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Behavior of settling particles in homogeneous shear turbulence
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In this study, particle-laden shear turbulence is investigated by performing direct numer-
ical simulation under a point-particle approximation for spherical heavy particles with a
diameter smaller than the Kolmogorov length scale of the flow. The ranges of the Stokes
number and gravity factor considered in our study are St = 0.1, 0.5, 1, 5, and 10 and
W (= vt/vη ) = 0, 10, 20, 30, and 40, respectively, where vt and vη are the terminal velocity
and the Kolmogorov velocity scale, respectively. The behavior of settling particles is inves-
tigated by introducing a two-dimensional distribution function to quantify the anisotropic
clustering. A principal component analysis of the two-dimensional distribution evidently
indicates that the preferential orientation of clustering at different scales is identified well.
Small-scale clustering displays a multifractal nature with an explicit angular distribution.
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I. INTRODUCTION

Particle-laden turbulent flows are frequently observed in nature and various engineering appli-
cations, and some examples are droplets in clouds, planktons in an ocean, sedimenting particles in
a river, particles in chemical reactors, and fuel droplets in an internal combustion engine [1–4].
Therefore numerous studies on the transport of particles in a turbulent environment have been
conducted experimentally and numerically. Particularly, the clustering of inertial particles, which
is one of their most prominent phenomena occurring in turbulence, has been identified for particles
whose timescales are comparable to the Kolmogorov timescale of the background turbulence
(St � 1) [5–9]. The main mechanism of this phenomenon, also known as preferential concentration,
is the centrifuge effect of the inertial particles around rotating structures of turbulence. Therefore
most inertial particles are accumulated in the region where the rotational motion of the fluid is
weak and the straining motion is relatively strong. For particles with St > 1, mechanisms other
than the centrifuge effect have been proposed to explain the appearance of particle clusters of
multiscale nature. Goto and Vassilicos [10], Chen et al. [11] observed in two-dimensional turbulence
that inertial particles tend to stick preferentially to the zero-acceleration point of the background
flow. In particular, Goto and Vassilicos [12] extended this idea to three-dimensional turbulence and
revealed a sweep-stick mechanism of preferential concentration for Stokes numbers above unity.
However, in consideration of the settling motion of inertial particles due to gravity, a new type
of preferential accumulation in columnar structures was observed in isotropic turbulence [13,14].
Because gravitational settling is inevitable in real flows, the effect of gravity should be considered
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for developing an appropriate understanding of the behavior of particles in real scenarios. For
example, the clustering of sedimenting droplets in clouds can influence the droplet adhesion by
affecting the collision efficiency [9,15–18].

However, the behavior of inertial particles in an anisotropic turbulent environment is remarkably
different from that in isotropic turbulence. Therefore studies on the behavior of inertial particles in
anisotropic flows have also been actively conducted theoretically, experimentally, and numerically
[19–27]. However, most of these studies considered inhomogeneous shear flows, such as jets,
mixing layers, and channel flows, which present inhomogeneous distributions of the mean velocity
and turbulent stresses. A similar preferential accumulation is observed in the center region of
a channel where the flow is nearly homogeneous. Furthermore, owing to the inhomogeneity of
turbulence, another type of migration of particles, known as turbophoresis, occurs, which causes, for
example, accumulation of inertial particles in the near-wall region. Although the effect of gravity on
the behavior of inertial particles in these flows has been studied [28–31], it is difficult to determine
the fundamental mechanism of the clustering found in these flows owing to the combined effect of
the inhomogeneity and anisotropy of turbulence.

To study the effect of anisotropy of turbulence on the behavior of inertial particles, a homoge-
neous shear turbulence (HST) is an ideal flow to investigate. HST without laden particles has been
actively studied experimentally and numerically for a long time [32–40]. To develop a model of
shear turbulence under an unbounded condition, most of these studies focused on a transient shear
turbulence. Both experimental and numerical studies demonstrated that the integral length scale
and the turbulent kinetic energy increase with time. Pumir [41] suggested that the finite size of the
domain would prevent the increase to a large scale, unlike in an unbounded shear turbulence. We
actually confirmed numerically that the production and dissipation of a turbulence are balanced in
a confined space, which allows a statistically steady state. Similar features were also found in the
experiments by Shen and Warhaft [42].

Several studies have been performed to analyze the behavior of particles in an HST. The behav-
iors of suspended particles in a transient shear turbulence were investigated in [43,44]. Ahmed and
Elghobashi [43] studied particle dispersion in an HST at various shear numbers, particle response
times, and directions of gravity. They found that in the absence of gravity, the particle dispersion in
the streamwise direction is at least one order of magnitude larger than those in the other directions
owing to the mean advection. In comparison, on application of gravity, the particle dispersion in
all directions decreases. It was also confirmed that the preferential accumulation is maximized
when the Kolmogorov timescale and the particle response time are of the same order of magnitude.
Shotorban and Balachandar [44] also discussed preferential accumulation; specifically, particles
were most concentrated in the stream direction and not in the stress-stream direction. Gualtieri
et al. [45] investigated the behavior of particles for various Stokes numbers in a statistically steady
shear turbulence. They evaluated the anisotropy properties by introducing an angular distribution
function. The results provided evidence that depending on the Stokes number, anisotropic clustering
may occur even in the range of the scales in which the carrier phase velocity field is already
recovering the isotropy. Moreover, analysis of particle behavior in a two-way coupling regime has
been conducted [46–48]. However, the long-term clustering behavior of settling particles in HST
is still not fully studied. Therefore, in this study, we investigate the clustering behavior of particles
in a statistically stationary shear turbulence under the effect of gravity. First we observe the mean
motion of particles in HST before discussion on particle clustering because the enhanced particle
settling in turbulence is well known to be caused by the preferential sweeping mechanism [49,50].
Then we quantitatively present the properties of anisotropic clustering for various inertial particles
and gravitational magnitudes and confirm whether small-scale clustering exhibits a fractal nature.
For this purpose various statistics are presented, and in particular, we address a two-dimensional
distribution function (2DF) to characterize the anisotropic clustering.

The remainder of this paper is organized as follows. In Sec. II we describe the numerical
procedures for the simulation of particle-laden shear turbulence in a confined computational box.
The simulation results are discussed in detail in Sec. III. The conclusions are drawn in Sec. IV.
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TABLE I. Time-averaged turbulence statistics. Reλ = q2
√

5/3ν f ε, S∗ = Sq2/ε, Ls = √
ε/S3, shear length

scale, and q2 = 〈u′
iu

′
i〉. η and τη are the Kolmogorov length and the timescale, respectively.

Reλ S∗ η τη ε Ls 〈u′
1

2〉/q2 〈u′
2

2〉/q2 〈u′
3

2〉/q2 〈u′
1u′

2〉/q2

68 7 0.0358 0.0869 2.40781 0.76671 0.5593 0.2406 0.2301 –0.1493

II. NUMERICAL PROCEDURES

A. Homogeneous shear turbulence

To study the behavior of particles laden in an HST, first the turbulence should be appropriately
established. In this section we briefly describe the simulation of an HST. The governing equations
for an incompressible flow are Navier-Stokes and continuity equations,

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ f

∂ p

∂xi
+ ν f

∂2ui

∂x j∂x j
, (1)

∂ui

∂xi
= 0, (2)

where t is the time, ui is the velocity of the fluid in the xi direction, and x1 (x), x2 (y), and x3 (z)
denote the streamwise, cross-streamwise, and spanwise directions, respectively. Here p, ρ f , and ν f

are the pressure, density of the fluid, and kinematic viscosity of the fluid, respectively. We consider
a simple shear flow with a uniform shear rate, S; therefore the velocity field ui is decomposed into
a sum of the mean shear flow, Ui = Sx2δi1, and a fluctuating velocity u′

i. Using this decomposition,
one can rewrite the Navier-Stokes equation and continuity equations for the fluctuating quantities as

∂u′
i

∂t
+ u′

j

∂u′
i

∂x j
+ Sx2

∂u′
i

∂x1
+ Sδi1u′

2 = − 1

ρ f

∂ p

∂xi
+ ν f

∂2u′
i

∂x j∂x j
, (3)

∂u′
i

∂xi
= 0. (4)

The presence of mean velocity due to uniform shear does not allow typical periodic conditions
in all directions. In the shear direction (y), the so-called shear-periodic condition is satisfied. The
shear-periodic boundary condition for a quantity of interest f (x, y, z, t ) is prescribed by

f (x, y + Ly, z, t ) = f (x − SLyt, y, z, t ), (5)

where Ly is the domain size in the y direction, indicating that the computation domain stays
deformed in time.

To implement the shear-periodic condition for the fluctuation quantities, we adopted the algo-
rithm of Brucker et al. [51], which works directly in a fixed orthogonal frame. The drawback of
this algorithm is that the wave numbers in the shear direction continue to increase, which limits the
grid resolution [52]. To resolve this we introduced the remeshing process proposed by Rogallo [53].
Using the combination of the above two algorithms, we could maintain a statistically stationary
shear turbulence for a long time in the orthogonal frame without a physical frame deformed by
mean shear.

Equations (3) and (4) are solved by a pseudospectral method under the shear-periodic boundary
condition, and a third-order Runge-Kutta scheme is adopted for time advancement. The orthog-
onal computation domain is [0, 2π ] × [−π, π ] × [0, 2π ] with a resolution of 128×128×128.
Time-averaged turbulence statistics are listed in Table I: the Taylor-scale Reynolds number,
Reλ(= u′λ/ν f = q2

√
5/3ν f ε) = 68, and the nondimensional shear parameter, Sq2/ε = 7. Here
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FIG. 1. Statistics of flows in HST: (a) Reynolds number Reλ and shear parameter Sq2/ε; (b) dissipation
rate ε and production P = −S〈u1u2〉 over 200 shear timescales, ts = S × t = 200. Inset in (b) shows ratio of
production and dissipation.

q2 = 〈u′
iu

′
i〉, and ε is the turbulence dissipation rate. It is noted that the anisotropy of shear turbulence

is represented by 〈u′
1

2〉 > 〈u′
2

2〉 � 〈u′
3

2〉 > |〈u′
1u′

2〉|.
Temporal variation in statistical quantities over a long period S × t = 200, such as Reynolds

number, shear parameter, dissipation rate, and production P(= −S〈u′
1u′

2〉), is shown in Fig. 1,
demonstrating that these statistics widely oscillate while maintaining the stationarity over a very
long time. The ratio of the production and dissipation rates presented in the inset of Fig. 1(b) clearly
indicates that the simulated turbulence is indeed statistically stationary. It is noticeable that the
dissipation rate lags behind the production in the temporal variation, as displayed in Fig. 1(b). In
this study the sufficiently developed HST at S × t = 200 is used for the initial field to investigate
the behavior of settling particles.

B. Motion of particles in HST

The particles considered in this study are small, heavy, and spherical. The diameter of a particle
is much smaller than the Kolmogorov length scale, (i.e., dp/η � 1); therefore a point-particle
approach can be used, and the feedback force is ignored (one-way interaction). Stokes drag is
adopted because the particle density is much higher than the fluid density (i.e., ρp/ρ f � 1).
Accordingly, the equations of motion for particle position xp

i and particle velocity vi are expressed
as

dxp
i

dt
= vi, (6)

dvi

dt
= 1

τp
(ui − vi ) − gδi2, (7)

where ui is the fluid velocity at the particle position [xp
1 (t ), xp

2 (t ), xp
3 (t )], g is the gravitational accel-

eration, and τp = ρpd2
p

18ν f ρ f C
is the local particle response time, where the Reynolds-number-dependent

numerical factor C = 1 + 0.15Re0.687
p is considered, which is valid in the range of Rep < 800.

The particle Reynolds number, i.e., Rep = |ui − vi|dp/ν f , is not small when the Stokes number
is large and gravity is strong. We observed that 0.0001 < Rep < 50 in all cases considered in the
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TABLE II. Cases considered in this study. Averaged particle Reynolds number and the ratio of particle
diameter to the Kolmogorov length scale for various Stokes numbers and gravity factors. Density ratio of a
particle (copper) to fluid (air) is 7450.

St = 0.1 St = 0.5 St = 1 St = 5 St = 10

W Rep dp/η Rep dp/η Rep dp/η Rep dp/η Rep dp/η

0 3.54×10−4 0.0157 6.07×10−3 0.0351 0.0114 0.0497 0.261 0.114 0.524 0.164
10 0.648 0.0165 1.27 0.0380 2.13 0.0555 5.14 0.134 11.4 0.210
20 1.30 0.0170 2.52 0.0397 4.20 0.0587 9.86 0.145 22.7 0.237
30 1.94 0.0174 3.77 0.0411 6.25 0.0613 14.7 0.155 33.9 0.257
40 2.59 0.0178 5.02 0.0423 8.31 0.0635 19.5 0.163 45.2 0.274

present study, as listed in Table II. Using the decomposition of the particle velocity, vi = v′
i + Sxp

2δi1,
Eqs. (6) and (7) can be rewritten,

dxp
i

dt
= v′

i + Sxp
2δi1, (8)

dv′
i

dt
= 1

τp
(u′

i − v′
i ) − gδi2 − S

dxp
2

dt
δi1. (9)

For the interpolation of the fluid velocity at the position of a particle, a four-point Hermite
interpolation scheme is applied in all three directions in the orthogonal grid [54,55]. Particular
attention is needed to apply the interpolation scheme to particles near the top or bottom boundary to
satisfy the shear-periodic condition [56]. To illustrate this we consider two particles marked as blue
stars in the 4×4 grid points shown in Fig. 2. Flow data depicted as filled squares are obtained by
simulation. Open squares denote the positions satisfying the shear-periodic condition. The values in
the x1 direction can be used directly because they satisfy the ordinary periodic conditions. However,
the values in the x2 direction must be shifted to Cartesian coordinates (red circles) according to the
shear-periodic condition. If a particle is at the upper boundary, as shown in the left side in Fig. 2(a),
interpolation in two planes is required. Here the data at ABCD and EFGH are used to obtain the
data at A′B′C′D′ and E ′F ′G′H ′, respectively. Similarly, if a particle is at the bottom, as shown in
the right side in Fig. 2(b), the value at the particle position should be interpolated using the value

x2

x1

L2St

A B C D A

x2

x1

L2St

FIG. 2. Schematics showing method to interpolate data for particles located near (a) the top boundary and
(b) the bottom boundary to satisfy the shear-periodic condition.
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obtained by the interpolated data of I ′J ′K ′L′ using the data at IJKL. The time integration for Eqs. (6)
and (7) is conducted using the third-order Runge-Kutta scheme [57,58].

The particle dynamics are determined by the Stokes number St and the gravity factor W ,
defined as St = τp/τη and W = gτp/vη, respectively, where τp = 1/T

∫
τpdt . vη is the Kolmogorov

velocity scale. Froude number, Fr = vη/(gτη ) = St/W , can be used alternatively. In this study the
behavior of 160 000 particles for the period of S × t = 150 is investigated for 25 cases (5 Stokes
numbers×5 gravity factors). The considered values of the Stokes number and the gravity factor are
St = 0.1, 0.5, 1, 5, and 10 and W = 0, 10, 20, 30, and 40, respectively. All cases considered in the
present study are listed in Table II in terms of the particle Reynolds number and the particle diameter
relative to the Kolmogorov length scale, validating the point-particle approach.

III. RESULTS AND DISCUSSION

The visual results of the particle distribution for various Stokes numbers and gravity factors in
the vertical x-y plane, with the y axis denoting the negative gravitational direction, are shown in
Fig. 3 to provide an overall picture. Here the colored contour levels represent the magnitude of a
vorticity component normal to the plane. In Fig. 3 the cases are arranged such that the Stokes number
increases from top to bottom for St = 0.1, 0.5, 1, 5, and 10, and the gravity factor increases from
left to right for W = 0, 10, and 30. First we observe that the behavior of the particles in the HST in
the absence of gravity is similar to that in a homogeneous isotropic turbulence in that the maximum
clustering of the particles occurs at St = 1 (see the left column in Fig. 3). However, the pattern of
clustering at St = 1 indicates that there exists a preferential direction in the particle clusters owing
to the mean shear motion of the fluid.

When particle settling is considered, more diverse patterns of clustering are observable compared
to the cases without the gravitation effect. When St � 1, no clustering is found, whereas as St
approaches 1 and further increases, various patterns of clustering are remarkably visible. In all
cases presenting clustering, the effect of the mean shear motion is reflected on the slanted pattern
of clustering to different extents. These patterns, particularly for St ∼ 1 and W = 10 and 30, are
somewhat similar to the pattern aligned with the gravitational direction found in the settling particles
in an isotropic turbulence [14]. Owing to the presence of shear, the pattern of clustering seems to
be relatively more complex. Another interesting finding is that the particles with St = 5 and 10,
which did not display any pronounced pattern in the absence of gravity, exhibit a very strong linear
pattern, which has never been observed in any particle-laden turbulence.

In the following sections we discuss the investigation of the behavior of the particles, analyzing
various statistical quantities in detail. First, the effect of shear turbulence is examined by comparing
the terminal and slip velocities in the x and y directions in a turbulence-free shear flow with the
averaged velocity of the particles suspended in the HST. We also compare the analytic solutions
of the terminal trajectories in the turbulence-free shear flow with those of the ensemble-averaged
trajectories of the particles in the HST. The details are covered in Sec. III A. Next, the clustering of
particles is discussed in Secs. III B and III C in terms of the closest distance between particles and a
two-dimensional pair correlation function called 2DF, respectively. Finally, in Sec. III D we discuss
the multifractal nature of the particle clusters as indicated by 2DF.

A. Mean statistics of particle motion

This section initially presents the mean statistics of particle motion, such as the settling velocity,
horizontal slip velocity, and mean particle trajectory. After a certain transient period, owing to the
initial random distribution of the particles the average velocity of the particles reaches a steady value
asymptotically over time. In an HST, the settling particles can eventually present mean settling and
horizontal slip velocities. From an ensemble average of Eq. (9), as t → ∞,

〈v′
i〉 = 〈

u′
i

(
xp

i

)〉 − τpgδi2 − Sτp〈v′
2〉δi1, (10)
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FIG. 3. Particle distribution for various Stokes numbers and gravity factors. Gravity acts in vertical direc-
tion. Colored contour denotes spanwise vorticity. From top to bottom, St = 0.1, 0.5, 1, 5, and 10, respectively.
From left to right, W = 0, 10, and 30, respectively.
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FIG. 4. (a) Plots of difference between mean settling velocity and terminal velocity and (b) difference
between mean horizontal particle velocity and horizontal slip velocity for various Stokes numbers and gravity
factors.

where the second term on the right side is the terminal velocity in a stationary fluid, vt = −τpg, and
the third term is the horizontal slip velocity of the particles relative to that in the turbulence-free
shear flow, vh = Sτp

2g. The effect of turbulence is reflected on the first term. The average settling
velocity of the particles relative to vt and the average slip velocity of the particles relative to vh

are shown in Fig. 4 as a function of Stokes number and the gravity factor. When normalized by

〈u′
2

2〉1/2
, which is the average vertical velocity of the fluid at the particle position, the settling

velocities for all Stokes numbers are higher than the terminal velocity in the stationary fluid, and the
difference monotonically decreases with the gravity factor. At a given gravity factor, this difference
is maximum at St = 0.5, and when W = 10, it is 8%. Wang and Maxey [49] investigated the settling
velocity under a weak gravity (W � 4) for St < 1 in a homogeneous isotropic turbulence and found
that the settling velocity is higher than the terminal velocity. This is owing to the preferential
sweeping of the particles in a downward-moving fluid, and the difference between the settling
and terminal velocities reaches a maximum in the interval 1.5 < W < 2.5 and then decreases.
However, in our study we focused on a comparatively wider range of the gravity factor; we did not
identify the value of the gravity factor showing the local maximum difference. Furthermore, their
Reynolds number is quite small (Rλ = 31), and thus their observation is not directly generalized to
a high-Reynolds-number flow. Recently, Ireland et al. [59] discussed the settling velocity extending
the range of Reynolds numbers for 0 � St � 3 and Fr = 0.025. They observed that the settling
velocity of inertial particles with St > 1 is not affected by turbulence at Rλ = 90, consistent with
our results. Moreover, they revealed that the mean settling velocity is independent of Rλ for St < 0.1,
suggesting that in this limit it is determined entirely by the small-scale turbulence and is a stronger
function of the Reynolds number at higher St. This leads to a consideration of multiscale preferential
sweeping by Tom and Bragg [50], in which they observed that increasingly larger scales contribute
to the enhanced particle settling due to the turbulence as St increases. Furthermore, they confirmed
another prediction of theory that the vertical component of mean fluid velocity at particle position,
〈u′

2(xp
2 )〉, is affected by an increasingly larger scale for a given St as Fr decreases (W increases).

This could provide an explanation for increased cluster size in the presence of gravity that will be
confirmed in Sec. III C.

The horizontal slip velocity relative to that in a turbulence-free shear flow, as shown in Fig. 4(b),
exhibits similar dependency on the Stokes number and the gravity factor. When St = 0.5, the

difference in the slip velocity normalized by 〈u′
1

2〉1/2
reaches 13% for W = 10. Note that for

particles with St = 5 or 10, a non-negligible difference is observed, unlike for the settling velocity.
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FIG. 5. (a) Plots of particle trajectory for various Stokes numbers and gravity factors and (b) dispersion
relative to terminal trajectory. Average particle trajectory is normalized by settling velocity and shear rate.
Terminal trajectories for turbulence-free shear flow are expressed as xt

1 = Sτp
2gt − 1

2 Sτpgt2 and xt
2 = −τpgt .

Dispersions are displayed for St = 0.1, 1, and 10.

The existence of settling and horizontal slip velocities warrants the consideration of the particle
trajectories. First, an analytical solution of the terminal trajectory of a particle in the turbulence-free
shear flow can be obtained by an integral of Eq. (8), where the terminal value of v′

i for a turbulence-
free flow is expressed by v′

2 = −τpg and v′
1 = Sτp

2g, and the second term on the right side can be
replaced by a function of time as xp

2 = v′
2t = −τpgt . Thus the terminal trajectory in a turbulence-free

shear flow is given by

xt
i (t ) = (

Sτp
2gt − 1

2 Sτpgt2
)
δi1 − τpgtδi2, (11)

indicating that the particles are settling while forming a parabolic trajectory. In the HST, the
ensemble-averaged particle trajectory 〈Xi〉 can be obtained by the averaged displacement of the
particles relative to each initial position,

Xi(t ) = xp
i (t0 + t ) − xp

i (t0) − Sδi1xp
2 (t0)t, (12)

where t0 is chosen to avoid the initial transient period due to the random distribution of the particles.
The ensemble-averaged trajectories normalized by vt/S are displayed for different Stokes numbers
and gravity factors in Fig. 5(a) along with the terminal trajectory in the turbulence-free shear flow
given by Eq. (11) for comparison. For all cases the ensemble-averaged particle trajectory is almost
identical to the terminal trajectory in the turbulence-free shear flow, although a slight deviation is
observed for St = 10. It appears that turbulence does not play any role in determining the mean
particle trajectory, and thus Eq. (11) is a good estimator of the particle trajectory in the HST for the
range of parameters considered in the present study.

Next the dispersion of particles relative to the average trajectory was investigated. Particularly,
the dispersion of the particles in the streamwise direction given by σ 2(t ) = 〈(X1(t ) − xt

1(t ))2〉 is
shown in Fig. 5(b), illustrating the time development of σ 2 on a log scale for all the Stokes numbers.
The x axis is normalized by the particle response timescale τp, and the y axis is normalized by the
shear scale Ls. A typical ballistic-to-diffusion transition, (t2 → t1), is followed by shear diffusion
(t3) [60]. For St = 10 the diffusion behavior is not observed, whereas for St = 0.1 or 1, the shear
diffusion is found for large gravity factors.
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FIG. 6. Plots of average closest distances. (a) Drawn with gravity factor for St = 0.1, 0.5, 1, 5, and 10.
(b) Drawn with average closest distance in each direction. The average closest distance is normalized by the
corresponding value for a random distribution of the same number of particles in the same domain so that
values smaller than 1 indicate clustering.

B. Clustering of particles: Closest distance

In this section the statistics of the closest distance between particles are discussed to quantify the
clustering phenomenon. These statistics were used for isotropic turbulence by Park and Lee [14]
and are a simple tool to assess the clustering of particles. The average closest distance � is defined
by

� = 〈
min
k �= j

∣∣xp
i, j − xp

i,k

∣∣〉, (13)

where xp
i, j denotes the position of the jth particle, and the bracket denotes averaging over all the

particles. Figure 6 shows the average closest distances normalized by �0, which is the corresponding
value for a random distribution of the same number of particles, for various Stokes numbers. The
bar above δ indicates the temporal average. �̄/�0 = 1 suggests a uniform distribution, and �̄/�0

is indicative of when the clustering of particles occurs as �̄/�0 < 1.
In the absence of gravity, the clustering of particles occurs when St = 0.5 and 1 and is maximized

at St = 1, whereas no such clustering is observed when St � 1, which is similar to the typical
behavior observed in a homogeneous isotropic turbulence. On the other hand, as the gravitational
strength increases, the clustering behavior drastically changes. When St � 1, the clustering is
rapidly weakened as W increases. However, when St > 1, the particles tend to cluster as W
increases, although the pattern of the clusters is different from the case with St = 1 in the absence
of gravity, as shown in Fig. 3.

The clustering behavior of particles for St � 1 in the absence of gravity can be well explained
by the centrifuge effect. As the gravity factor increases, however, particles settle faster. Then the
chance of interaction between the settling particles and vortical structures gets reduced, resulting
in weakening of clustering. For St � 1, however, several experimental and numerical observations
provided evidence showing large-scale clustering, regardless of gravity [61–63]. This was explained
by the sweep-stick mechanism introduced by Goto and Vassilicos [12], that particles tend to stick
preferentially to the zero-acceleration point of fluid. Since the closest distance is the statistics char-
acterizing small-scale clustering, it cannot capture large-scale clustering. However, the large-scale
clustering was clearly observed for St � 1 in Fig. 3. It appears that as gravity gets stronger, this
large-scale clustering becomes more pronounced.
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The small-scale structure of clustering can be investigated by the components of the closest
distance [14]. The horizontal and vertical components of the averaged closest distance, �̄x vs �̄y,
are presented in Fig. 6(b). However, in most cases, �̄y is slightly smaller than �̄x. In the absence of
gravity, �̄x is almost the same as �̄y. Although W increases, the difference between them does
not change significantly. The anisotropic nature of clustering observed in Fig. 3 requires more
appropriate analysis, which will be described in the next section.

C. Anisotropic clustering of particles: 2DF

A radial distribution function (RDF) has been used to analyze the relative distribution of particles.
However, an RDF is an unsuitable tool to determine the anisotropic clustering of particles. Gualtieri
et al. [45] considered the angular distribution function (ADF) in HST by extending the RDF. In
the current study we propose simpler and more visible statistics. With the particle number density
defined by n(xi, t ) = ∑

j δ[xi − xp
i, j (t )], the pair correlation of particles 〈n(xi, t )n(xi + ri, t )〉 defines

a general three-dimensional distribution function,

g(xi, ri, t ) = 〈n(xi, t )n(xi + ri, t )〉
〈n(xi, t )〉〈n(xi + ri, t )〉 . (14)

Under the homogeneous isotropic stationary condition, g(xi, ri, t ) reduces to RDF g(r) with r =
(riri )1/2:

g(r) = 〈n(0)n(r)〉
〈n〉2

. (15)

Extending the statistics, we consider the pair correlation function of particles in two dimensions,
defined as

g(x, y) = 〈n(0, 0, 0)n(x, y, z)〉
〈n〉2

∣∣∣∣
−0.3η<z<+0.3η

, (16)

which we call the two-dimensional distribution function (2DF). g(x, y) = 1 indicates a uniform
distribution, whereas g(x, y) > 1 or g(x, y) < 1 suggests clustering or void, respectively. g(x, y) can
provide information on the structure of the anisotropic clustering of particles.

Figure 7 shows the distribution of 2DF for St = 0.1, 0, 5, 1, 5, and 10 as the gravity factor
increases. The 2DF value is obtained by measuring the distance between all pairs of the particles.
Each axis is normalized by the Kolmogorov length scale, η. The contour level represents the value
of 2DF. Here the level marked in blue [g(x, y) = 1.06] denotes the structure of the large-scale
clustering of particles. In addition, for St = 0.1 the domain is enlarged because the structure of
particle clustering is small. The first column in Fig. 7 presents 2DF, depending on the Stokes number
in the absence of gravity. It is observed that the value of 2DF at the origin, 〈n2〉/〈n〉2, shows a
maximum when St = 1, implying that the degree of clustering is maximized. The maximum and
minimum values of g(x, y) are listed in Table III. The distributions for all the values of the gravity
factor indicate that there exists a preferential direction in the patterns of the clusters.

When St � 1, the tendency of particle clustering decreases with increasing gravity factor, as
confirmed by the contour level in Fig. 7 and the maximum value at the center (see Table III).
Particularly, when W = 10, the cluster structure is large and elongated in the slanted direction.
When W > 10, the size of the structure decreases. When St = 0.1, particle clustering appears
to be relatively weaker and less affected by gravity. However, when St > 1, particle clustering
becomes stronger and more anisotropic with increasing gravity, as depicted in Fig. 7. This can
be confirmed by the maximum value of 2DF at the center, as listed in Table III. It is noteworthy
that the void region becomes more pronounced near the sides of the elongated cluster structure.
These observations indicate that clustering in this parameter range (St > 1 and W � 10) occurs in
a large scale, as depicted in Fig. 3, which is remarkably different from the typical clustering, for
St = 1. Furthermore, the angle of the cluster structure measured from the horizontal direction tends
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FIG. 7. Two-dimensional distribution function (2DF) for various Stokes numbers and gravity factors. From
top to bottom, St = 0.1, 0.5, 1, 5, and 10, respectively. From left to right, W = 0, 10, and 30, respectively. The
gray-scale contour level represents the 2DF values for the same Stokes number. The blue contour denotes
g(x, y) = 1.06, and the area inside the blue line is taken as the structure of large-scale clustering. The white
region indicates a relatively void region.
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TABLE III. Minimum and maximum values of 2DF at various Stokes numbers and gravity factors. The
maximum value, which is 〈n2〉/〈n〉2, is typically found at the origin.

St = 0.1 St = 0.5 St = 1 St = 5 St = 10

W gmin gmax gmin gmax gmin gmax gmin gmax gmin gmax

0 0.974 1.70 0.965 16.7 0.953 22.5 0.924 1.91 0.954 1.29
10 0.975 1.16 0.982 5.29 0.993 10.4 0.922 4.50 0.924 3.53
20 0.975 1.14 0.974 2.72 0.972 5.62 0.901 5.69 0.899 4.18
30 0.975 1.12 0.969 1.88 0.973 3.52 0.893 5.94 0.896 4.49
40 0.954 1.09 0.976 1.53 0.976 2.63 0.892 6.15 0.892 4.71

to decrease as the gravity factor increases, which is also noted in the snapshot distribution of the
particles in Fig. 3.

For a relatively more quantitative analysis of 2DF, we conduct the principal component analysis
(PCA) [64]. Particularly, we use PCA to identify the orientation of the cluster structure in various
scales, because PCA can provide principal direction to the particle distribution. Here the principal
direction refers to the direction along which the variance of data is the largest. First we define the
covariance matrix Ci j (h) as a function of the value of the level h in 2DF for a given distribution of
particles in two dimensions xp

i,k :

Ci j (h) = 1

NpNq(h)

Np∑
k

Nq (h)∑
l �=k

(
xp

i,l − xp
i,k

)(
xp

j,l − xp
j,k

)
, for g

(
xp

1,l − xp
1,k, xp

2,l − xp
2,k

)
� h, (17)

where Np is the total number of particles, and Nq(h) is the number of pairs of particles satisfying
the inequality condition in Eq. (17). In two dimensions, C11(h) and C22(h) represent the horizontal
and vertical variances, respectively, of the relative distance between a pair of particles satisfying the
inequality condition of Eq. (17). C12(h)( = C21(h)) indicates the correlation between the horizontal
and vertical distances between a pair of particles. 2DF, as shown in Fig. 7, evidently suggests
that C12(h) > 0 for all the cases and for all the levels, h. The symmetry of Ci j (h) allows two
real eigenvalues, λ1(h) and λ2(h)( < λ1(h)), and the corresponding eigenvectors. The direction of
the eigenvector corresponding to λ1(h) indicates the direction along which the relative distance
between a pair of particles has the maximum variance, λ1, for a group of particle pairs satisfying the
inequality in Eq. (17). λ1(h) is a monotonically decreasing function of h, because as h approaches
g(0, 0), the maximum value is g(x, y) found at the origin and the corresponding cluster of particles
becomes smaller, as shown in Fig. 8. However, as h decreases to 1, the cluster of particles becomes
larger. In Fig. 8,

√
λ1(h)/η and

√
λ2(h)/η are plotted for the range 1.06 < h < gmax. It is noticeable

that in the absence of gravity, as h approaches gmax, the difference between λ1(h) and λ2(h) reduces;
however, it never goes to zero, implying that small-scale clustering maintains anisotropy, consistent
with a previous observation by Gualtieri et al. [45]. More importantly, as the gravity factor increases,
this anisotropy becomes stronger.

We also investigated the orientation of clusters of different scales by monitoring the direction of
the corresponding eigenvector. The angle formed between the principal direction of λ1(h) and the
horizontal direction is defined as θ (h). Figures 8(b), 8(d), 8(f), and 8(h) show the principal angle of
particle clustering θ (h) as a function of

√
λ1(h)/η for various Stokes numbers. The limiting angle as√

λ1(h)/η approaches 1 is the angle of the smallest scale of clustering. In comparison, the angle at
the maximum

√
λ1(h = 1.06)/η corresponds to the angle of the large-scale clustering. The behavior

of λ1(h) and θ (h) for St = 0.1 is not shown, because the clustering is not recognized well. In the
absence of gravity, angle θ (h) increases with a scale for St = 0.5 and 1, whereas the angle shows
a local minimum in the intermediate scale. However, in the presence of gravity the behavior of the
angle is quite diverse, depending on the strength of gravity and scales.
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FIG. 8. Plots of
√

λ1(h) and
√

λ2(h) [(a), (c), (e), and (g)] and principal angles of particle distributions
[(b), (d), (f), and (h)] as a function of

√
λ1, normalized by Kolmogorov scale, η for various gravity factors,

W = 0, 10, 20, 40 and St = 0.5, 1, 5, 10.
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FIG. 9. Principal angles of (a) small-scale distribution and (b) large-scale distribution vs gravity factor for
St = 0.1, 0.5, 1, 5, and 10.

In Fig. 9 the limiting angles at both the extreme scales denoted by θS as
√

λ1(h)/η → 1
(h → gmax) and θL as

√
λ1(h)/η → are maximum, as presented for various Stokes numbers and

gravity factors. θS shows the maximum at W = 10 for all the Stokes numbers, whereas θL shows the
maximum at W = 20 for St = 0.5 and 1 and at W = 10 for St = 5 and 10. Both the angles tend to
decrease as the gravity factor increases, implying that the structure of the cluster prefers horizontal
stretching.

D. Multifractal nature of small-scale clustering

As discussed using 2DF in the previous section, the localization of the particles of small scales
results in an increase in the particle density. The density of particles is singular, and its pair
correlation function or 2DF shows a power-law divergence r−α at a small separation r, where α

is the so-called correlation codimension. In this section we discuss the investigation of whether
such a multifractal scaling holds in the small-scaling cluster of settling particles in shear turbulence.
Particularly, we discuss the behavior of 2DF for a small separation r.

Gualtieri et al. [45] found that the statistics of the suspended particles in the shear turbulence
exhibit the same results as that in the isotropic flow. They expressed the ADF as an angle-dependent
RDF g(r, r̂i ), where r = |ri|, and r̂i is the unit-directional vector of the distance vector ri. Using
spherical harmonics decomposition, multifractal scaling was investigated. In our other study [65] the
angle-dependent RDF and its multifractal nature were examined for settling droplets in the isotropic
turbulence. In a previous study the angle-dependent RDF, g(r, φ), was defined to determine a pair
of droplets at a given distance r and polar angle φ (the z axis was directed upward). Column-shaped
particle clustering at a small Fr(= St/W ) discovered by Bec et al. [13], Park and Lee [14] was
analyzed by assuming that the multifractality is confined in the horizontal direction. Therefore
g(r, φ) depends only on the horizontal separation r sin φ, where the multifractality dictates the
power-law dependence (r sin φ)−α:

g(r, φ) =
(

lc
r sin φ

)α

, r < lc, φ > φ∗, (18)

where lc is the cut-off scale approximately ten times larger than the Kolmogorov scale (lc ∼ 10η),
and the critical angle φ∗ is considerably smaller than 1 (φ∗ � 1). α is twice the information
codimension as given by the Kaplan-Yorke formula.
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FIG. 10. Plots of g(r, θ ) [(a) and (b)] and the compensated RDF g(r, θ ) sinα (θ − θλ1 ) [(c) and (d)] vs η/r
at representative angles θ in case of (a), (c) St = 1,W = 0, and (b), (d) St = 1,W = 20. Red dashed line
represents the most stretching principal angle θS for θλ1 , and blue dotted line represents the most compressive
principal angle for θλ2 .

Here we investigate the extension of the behavior of the angle-dependent RDF to small-scale
clustering of settling particles in the shear turbulence. For this purpose the angle-dependent property
of the 2DF introduced in the previous section is expressed using the polar coordinate g(x, y) =
g(r, θ ), where r =

√
x2 + y2 and θ = tan−1 x/y, which is the angle from the horizontal direction.

g(r, θ ) is obtained from g(x, y), as depicted in Fig. 7 at dθ = 10◦ intervals for the range of 0◦ � θ �
180◦ by using a bilinear interpolation. In Figs. 10(a) and 10(b), g(r, θ ) are drawn for several choices
of θ for St = 1 and W = 0 and 20. Here the red dashed line and the blue dotted line indicate g(r, θλ1 )
and g(r, θλ2 ), where θλ1 = θS in Fig. 9, which is the angle between the most stretching direction of
the smallest-scale clustering and the horizontal direction. θλ2 = θS + 90◦. Obviously, g(r, θ ) decays
most rapidly as r increases when θ = θλ2 , i.e., in the most compressive direction, whereas g(r, θ )
decreases most gradually when θ = θλ1 , in the most stretching direction. g(r, θ ) for other angles
is found to be between them. Note that the slope of the g(r, θ ) for the range of 0.2 � η/r � 2 is
established at all the angles, clearly suggesting a divergent behavior, g(r, θ ) ∼ r−α as r → 0.

For the settling droplets in an isotropic turbulence, as discussed by Fouxon et al. [65], the
angle-dependent RDF g(r, φ) at φ = 0 (vertical direction) decreases most slowly in r, and g(r, φ) at
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TABLE IV. Correlation codimension α for St = 0.5 and 1, and W = 0, 10, 20, 30, and 40. Fr = St/W .

α

Shear turbulence Isotropic turbulence Isotropic turbulence
St W Fr (Present) (Fouxon et al. [65]) (Bec et al. [13,69])

0.1 0 ∞ – – 0.12
0.5 0 ∞ 0.636 – 0.68
0.5 10 0.05 0.374 – –
0.5 20 0.025 0.224 – –
0.5 30 0.0167 0.142 – –
0.5 40 0.0125 0.096 – –
1 0 ∞ 0.706 – 0.63
1 10 0.1 0.540 – –
1 20 0.05 0.440 0.588 0.58
1 30 0.033 0.318 0.478 –
1 40 0.025 0.236 0.363 –

φ = 90◦ (horizontal direction) decays most rapidly in r. In shear turbulence, the most stretching
direction of the particle cluster is found in the θλ1 direction, suggesting that the combined effect
of gravity and shear creates the effective gravity in this most stretching direction. Therefore we
propose to extend Eq. (18) to shear turbulence by expressing g(r, θ ) by

g(r, θ ) =
(

lc
r sin (θ − θλ1 )

)α

, r < lc, θ − θλ1 > θ∗, (19)

where lc is the cut-off length scale and θ∗ is the critical angle. It is found in our study that lc = 6η ∼
10η and θ∗ ∼ 0.5. As demonstrated in Figs. 10(c) and 10(d) for St = 1 and W = 0 and 20, the
compensated RDF, g(r, θ ) sinα (θ − θλ1 ), for various angles collapses to a single curve, validating
Eq. (19). Here α is determined by the method described below.

Following this, we attempted to estimate the correlation codimension α, which is known to be
related with twice the Kaplan-Yorke codimension, CKY [14,66]. This leads to a relation with the
correlation dimension D2, a multifractal measure associated with the particle density correlation
[67,68]; D2 = 3 − α = 3 − 2CKY . By definition, CKY = |Σ�i|/|�3| � 1 at a low compressibility
[14,66]. �i indicates the Lyapunov exponent, which can be computed by tracking numerous pairs
of particles. We conducted separate real-time simulations to estimate the Lyapunov exponents. The
initial distance between the particles is set as 1/100 000th of the Kolmogorov length scale. After
the transient period due to an arbitrary initial condition for the particle velocity, the changes in the
distance between two particles, of the area between three particles, and of the volume constructed
from four particles are monitored based on the Gram-Schmidt renormalization for a period of 43τη.
The 10 000 sets of pairs are released in one field, and the data are collected over a total of 77 flow
fields.

The obtained correlation codimensions for St = 0.5 and 1, compared to the results for isotropic
turbulence by Bec et al. [13,69] and Fouxon et al. [65], are listed in Table IV. The RDFs in the
steepest direction, g(r, θλ2 ) for St = 0.1, 0.5, 1, and 5, are plotted in Fig. 11 and compared with
the scaling estimation of (lc/r)α , with the corresponding α listed in Table IV. In the absence of
gravity (W = 0), the values of α for shear turbulence and for isotropic turbulence at St = 0.5 are
comparable, whereas α for St = 1 shows some discrepancy between the shear turbulence and the
isotropic turbulence, as seen in Table IV. As W increases, α for the shear turbulence decreases
more rapidly than that for the isotropic turbulence. When St = 0.1, in the absence of gravity the
slope of g(r, θλ2 ) is captured well by the value of α for isotropic turbulence estimated in Bec et al.
[69]. A similar universal behavior in the absence of gravity was observed by Gualtieri et al. [45];
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FIG. 11. Plots of g(r, θλ2 ) for St = 0.1, 0.5, 1, and 5 and St = 0.1. The RDF for W = 0 is approximated by
(łc/r)α well with the value of α in the isotropic turbulence, given by Bec et al. [69]. For St = 0.5 and 1, in most
cases, the diverging behavior of g(r, θ ) as r → 0 is remarkably fitted well by (lc/r)α with the corresponding α

listed in Table IV. For St = 5, the diverging behavior is not observed.

thus gravity causes some differences in the diverging behavior. As shown in Figs. 3 and 7, small-
scale clustering is weakened with gravity for St � 1. Figure 11 clearly shows that settling particles
in shear turbulence exhibit the multifractal nature in small-scale clustering, by demonstrating the
divergent behavior and slope. Such a diverging behavior is partially observable under strong gravity
when St = 5, as shown in Fig. 11(d).

IV. CONCLUSIONS

In this study we investigated the clustering behavior of settling particles in homogeneous shear
turbulence by direct numerical simulation with a point-particle approximation for small spherical
particles with a diameter smaller than the Kolmogorov length scale. The ranges of the Stokes number
and gravity factor are St = 0.1, 0.5, 1, 5, and 10 and W = 0, 10, 20, 30, and 40. To investigate the
long-term behavior of particles, a homogeneous shear turbulence in a confined box was simulated
by the combined usage of the algorithm by Brucker et al. [51] and the remeshing model by Rogallo
[53].
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The mean statistics of particle motion, such as the mean settling velocity, mean horizontal slip
velocity, and mean trajectory of the particles, were obtained. For the range of the gravity factor
considered in this study, the enhancement of the settling velocity is not highly pronounced, and the
mean horizontal slip velocity of the particles relative to the mean shear is insignificant. Therefore the
mean trajectory of the particles did not show noticeable deviation from the trajectory of a particle
in the turbulence-free shear flow. However, the particle dispersion relative to the mean trajectory
exhibited a ballistic-to-diffusion transition with a subsequent shear-diffusion behavior depending
on the Stokes number.

The clustering behavior of the settling particles was investigated by various measures. In the
absence of gravity, the strongest clustering of particles was observed at St = 1. However, as the
gravity factor increases, the clustering at St = 1 becomes weaker and a new type of clustering
emerges for St = 5 and 10. This is similar to that found by Park and Lee [14] in their simulation of
the settling particles in a homogeneous isotropic turbulence. Specifically, a new type of clustering
for St > 1 is observed as the gravity factor increases. The quantitative analysis by measuring the
averaged distance to the closest particle supports the clustering behavior.

A unique feature of the clustering observed in shear turbulence is that the clusters show a
preferential direction owing to the combined effect of shear and gravity. To quantify this behavior,
we introduced and measured a two-dimensional distribution function of the particles, g(x, y). By
applying principal component analysis to it, we could identify the preferential direction of clusters
at different scales. As St and W increase, the clusters tend to align more with the horizontal direction.
These particle clusters suggest that both the sweep-stick mechanism at high Stokes numbers and the
large-scale preferential sweeping of settling particle for low Fr were affected by shear.

Finally, multifractal characteristics of small-scale clusters were investigated. From the principal
component analysis of g(x, y), we could identify the direction of the most clustering at small
scales. Subsequently, as r approached zero for isotropic turbulence, the diverging behavior of the
RDF, g(r) ∼ r−α , was extended to anisotropic clusters, and a similar diverging behavior could be
observed near the most clustering direction. Therefore the two-dimensional distribution function
can be expressed in the polar form, g(r, θ ) ∼ r−α sin−α (θ − θλ1 ). An estimation of the correlation
codimension α was made by measuring the Kaplan-Yorke codimension. We numerically confirmed
this angle-dependent diverging behavior for St � 1.
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