence, the problem setting here can be expressed as

{π ([s, qt ]), μ([s, qt ]), σ ([s, qt ])} = F ([s, qt ]),

p(a|[s, qt ]) =
m∑

i=1

πi([s, qt ])N (μi([s, qt ]), σi([s, qt ])).
(16)

Note that this estimation is performed at the same instantaneous field between the input and output.
We clarify that the random sensors that are measured for the purpose of field reconstruction are
not perturbed by noise at the moment. We also compare the performance of the PNN against the
well-known gappy POD technique for flow-field recovery.

Figure 8 shows the ability of the proposed framework to recover the coherent structures in the
field for the shallow-water-equation system introduced in Sec. III A 1. Note that we present L2 error
norms of both estimated POD coefficients and reconstructed fields for Fig. 8(b). For reference, the
average range of the 40 POD coefficients magnitude is 3.289 and the root mean square error of the
POD coefficients is well within this range. A representative test simulation shows that increasing
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FIG. 7. Dependence of the POD coefficient prediction for sea surface temperature on the number of input
sensors. (a) Temporal evolution of four POD coefficients. (b) Reconstructed temperature field with POD
eigenvectors. (c) L2 error norm of predicted POD coefficients and reconstructed field. (d) Ensemble average of
estimated standard deviation taken over all POD coefficients.

the number of sensors leads to a reduction in errors. Note that, due to the random nature of sensor
placement, at lower numbers, if point signals of coherent structures are not sampled effectively,
larger errors may be obtained. This may explain why the lowest L2 error norms appear at 30 sensors,
as presented in Figs. 8(b) and 8(c). This suggests that an optimal selection of sensor locations
based on regions of high uncertainty may improve convergence significantly. This inference can
also be applied to the estimated standard deviations which do not show significant difference over
the considered noise magnitude, as shown in Fig. 8(d).

For a thorough comparison of the PNN reconstruction with the well-known flow-field recon-
struction methods, we show a comparison for flow reconstruction using 30 sensors for the gappy
POD method [99] in Fig. 9. The number of sensors (30) is two orders of magnitude lower than
the total number of degrees of freedom (4096) and therefore linear reconstruction methods are
destined to be at a disadvantage for this test case. We also validate our gappy POD method by
also comparing against improved linear reconstructions utilizing 3800 sensors. For all our testing
simulations, the normalized L1 error norms in field reconstruction are 0.155 for the PNN using 30
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FIG. 8. Effect of the number of sensors for coefficient estimation of the shallow-water equation on the
accuracy. (a) Field reconstructions with 10, 20, 30, and 35 sensors. Also shown is the relationship between the
number of sensors and (b) L2 errors of the estimated POD coefficient and reconstructed field, (c) the normalized
L1 error of the reconstructed field, and (d) the ensemble average of the estimated standard deviation taken over
all POD coefficients. For reference, the average range of the POD coefficient magnitude is 3.289.

FIG. 9. Comparison between the PNN and Gappy POD for POD coefficient reconstruction of two repre-
sentative testing solutions. For all our testing simulations, the normalized L1 error norms in field reconstruction
are 0.155 for the PNN using 30 sensors, 3.18 for gappy POD using 30 sensors, and 0.277 for gappy POD using
3800 sensors. Sensor locations (shown in red) are not provided for the validation with 3800 sensors for visual
clarity.
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FIG. 10. Dependence of the accuracy for coefficient estimation of the shallow-water equation on the
magnitude of noisy input. (a) Field reconstructions with 35 random sensors. Also shown is the relationship
between the number of sensors and (b) L2 errors of the estimated POD coefficient and reconstructed field,
(c) the normalized L1 error of the reconstructed field, and (d) the ensemble average of the estimated standard
deviation taken over all POD coefficients. For reference, the average range of the POD coefficient magnitude
is 3.289.

sensors, 3.18 for gappy POD using 30 sensors, and 0.277 for gappy POD using 3800 sensors. This
result represents the advantages of using a nonlinear reconstruction procedure. Let us also recall
that the gappy POD reconstruction for POD coefficients is deterministic whereas the PNN provides
uncertainty predictions conditioned on the training data. The latter aspect will be explored in greater
detail when the PNN is reformulated for direct spatial field recovery for challenging engineering and
geophysical applications.

Following our assessments with reconstruction without the presence of sensor noise, we turn
our attention to the effect of measurement noise at the random sampled locations looking at 35
randomly placed sensor locations. Results from training on noisy inputs are shown in Fig. 10.
Figures 10(b) and 10(c) indicate that the framework becomes unsuitable for inputs perturbed with
uniformly sampled noise corresponding to around 4% of the maximum value of the field. This may
be due to the relatively low difference in magnitudes of the coherent structures in the field from the
background flow. With regard to estimated standard deviations shown in Fig. 10(d), we clarify that
the uncertainty estimation for the POD coefficients does not show a significant difference over the
noise magnitude considered. We should note that this is because the estimated confidence interval is
just for estimations and not a barometer for error. The reader should note that perturbation of inputs
by noise causes errors but does not significantly affect the posterior, which assumes that the input
is also a random variable. For both assessments in Figs. 8 and 10, this also indicates that a greater
number of training snapshots is necessary to reduce the estimated uncertainty. The effect of number
training snapshots will be assessed for a different problem later on in this study. Note that we have
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already assessed NOAA SST coefficient estimations via the PNN given field measurements, so a
separate assessment is superfluous here.

C. Spatial fluid data recovery

In this section, we introduce the application of the PNN to spatial fluid flow reconstructions
with connections to real engineering and geophysical applications. We consider a two-dimensional
cylinder wake (Sec. III C 1), the wake of a NACA0012 airfoil with a Gurney flap (Sec. III C 2), and
the NOAA optimum interpolation sea surface temperature data set (Sec. III C 3). We would like to
note that the latter is constructed from satellite and ship observations and represents a real-world
flow-field reconstruction task with no underlying information of governing equations. Another
important remark here is that while previous flow-field reconstructions were via POD coefficient
estimation, the PNN is used directly for spatial reconstruction.

For the examples covered in this section, we consider two types of problems: (1) estimation of
the sensor measurement starget from other sensors sinput and (2) estimation of the whole flow field z
from local sensor measurements sinput. These settings can be expressed as

{π (sinput ), μ(sinput ), σ (sinput )} = F (sinput ), p(starget|sinput ) =
m∑

i=1

πi(sinput )N (μi(sinput ), σi(sinput )),

(17)

{π (sinput ), μ(sinput ), σ (sinput )} = F (sinput ), p(z|sinput ) =
m∑

i=1

πi(sinput )N (μi(sinput ), σi(sinput ))

(18)

for the sensor estimation and the whole field estimation, respectively.

1. Two-dimensional cylinder wake

Let us consider a two-dimensional cylinder wake at ReD = 100 as an example of application to
unsteady flows around a bluff body. The data set has been obtained by using a two-dimensional
DNS [100,101]. The governing equations are the incompressible Navier-Stokes equations

∇ · u = 0, (19)

∂u
∂t

+ u · ∇u = −∇p + 1

ReD
∇2u, (20)

where u, p, and ReD are the nondimensionalized velocity vector, pressure, and Reynolds number
based on the cylinder diameter D, respectively. Five nested levels of multidomains are considered
for numerical setup. The finest level of the domain considered here is (x/D, y/D) = [−1, 15] ×
[−8, 18] and the largest domain is (x/D, y/D) = [−5, 75] × [−40, 40]. The time step for the
present DNS is 
t = 2.50 × 10−3. As for the training data set, the domain around a cylinder
body is extracted, i.e., ((x/D)∗, (y/D)∗) = [−0.7, 15] × [−3.3, 3.3] and (Nx, Ny) = (192, 70). The
vorticity field is used as both input and output attributes in this case. Five sensor measurements
located on a cylinder surface are chosen as input data sinput for both the sensor estimation and
the whole field reconstruction. For both problem settings with the cylinder data set, we prepare
100 snapshots over approximately four periods in time as the training data. The assessments are
conducted using test data set which also contains 100 snapshots over approximately four periods
and is excluded from the training process.

For the problem settings of spatial fluid data recovery, we first apply the PNN to estimate local
sensor measurements and then extend it to the concept of whole flow reconstruction. Here let us
present the result of estimation on sensor 6 s6 located on a wake region from the sensors located
on the cylinder surface in Fig. 11. The estimations (red circles) are in excellent agreement with the
reference data. This trend can also be seen from a quantitative assessment with an L2 error norm ε =
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FIG. 11. Sensor estimation of the cylinder wake using the PNN. The left-hand side shows both input and
output sensor locations. The L2 error norm ε = ‖s6,DNS − s6,ML‖2/‖s6,DNS‖2 is 0.0137. Note here that the σ can
be hardly seen due to the excellent agreement of the estimation with the reference.

‖s6,DNS − s6,ML‖2/‖s6,DNS‖2 of 0.0137. Since the cylinder wake at the present Reynolds number is
of periodic nature in time, high-standard-deviation regions are not observed. This observation also
enables us to have confidence in this estimation.

We then extend the model to the reconstruction of the whole wake, as shown in Fig. 12.
Analogous to the local sensor estimation, we see that the estimated flow field shows nice agreement
with the reference DNS data from both qualitative and quantitative assessments. What is notable is
that the PNN provides us with the standard deviations of estimation as shown on the right-hand side
of Fig. 12. In this case, the probabilistic machine learning model tells us that the standard deviation
on regions of vortex shedding and a separated shear layer is larger than that on other portions. This
observation coincides with the fact that these regions have higher fluctuation than the other regions
without vortex shedding.

2. Wake of a NACA0012 airfoil with a Gurney flap

Next we consider the complex two-dimensional wake behind a NACA0012 airfoil with a Gurney
flap. The flow field is also periodic in time analogous to the cylinder problem. However, the wake
here is comprised of multiple dominant frequencies. The data set is generated using two-dimensional
DNS at Rec = 1000, where c is the chord length [102]. It is known that various types of wakes
can emerge depending on the angle of attack α and the Gurney-flap height h [102]. In the present
paper, the case of h/c = 0.1 with α = 20◦ which exhibits 2P wake is chosen for demonstration,
as shown in Fig. 2(b). For the numerical setup, five nested levels of multidomains are considered
as well as the cylinder problem. The finest domain range is (x/c, y/c) = [−1, 1] × [−1, 1] and
the largest domain is (x/c, y/c) = [−16, 16] × [−16, 16]. The time step is 
t = 10−3. The size of
the domain utilized and the number of grid points for the data set are [−0.5, 7] × [−2.5, 2.5] and
(N∗

x , N∗
y ) = (352, 240), respectively. We use the vorticity field ω as the input and output attributes.

FIG. 12. Wake reconstruction of the cylinder flow using the PNN. The value below the estimated mean
field μ indicates the L2 error norm ε = ‖ωDNS − ωML‖2/‖ωDNS‖2.
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FIG. 13. Sensor estimation of a NACA0012 wake with a Gurney flap using the PNN. The left-hand side
shows both input and output sensor locations. The L2 error norm ε = ‖s6,DNS − s6,ML‖2/‖s6,DNS‖2 is 0.0429.

Five sensor measurements located on the surface of an airfoil are chosen as input data for both the
sensor estimation and the whole field reconstruction. The number of snapshots nsnapshot used for
the baseline model are the same as that in the cylinder problem such that there are 100 snapshots
over approximately four periods for both training and test data. Note that we also investigate the
dependence on the number of snapshots using the example of a NACA0012 wake.

The PNN is applied to the local sensor estimation of a NACA0012 wake, as shown in Fig. 13.
As can be seen, the estimated plots are in great agreement with the reference data. Regions of
noticeable standard deviation can be seen near the peaks, although these were not observed with
sensor estimation for the cylinder problem. This indicates that the true peaks in the curve may
show some variation from the predicted values given the training of the network. This is due to the
difference in the complexity of the flows, i.e., the frequency contents contained on the wakes, as
mentioned above.

The estimated whole fields from the sensor measurements located on the surface of the airfoil are
shown in Fig. 14. With nsnapshot = 100, the location and size of vortex structures are captured reason-
ably well by using the present model. However, the L2 error norm ε = ‖ωDNS − ωML‖2/‖ωDNS‖2 is
0.514, which is substantially larger than that in the case of the cylinder wake, despite the reasonable
estimation. This is because the L2 error norm is known as a strict measurement of difference and

FIG. 14. Wake reconstruction of a NACA0012 airfoil with a Gurney flap depending on the number of
snapshots for training. The values inside the estimated mean field indicate the L2 error norm ε = ‖ωDNS −
ωML‖2/‖ωDNS‖2. The values inside the estimated standard deviation express the ensemble-averaged standard
deviation over the field.

104401-17



ROMIT MAULIK et al.

FIG. 15. Dependence of estimation accuracy for the whole wake field of a NACA0012 airfoil with a Gurney
flap on the magnitude of noisy input using the machine-learned model with (a) nsnapshot = 250 and (b) nsnapshot =
500. The values inside the estimated mean field indicate the L2 error norm. The values inside the estimated
standard deviation express the ensemble-averaged standard deviation over the field.

does not account for translational or rotational similarities [4,45]. With regard to the standard
deviation distribution, the low confidence interval region is concentrated in the regions of vortical
structures, similar to the cylinder problem. The dependence on the number of snapshots used for
training is also examined considering nsnapshot = {100 (baseline), 250, 500}, as shown in Fig. 14. We
would like to draw attention to the fact that regions with high uncertainty shrink with the increasing
number of snapshots. This highlights the true benefit of the PNN, namely, the better estimate due
to the improvement in training data (i.e., greater number of snapshots) is properly quantified as
increased confidence. These results with the NACA0012 airfoil suggest that the present probabilistic
framework can perform well in reconstructing complex flows while providing feedback about the
viability of the training data for learning.

Next let us examine the robustness for noisy input in Fig. 15, which is analogous to the
assessment with the shallow-water equation presented in Fig. 10. The noisy input is designed with
a Gaussian distribution based on the ratio, i.e., 10%, 30%, and 50%, for the maximum absolute
value of the field. Adding noise to the input leads to increasing the error, as can be seen by both L2

error norms and absolute error maps in Fig. 10. Note that the standard deviations have no significant
difference among the noise level considered with the same number of snapshots due to the fact
that the estimated confidence interval is not a barometer for error. This trend coincides with the
example of the shallow-water equation shown in Fig. 10. By comparing Figs. 15(a) and 15(b), we
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FIG. 16. Instantaneous temperature field on the sea surface. Green circles are sensors used as input data.

can find that the error decreases by increasing the number of training snapshots, as we expected
from the observation with the example of the shallow-water equation in Fig. 10. We reiterate,
therefore, that the proposed formulation does not absolve the user of the best practices of ML
methods (for instance, introduced in [4]). Adequate validation with held-out testing data sets cannot
be precluded for the purpose of error diagnostics. However, the effect of improved learning can be
directly correlated with the physics of the predictive task, in this case flow-field recovery.

3. NOAA sea surface temperature

We here consider the NOAA sea surface temperature data set so as to assess the applicability
of the PNN to practical applications of spatial field recovery. The setup for training and test data
is basically the same as that for the parametric surrogate discussed in Sec. III A 2. Analogous to
them, the input sensors for the baseline model are placed in the region of 50◦ S to 50◦ N as shown
in Fig. 16. We present the results of local sensor estimation from ten other sensors in Fig. 17.
The reader may observe that the machine learning model can capture the seasonal periodicity quite
well. What is notable here is that the interval of standard deviation is wider than that with cases
of numerical simulation data, i.e., the cylinder wake and NACA0012 airfoil with a Gurney flap.
One possible reason is the complexity of the environmental processes which have been added on
seasonal temperature variance, e.g., global warming, since the test data is set as extrapolation in
time against the range used for training.

Let us also consider the estimation of a global temperature field, as shown in Fig. 18. The
reconstructed field shows a reasonable match with the reference field and this can also be found
by an L2 norm assessment. The benefit of the proposed framework can be seen when the variance
predicted by the framework is correlated to the global grid. We note that the presence of uncertainty
is most likely influenced by the choice of input sensor locations. We can also see a relatively higher

FIG. 17. Sensor estimation of sea surface temperature using the PNN. The L2 error norm ε = ‖sH ,ref −
sH ,ML‖2/‖sH ,ref‖2 is 0.0163.
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FIG. 18. Whole field reconstruction of sea surface temperature. Note that the estimated standard deviation
is the time-ensemble average value. The value below the estimated mean field indicates the L2 error norm
ε = ‖Tref − TML‖2/‖Tref‖2.

standard deviation region across the Pacific Ocean near South America. This is because of El Niño
(for which the sea temperature is higher than usual) and La Niña (lower than usual), which emerge
every few years in this area [41]. Hence, the temperature fluctuation in this area is larger than that
in the other areas.

The results of the present study educate us about the possible applications of probabilistic neural
networks so that we may be able to assess not only the reliability of estimated results but also the
characteristics of a given training data set by focusing on estimated uncertainties. Furthermore, we
can also utilize the estimated field to place additional sensors efficiently since we can observe high
standard deviation areas through our probabilistic predictions. Here we also assess this viewpoint by
placing five additional sensors, as shown in Fig. 19. We consider two cases by adding five sensors
randomly [Fig. 19(a)] and based on the estimated standard deviation in Fig. 18 [Fig. 19(b)]. As
presented, the latter outperforms the case of randomly chosen sensors in terms of the L2 error norm.
In addition, the sensor selection based on the estimated confidence interval leads to lower standard
deviation, e.g., on the Pacific Ocean near South America where El Niño and La Niña can be observed
as mentioned above. Through the results in our test cases, we see great potential of the present
probabilistic framework for various studies in fluid dynamics.

IV. CONCLUSION

In this investigation, we have introduced probabilistic neural networks for addressing questions
related to the uncertainty quantification of data-driven surrogate model applications to fluid flows.
Probabilistic neural networks bestow the ability to parametrize the output as a sample from a
Gaussian or a mixture of Gaussian distributions. Consequently, every prediction is accompanied

FIG. 19. Influence of estimation accuracy for the whole field of sea surface temperature on additional
sensors. Five sensors are added (a) randomly and (b) based on the estimated standard deviation in Fig. 18. The
values underneath the estimated mean fields indicate the L2 error norm.
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by a confidence interval that may guide the user of the framework about potential errors due to
insufficient training data. This represents an improvement on the majority of data-driven studies
in fluid mechanics which formulate a deterministic prediction requirement for their surrogates.
To demonstrate the viability of the proposed framework, we first deployed it for a parametric
model-order reduction task where a surrogate model was constructed for the shallow-water equa-
tions. Our surrogate modeling task was particularly complicated by the presence of measurement
noise as well as incomplete observations of all relevant conserved variables. The proposed frame-
work was seen to predict, nonintrusively, the evolution of a Gaussian excitation of the field with
uncertainty estimates. Following this task, we deployed the framework to a data-recovery problem
where measurements at random sensor locations present in a flow field were used to reconstruct
the entire field in the presence of input noise. We also obtained favorable comparisons for our
probabilistic flow-field reconstruction against gappy POD, a linear reconstruction technique.

Following assessments for the shallow-water equations, the probabilistic neural network was then
applied to the spatial reconstruction of flow fields from data sets with connections to engineering
and geophysical applications such as for two-dimensional cylinder flow data, flow around the
NACA0012 airfoil with a Gurney flap, and the NOAA optimal interpolation sea-surface temperature
data set. This reconstruction procedure relied on a direct prediction of flow fields without an
intermediate POD-based compression method. For the problems of the two-dimensional cylinder
wake and the NACA0012 airfoil with a Gurney flap, we found that the present probabilistic
model estimated sensor values and reconstructed entire flow fields well while providing uncertainty
estimates for the machine-learned estimation. For examples of cases without a modeled governing
equation, i.e., the NOAA sea surface temperature data set, our results indicated that the reliability
of estimated results as well as the characteristics of a given training data set could be analyzed
with the present probabilistic model which shows estimated uncertainties. We note that the direct
reconstruction of spatial fields may lead to the violation of physical laws unless the neural network
architectures are actively penalized for these violations via constraints. One approach to deploy this
is through the use of partial differential equation (PDE) constraints as regularization terms in the
optimization statement such as the well-known physics-informed neural networks [103]. However,
extensions to data sets without knowledge of the underlying PDEs such as NOAA SST are not
trivial and would require other strategies such as data augmentation and constrained network design
to satisfy symmetries such as the use of projection-basis networks [10]. This is an active area of
investigation.

To address the issue of what uncertainty is being quantified, we assessed our frameworks for
different noise perturbations and training data sizes. We were able to ascertain that the addition of
noise to inputs (after training) caused errors in the mean but did not affect confidence intervals.
In contrast, improved training data (by utilizing more snapshots) directly led to reducing standard
deviations because confidence in outputs was improved. With noisy targets, the framework was
adept at characterizing useful confidence intervals. In addition, by plotting standard deviations on
the computational grid for the latter case, the regions contributing to the learning difficulty could
easily be ascertained for further sampling. Therefore, our recommendation for the use of such
frameworks is for applications where both targets and input data are noisy before training, a common
phenomenon. In the absence of such training data, we suggest the addition of artificial noise (within
a certain range) to improve the robustness of the predictions in terms of mean errors. Armed with this
knowledge, these probabilistic predictors may be utilized for greater interpretability in data-driven
forecasting, reconstruction, or model-order-reduction tasks with the potential for establishing a
feedback loop to improve training data on the fly. We hint towards this using intelligent sampling for
the NOAA sea surface temperature reconstruction task. Notably, the utility of the approximation of
the target distribution also has direct applications for the assessment of model quality in the absence
of training data.

We remark that the confidence intervals are merely representations of the standard deviation
around an expected value, i.e., both the standard deviation and the expectation are learned in a
semisupervised manner to maximize the likelihood of the targets given the inputs. For instance,

104401-21



ROMIT MAULIK et al.

the grayed out regions of each line plot indicate, with confidence equivalent to one standard
deviation, the probability of the true prediction deviating from the mean. Therefore, the viability
of using a prediction (in the form of the mean and the intervals) is intimately associated with
the target application. We do not extend the interpretation of the confidence intervals beyond
the above characterization, i.e., we do not claim that our probabilistic estimates are the “true”
posterior distributions for the targets. Such posterior approximations from an inference method
(like variational inference techniques) can only be verified against a fully Bayesian approach, like
a Markov chain Monte Carlo (MCMC) sampling. However, for several problems of interest in deep
learning, including our applications, doing a full MCMC sampling over all the parameters of the
network is prohibitively expensive due the large number of model parameters, i.e., the weights
of the network. The departure from being a full posterior arises from the fact that (i) the model
parameters (such as the weights of the network) are not sampled from a distribution, (ii) priors
are implicit, i.e., defined by the training set rather than being explicitly defined, and (iii) the
estimated distribution is constrained to be a parametrized conditional density distribution p(y|x)
as shown in Eq. (1), instead of a generic posterior distribution. However, this does not mean that the
estimated confidence intervals are uninformative. The error bars shown in our results represent the
uncertainty quantification in our estimates that arise from the network, under a given training data
and a Gaussian approximation. This is clearly seen in our results, where a less-informative training
data priors, with either a reduced number of snapshots (in Fig. 14) in the training phase or a reduced
number of sensors [in Fig. 7(a)], results in a broader conditional density estimation p(y|x), reflecting
a lower confidence in the prediction when training sampling is poor.

The PNN is a pragmatic solution for the problem of estimating uncertainty in deep neural
networks, although it assumes a Gaussian form for the predictive probability distribution. If the
predictions are not expected to be Gaussian distributions (for example, in situations with multiple
subpopulations or mixed data), then one may simply use the more generic mixture density networks
with an appropriate number of mixture components. We have verified this for the case of shallow-
water equations, where the addition of components does not make any difference (i.e., all but one
mixing coefficient end up with near-zero weight after training) in the reconstruction. This validates
the Gaussian assumption and corresponding use of PNNs.

We have considered the use of probabilistic neural networks with a fully connected structure.
However, the fully connected model often suffers due to the curse of dimensionality since the
number of weights is drastically increased with the connected nodes in the model. This suggests
that a convolutional neural network formulation [104], which is able to deal with high-dimensional
data through the concept of filter sharing, may be investigated for the next step. In addition, these
probabilistic models, which can express confidence intervals for predictions, may also be enhanced
if they can be applied efficiently to unstructured data that are seen in various applications for fluid
dynamics. To that end we are studying the feasibility of graph neural networks [105] and generalized
moving least-squares [106] frameworks.
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