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Visualization experiments and pore network models on evaporation of capillary porous
media are presented in this work. We show that in a simple model porous medium the pores
occupied by gas can be refilled with liquid, snapping off a gas bubble, which then moves
to a stable configuration. This phenomenon, referred to as capillary instability, is induced
due to heterogeneity in wettability of the pore surfaces and has a much smaller time scale
compared to the evaporation process. The capillary instability is explored based on the
optical images obtained from visualization experiments. The residual liquid in pores can
suppress the capillary valve effect, which is induced by the sudden geometrical expansion
and can hinder the movement of the gas-liquid interface. For better understanding of the
capillary instability induced gas-liquid displacement, a pore network model that accounts
for capillary and viscous forces as well as the inertial effect is developed. The pore network
simulation results agree well with experimental data. The ratio of the square of the average
meniscus moving speed predicted by the pore network model with the inertial effect to the
average meniscus moving speed obtained from the model without the inertial effect is a
linear function of the Weber number. When the Weber number exceeds a critical value,
more pores are invaded by the gas-liquid interface in the pore network model with the
inertial effect than in the model neglecting the inertial effect. The pore network model
developed here opens up a route to better understand the role of inertial effects in two-phase
transport in porous media.

DOI: 10.1103/PhysRevFluids.5.104305

I. INTRODUCTION

Two-phase fluid transport in porous media is ubiquitous in nature and many industrial appli-
cations. This phenomenon occurs, for instance, during evaporation, where the gas-liquid interface
recedes preferentially into a porous medium, and the pores initially filled with liquid are gradually
occupied by the gas phase [1]. This gas-liquid interface movement is influenced by the interplay of
the viscous forces, gravity, thermal gradient, pore structure, and wettability [2–6]. The gas-liquid
interface movement determines the phase distribution in porous media and hence the evaporation
kinetics [7]. Accurate description of gas-liquid interface movement is therefore of vital importance.
Much progress, both experimentally and numerically, has been made on evaporation in porous
media [8–13]. But unveiling the dynamics of gas-liquid interface movement in porous materials
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FIG. 1. Refilling of pores with liquid and bubble formation and movement observed during evaporation
of a microfluidic pore network composed of pore bodies and pore throats (the pore length and width are also
illustrated). The left and right columns are the evaporation process. The middle two columns are capillary
instability induced liquid refilling and bubble formation and movement processes (about 40 s). Gas, liquid, and
solid are shown in light gray, dark gray, and black in the experimental images, respectively.

is still a challenge. This is due to the fact that real porous materials are often opaque and have
complex pore structures with nonuniform wettability of the pore surfaces.

Visualization experiments with microfluidic pore networks composed of regular pores, which
enable precise visualization of the gas-liquid interface (meniscus), is proven to be a useful approach
for understanding two-phase transport phenomena in porous media [14–20]. Based on the microflu-
idic visualization experiments, we observe surprisingly that during evaporation of a microfluidic
pore network composed of cuboid pores (horizontally placed and the gravity effects can thereby
be neglected), liquid refills the pores occupied by gas, snapping off a gas bubble (or gas ganglion),
which then moves rapidly until a stable configuration is reached; see the middle two columns in
Fig. 1. The refilling of already drained pores with liquid and bubble movement has a time scale
about 30 s, which is much smaller than that associated with the whole evaporation process (about
30 h). Despite such a small time scale, the pore refilling and bubble movement, without a doubt,
influences the liquid distribution in the pore network and consequently the evaporation kinetics.

The menisci movement during evaporation in porous media is similar to the drainage of a
nonwetting phase displacing a wetting phase (in the evaporation case, the gas is the nonwetting
phase, and the liquid is the wetting phase). For evaporation in the horizontally placed pore network
shown in Fig. 1 (see the left and the right column), the movement of the menisci is slow and hence
is controlled by capillary forces. As we will show later, the refilling of pores by liquid and the
bubble movement in Fig. 1 is attributed to the capillary instability induced by the heterogeneity
in wettability and structure of the pore network. Such capillary instability during drainage in a
microfluidic pore network has been reported in Ref. [20]; however, it is not revealed the formation
of ganglion of the nonwetting fluid. Formation of ganglia of nonwetting fluid has been widely
observed in steady-state two-phase flow in porous media; e.g., see Refs. [21–23]. In these studies,
the nonwetting and wetting fluids are simultaneously injected into the porous media, different
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from the drainage case of a nonwetting phase displacing a wetting phase. The mechanism for
formation of ganglia of the nonwetting fluids in the drainage (e.g., Fig. 1) and the steady-state
two-phase flow in porous media therefore could be different. Although many studies have been
performed on the two-phase transport in porous media, the mechanisms for formation of ganglia of
the nonwetting fluids in the slow drainage process, e.g., the observed gas bubble in Fig. 1, are still
unclear. Addressing this issue can definitely provide insights into the two-phase transport in porous
media.

In this work, the capillary instability induced the gas-liquid displacement in the pore network
shown in Fig. 1 is thoroughly investigated. This effort is made to essentially disclose, from the pore-
scale perspective, the mechanisms for the formation of ganglia of the nonwetting fluid in porous
media during slow drainage. Obviously, the pore-scale dynamics of the moving menisci influences
the continuum-scale two-phase transport in porous media. Disclosing such influence is of great
importance for developing accurate continuum models for the two-phase transport in porous media.
The pore network modeling approach is an effective tool to link the menisci dynamics and the
continuum-scale transport properties (for two-phase transport in porous media). This is partly due
to the fact that pore network models provide a reasonable trade-off between the essential depiction
of the menisci dynamics and the computational efficiency. A pore network model is developed in
this work so as to provide a technique to reveal the role of the capillary instability effect in the
two-phase flow in porous media. The developed pore network model takes into account not only the
capillary forces, the viscous forces, the capillary valve effect, but also the inertial forces.

The inertial effects are usually neglected in the existing pore network models for two-phase
transport in porous media. In few pore network studies, the inertial effect is considered only
in pores with gas-liquid menisci and that is disregarded in pores fully-filled with liquid, e.g.,
Ref. [13]. The inertial effects are successfully considered in all liquid-filled pores in the present
pore network model. The guess-and-correct method is used to solve the pressure and velocity
fields in the pore network. The pore network simulations and the experimental results are in good
agreement, demonstrating the effectiveness of the developed model. The developed pore network
model provides a route for better understanding the role of inertial effects in two-phase transport in
porous media.

In what follows, the experimental observation is explained in detail. The pore network model
accounting for the inertial effect is developed and validated in Sec. III. In Sec. IV, the impacts of
inertial effect on gas-liquid displacement are discussed. Summary and conclusions are presented in
Sec. V.

II. EXPERIMENTS

The quasi-two-dimensional (2D) microfluidic pore network used in our experiment is fabricated
by bonding a glass sheet to a silicon wafer etched with the designed pore structures. The pore
network consists of 5 × 5 large pore bodies connected by small pore throats (Fig. 1). All pores
are cuboid and have a height of h = 50 μm. In the plane perpendicular to the height direction, the
pore bodies are square and have a side length of l = 1 mm. The distance between the centers of
two neighboring pore bodies is 2 mm. All pore throats have a length of l = 1 mm, but their widths,
w, vary between 0.14 and 0.94 mm. The width of each pore throat can be found in Fig. S1 in the
Supplemental Material [24]. The pore network is connected to environment through an outlet pore
of 2-mm long and 0.5-mm wide. The evaporation experiment is performed at the temperature of
26.5 ± 2 °C and a relative humidity of 67.3 ± 2 %. The pore network, initially filled with ethanol, is
horizontally placed on a plate. A camera (Nikon D810) and an inverted microscope (Olympus IX73
with a 4X lens) are used to record the movement of menisci in the pore network during evaporation.
The images are analyzed to determine the liquid distribution, the speed of the moving menisci, the
curvature radii of menisci based on the arc fitting method [25,39–41], and the contact angle based
on the polynomial fitting approach [26]. The detailed image processing procedures are presented in
Figs. S2 – S4 in the Supplemental Material [24].
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FIG. 2. Evolution of the moving menisci during capillary instability induced refilling of pores in the top
right zone of the pore network (i.e., the zone marked by the red box in Fig. 1). Menisci A and B are moving,
while the other menisci remain almost static. The pores that can be invaded by menisci are numbered. The
contact angles of the pore throats are also shown in the images of IV and V.

The advancing and receding menisci are defined as those moving towards the liquid and gas
phases, respectively. The speed of a moving meniscus in a pore is defined as the rate of liquid flow
in this pore divided by the cross-sectional area of the pore body (all pore bodies have the same
cross sectional area). Since the pore network structure is etched in silicon wafer in our microfluidic
model, we can get the contact angle (taken in the liquid phase) for the silicon surface, θs, based on
the image analysis. The contact angle hysteresis for the silicon surface is small and can be neglected.
The contact angle for the glass surface is θg = 0◦ [27].

As shown in Fig. 2 (image at stage IV), the value of θs is different in each pore, and varies from
25.5◦ to 41.7◦, indicating the wettability heterogeneity of the pore surface. Nevertheless, the contact
angle of an ethanol droplet on a polished silicon (smooth surface) is reported to be about 19◦, and as
the droplet evaporates, the contact angle can be reduced to less than 5◦ [28]. In Ref. [29], the contact
angles of droplets of water-ethanol solutions on a silicon have been measured, and it was stated that
the contact angle approaches to zero as the ethanol concentration increases. Clearly, the contact
angle in the present study is significantly higher than those reported in the previous literature. Here,
the contact angle is obtained by extrapolating the macroscopic fit of the in-plane (perpendicular to
the thickness direction of the pore) shape of the meniscus to the pore wall. Because of the liquid
film at the surface of the pore wall, the “wall surface” identified by the imaging processing can be
not the real wall surface. To this end, the obtained contact angle actually is the so-called apparent
contact angle [30–32]. The apparent contact angle is also dependent on the surface roughness [32].
The roughness of the pore wall is illustrated in Fig. S5 in the Supplemental Material [24]. The wall
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roughness in each pore could be different due to the fabrication uncertainty. This contributes partly
to explain the wettability heterogeneity of the pore network illustrated in Fig. 2. The contact angle
mentioned hereafter represents the apparent contact angle unless otherwise specified.

The detailed menisci movement during refilling of pores shown in Fig. 1 (second column from
the left) is presented in Fig. 2. The images in Fig. 1 are obtained by the camera (Nikon D810),
which has a larger view field but a lower resolution as compared to the microscope (Olympus IX73
with a 4X lens). To understand in detail the menisci movement during the liquid refilling process,
we repeat the evaporation experiment by using the microscope to get high resolution images of
gas-liquid menisci in the pore network so as to get the accurate curvature radii and contact angles
of menisci. The microscope cannot capture the whole zone of the pore network. Only the zone of
3 × 3 pore bodies at the up-right of the pore network is shown in Fig. 2. The location of the zone
captured by the microscope is marked by the red box in Fig. 1. Menisci A and B shown in Fig. 2
are also illustrated in Fig. 1. The movement of menisci A and B in Fig. 2 is similar to that in Fig. 1,
indicating the repeatability of the experiments.

Menisci A and B shown in Fig. 2 are the advancing and the receding menisci, respectively. The
variations of speeds and curvature radii of these two menisci are depicted in Fig. 3. In Fig. 3(b),
ri is the curvature radius of the meniscus in the plane shown in Fig. 2. The value of ri is obtained
from the image analysis (see Fig. S3 in the Supplemental Material [24]). The curvature radius in the
plane perpendicular to the one shown in Fig. 2 is denoted as rh.

At stage I in Fig. 2, the meniscus A is at the entrance of pore body 5. At the interface between a
pore throat and a pore body, a sudden geometrical expansion exists, which can hinder the meniscus
movement, i.e., the so called capillary valve effect. More detailed explanation on the capillary valve
effect can be found in Refs. [14,15]. The evolution of the meniscus A during its invasion into pore
body 5 is detailed in Fig. S6 in the Supplemental Material [24]. The contact angle of meniscus A
at the side wall increases suddenly from θs to θs + 90◦ when the triple line at the side wall of pore
throat 4 moves to the entrance of pore body 5. The triple line of meniscus A at the side wall is then
pinned, since it cannot move toward the liquid phase until the contact angle is reduced to θs. On the
other hand, pore throats and pore bodies have the same height; hence, the triple line at the top glass
wall and the bottom silicon wall continue moving. As a result, meniscus A reshapes and thus the
contact angle of meniscus A at the side wall reduces. As this contact angle decreases from θs + 90◦
to 90°, the curvature radius, ri, of meniscus A decreases. But, as the contact angle further reduces
from 90° to θs, the curvature radius, ri, increases, resulting in a lower capillary pressure, Pc. The
capillary pressure is defined as Pc = Pg–Pl = σ (1/ri + 1/rh), where σ is the surface tension, Pl is
the liquid pressure, and Pg is the gas pressure. Since Pg is constant during evaporation, the lower the
capillary pressure, the higher the liquid pressure. The increase of liquid pressure at meniscus A re-
sults in higher liquid pressure in the pore network. The increased liquid pressure can lead some other
menisci in the pore network to be unstable, e.g., meniscus B in Fig. 2. A meniscus is unstable when
Pl − Pg across the meniscus is larger than the threshold pressure for the meniscus to refill the pore
occupied by the gas phase. A meniscus cannot invade into a pore when the pressure difference in
the invading and displaced phases across this meniscus is smaller than the threshold pressure of the
pore. The instability of meniscus B is induced by the variation of the capillary force of the advancing
meniscus A. We call this the capillary instability. This capillary instability effect is the reason for
the pore refilling and the bubble formation and movement shown in Fig. 1.

The movement of menisci A and B in Fig. 2 depends on the difference between the liquid
pressures at these two menisci, Pl,A–Pl,B. Based on the definition of the capillary pressure, the value
of Pl,A–Pl,B is determined as

Pl,A − Pl,B = σ

(
1

ri,B
− 1

ri,A

)
+ σ

(
1

rh,B
− 1

rh,A

)
. (1)

Equation (1) indicates that the movement of menisci relies on the curvature radii, ri and rh. For
instance, from stages II to III shown in Fig. 2, the speeds of the moving menisci are always
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FIG. 3. Variation of (a) menisci speeds and (b) curvature radii ri, during refilling of pores shown in Fig. 2.
Menisci A and B as well as various evaporation stages are illustrated in Fig. 2. The blue line in (a) is gained
from pore network simulations.

increasing as meniscus A enters the pore body 5, Fig. 3(a). The higher speed is owing to the
increased ri,A [Fig. 3(b)], which in turn results in the increased Pl,A–Pl,B, Eq. (1). However, as
shown in Fig. 3(b), ri,A < ri,B from stages I to III. If menisci A and B have the same value of
rh, then Pl,A–Pl,B < 0, Eq. (1), and the capillary instability induced gas-liquid displacement shown
in Fig. 1 will not occur. From this point of view, it should be that rh,A > rh,B.

During stages I to III shown in Fig. 2, both menisci A and B are in the pore bodies, and the triple
lines at the side walls are pinned at the entrance of the pore bodies and are not moving. Hence, no
corner liquid films form when these two menisci advance in the pore bodies. For this reason, rh

can be expressed as rh = h/(1 + cosθs), and the effects of the corner liquid films on the capillary
pressure, e.g., Ref. [30], is not considered. As a result, to get rh,A > rh,B, the contact angle, θs, of
pore body 5 should be larger than that of pore body 1. Nevertheless, it is not easy to obtain the values
of θs in the pore bodies, since we cannot observe the moving triple line along the side walls of pore
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bodies. By contrast, we can get the values of θs in the pore throats. As shown in Fig. 2 (image at
stage IV), pore throats have different values of θs.

When a meniscus in a pore throat, e.g., meniscus A in pore throat 6 and meniscus B in pore throat
2 shown in image V in Fig. 2, the capillary pressure for this meniscus shall be affected by the corner
liquid films, since the lengths of the corner liquid films vary as the meniscus moves. To this end, rh

in Eq. (1) cannot be expressed simply as rh = h/(1 + cosθs). To calculate the capillary pressure for
a meniscus in a pore with corner liquid films, two methods can be exploited. The first is the Mayer
and Stowe-Prince (MS-P) method [33,34]. In the second method proposed by Wong et al. [30], the
shape of the meniscus in the pore is determined, from which the capillary pressure is obtained. The
results obtained by these two methods are almost the same; see Refs. [30,35]. The MSP method is
more convenient for calculation, and therefore is employed to determine the capillary pressure in
the pore network model developed in Sec. III; see Eq. (5).

If pore throats 2 and 6 have the same contact angle, then the capillary pressure determined by
Eq. (5) is larger for meniscus A in pore throat 6 than for meniscus B in pore throat 2. For instance,
if the contact angel is 0◦, the capillary pressure is 947.1 Pa for meniscus A and 926.9 Pa for
meniscus B. This indicates that liquid pressure at meniscus B is larger than that at meniscus A, and
the capillary stability induced gas-liquid displacement cannot occur. By contrast, if the measured
apparent contact angle (see Fig. 2) is used for pore throats 2 and 6, then the capillary pressure for
meniscus A in pore throat 6 (834.5 Pa) is lower than that for meniscus B in pore throat 2 (876.2 Pa),
which implies that meniscus A advances and meniscus B recedes, consistent with the experimental
observation.

Hence, the capillary instability induced two-phase displacement observed in the present study
could be attributed to the wettability heterogeneity of the pore network. The wettability of the pore
surface can be essentially reflected by the measured apparent contact angle. Since rh in Eq. (1)
cannot be expressed simply as rh = h/(1 + cosθs) when the meniscus is in the pore throat (because
of the corner liquid films), we focus on the measured ri in the following analysis so as to illustrated
the variation of the meniscus shape during the capillary instability induced gas-liquid displacement
shown in Fig. 2.

At stage III shown in Fig. 2, meniscus A touches the side wall of the pore body 5 as well as the
entrance of pore throat 6. After this, meniscus B continues to move in pore body 1, and meniscus A
enters pore throat 6, stage IV of Fig. 2. From stages III to IV, ri,A reduces significantly as meniscus
A enters pore throat 6 from pore body 5, whereas, the decrease of ri,B is smaller, Fig. 3(b). As a
result, Pl,A–Pl,B decreases, Eq. (1), leading to the reduced menisci moving speed, Fig. 3(a).

After meniscus A invades pore throat 6, meniscus B continues invading the gas phase in pore
body 1 until it enters the pore throat 2, stage V in Fig. 2(a). During this process, ri,A remains constant,
and ri,B reduces, Fig. 3(b), thereby leading to increased Pl,A–Pl,B, Eq. (1). Hence, the speeds of the
moving menisci become higher, Fig. 3(a). From stages V to VI, both menisci A and B are in pore
throats. Therefore, variations of curvature radii and speeds of moving menisci are trivial, Fig. 3.

After stage VI, meniscus A invades pore body 7 from pore throat 6; see stage VII in Fig. 2.
During this process, ri,A increases due to the capillary valve effect; the value of ri,A is not shown in
Fig. 3(b), since the shape of meniscus A, as shown in stage VII of Fig. 2, is not a circle due to the
contaminant in pore body 7. Meniscus B is always in pore throat 2 from stages VI to VII, and ri,B

is almost constant, Fig. 3(b). As a result, Pl,A–Pl,B increases, Eq. (1), leading to higher speeds of
moving menisci, Fig. 3(a).

After stage VII, meniscus A invades pore throat 8 and meniscus B enters pore body 3, stage VIII
in Fig. 2. During this process, ri,A decreases and ri,B increases, resulting in the decreased Pl,A–Pl,B,
Eq. (1), and hence the speeds of the moving menisci reduce, Fig. 3. After the stage VIII shown in
Fig. 2, meniscus B connects two gas-filled pore throats connected to pore body 3, and ri,B increases
as the liquid saturation in the pore body increases. By contrast, ri,A, is almost constant, Fig. 3(b).
Although ri,A < ri,B at the stage VIII, meniscus B continues refilling of pore body 3; see stage IX in
Fig. 2. When pore body 3 is completely filled by liquid, a gas bubble is formed in the pore network,
Fig. 1.
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During meniscus B entering pore body 3 from pore throat 2 (from stages VII to VIII shown in
Fig. 2), we find that the influence of the capillary valve effect induced by the sudden geometrical
expansion between the pore throat and the pore body is trivial. The capillary valve effect is
suppressed by the residual liquid in pore body 3. The detailed formation of the residual liquid
in a pore body and the invasion of meniscus B into pore body 3 from pore throat 2 are presented,
respectively, in Figs. S7 and S8 in the Supplemental Material [24]. Before meniscus B invades
pore body 3, the intersectional points between pore throat 2 and pore body 3 are attached to the
residual liquid. As the triple lines (at the side walls) of meniscus B move to these intersectional
points, meniscus B will merge with the residual liquid to form a new meniscus. During this process,
meniscus B keeps concave towards the gas phase.

For the capillary instability induced gas-liquid displacement shown in Fig. 2, menisci A and B
interact with each other through the liquid filled pores. The menisci movement in this case is called
the one induced by the capillary instability with pore flow. We also observe in the experiment that
the two menisci interact with each other through the corner liquid films, i.e., the menisci movement
induced by the capillary instability with corner flow; see Fig S9 in the Supplemental Material [24].
The speed of the moving menisci due to the capillary instability with the corner flow is much smaller
than that with the pore flow. It has been revealed that the speed of the capillary instability induced
advancing meniscus depends on the number of interacting receding menisci [20]. Here we reveal
that the speed of moving menisci induced by the capillary instability also depends on the flow
pattern between the interacting menisci.

The corner liquid films also can influence the invasion of a meniscus from a pore throat to a
pore body. During the meniscus invasion into pore body 3 from pore throat 2 shown in Fig. 2,
the residual liquid in the pore body is always connected to the mouth of the pore throat. We also
observe in the experiment that when a meniscus in a pore throat reaches the intersectional points
between the pore throat and the adjacent pore body, the residual liquid in the pore body can be not
attached to the mouth of the pore throat; see Fig S10 in the Supplemental Material [24]. Owing to
the presence of corner liquid films, the meniscus in the pore throat and the residual liquid in the pore
body are actually connected and can interact with each other. During invasion of the meniscus from
the pore throat to the pore body, the liquid pressure at the meniscus will increase due to the capillary
valve effect, which in turn results in the growth of the residual liquid because of the presence of
the corner liquid films. When the residual liquid grows to touch the mouth of the pore throat, the
meniscus is still concave towards the gas phase; see Fig S10 in the Supplemental Material [24]. Then
the meniscus will keep concave as it enters the pore body, similar to the invasion process shown in
Fig. S8 in the Supplemental Material [24].

To understand the role of the corner liquid films in the meniscus invasion into a pore body from a
pore throat, we compare schematically the invasion processes in the cases with and without corner
liquid films in Fig. S11 in the Supplemental Material [24]. In the case with the corner liquid films
in the pores and the residual liquid in the pore body, the meniscus keeps concave towards the gas
phase as it invades the pore body from the pore throat, as we discussed above. By contrast, in the
case without the corner liquid films, the residual liquid in the pore body (if it exists) is not connected
to the invading meniscus. To this end, the meniscus has to change from concave to convex (towards
the gas phase) during its invasion into the pore body, attributed to the capillary valve effect. Hence,
the threshold pressure for the meniscus to invade the pore body is larger in the case without the
corner liquid films than in the case with the corner liquid films. If there were no corner liquid films
in the pores and no residual liquid in the pore bodies in the pore network in our experiment, the
capillary instability induced receding menisci will not invade the gas-filled pore body (because of
the capillary valve effect), and the bubble shown in Fig. 1 will not form.

To form the gas bubble shown in Fig. 1, an empty pore body connected to at least two empty
pore throats must be refilled completely by the liquid (an empty pore is the one occupied by gas),
e.g., the central pore body in Fig. 1 (i.e., pore body 3 in Fig. 2). The refilling of a pore body with
liquid is affected by the state (empty or filled) of the connected pore throats, as illustrated in Fig. 4.
A filled pore is the one filled with liquid. For an empty pore body connected to three filled pore
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FIG. 4. Schematic of the meniscus configuration in a partially filled body i with (a) only one adjacent
empty pore throat k; (b) and (c) two adjacent empty pore throats k and l neighboring to each other, and (d) two
adjacent empty pore throats l and m opposite to each other.
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throats and one empty pore throat [Fig. 4(a)], the gas-liquid meniscus can remain concave towards
the gas phase during refilling of a pore body, e.g., pore body 1 in Fig. 2.

For an empty pore body connected to two filled pore throats neighboring to each other and two
empty pore throats [Figs. 4(b) and 4(c)], the meniscus also can remain concave towards the gas
phase during refilling of the pore body; but the curvature radius can increase to a large value; see
refilling of the central pore body in Fig. 1 (i.e., pore body 3 in Fig. 2). For an empty pore body
connected to two empty pore throats opposite to each other [Fig. 4(d)], the meniscus will change
from concave to convex (towards the gas phase) in order to invade the pore body, mainly attributed
to the capillary valve effect induced by the sudden geometrical expansion between the pore body
and the two empty pore throats.

Our experimental studies show that during slow drainage in a porous medium, the increase of
the curvature radius of the advancing meniscus (which displaces the wetting phase) can lead some
other menisci to be unstable and hence to recede towards the nonwetting phase. The movement of
the advancing and the receding menisci depends on not only the interplay between them (e.g., the
flow pattern between them), but also the pore structure, wettability, and state (e.g., the capillary
valve effect, the wettability heterogeneity, the corner films, number of adjacent pore throats filled
with the wetting phase, and the residual wetting phase in the pore body). The main driving force
for the capillary instability induced two-phase flow is the difference in the capillary forces between
the advancing and the receding menisci, which is induced by the wettability heterogeneity in the
pore network in the present study. The difference in the capillary forces between the advancing
and receding menisci can also be attributed to the structural heterogeneity in the pore network;
see the capillary instability induced gas-liquid displacement during evaporation in a pore network
composed of a large pore zone and a small pore zone in Fig. S12 in the Supplemental Material [24].
It has been revealed that a gas bubble can also be formed by swelling of the corner films during
evaporation in a composite pore network [36].

To form the gas bubble in the pore network shown in Fig. 1, a gas (nonwetting phase) occupied
pore body connected to as least two empty pore throats must be refilled completely by the liquid
(wetting phase). This refilling of the pore body depends on the competition between the driving
force for the movement of the receding menisci and the threshold pressure for the liquid to refill the
pore body. Both the driving force and the pore threshold pressure depend on the wettability of the
pore.

In the present study, we repeat the evaporation experiments four times. The first two experiments
are performed with camera; in these two experiments, gas bubble formation is always observed.
Then, we repeat the experiment twice by using the microscope to get images of high resolution
so as to get the detailed evolution of the moving menisci in the pore network; however, the gas
bubble formation is not observed, even though the capillary instability induced refilling of pores
always occurs, Fig. 2. The reason could be that after the first two experiments, the pore network is
contaminated, and the wettability of the pore is altered; see Fig. S13 in the Supplemental Material
[24] for more details. Refilling of the pores observed in the experiments with the camera and
the microscope are almost the same (comparing Figs. 1 and 2), indicating that the change of the
wettability of the pore network after the first two experiments could be small. But, if the driving
force for the movement of the receding menisci and the threshold pressure to refill the central pore
body in the pore network (i.e., pore body 3 in Fig. 2) are comparable, then even a small variation
in the pore wettability can change their relative order and hence affects the formation of the gas
bubble. When receding meniscus B refills the pore body 3 in Fig. 2, the advancing meniscus A
invades the pore body 9. As shown in Fig. 2, the pore throats adjacent to pore body 2 have similar
contact angles; whereas pore throats 8 and 10 adjacent to pore body 9 have different contact angles,
indicating that the wettability of pore body 9 is not uniform. To this end, even a small change of the
wettability distribution could affect significantly the capillary pressure of the meniscus in pore body
9 and hence the driving force. From this point of view, it is necessary to consider the variation of
the surface wettability so as to understand in detail the dynamics of the capillary instability induced
two-phase displacement in porous media.
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For the quasi-2D pore network used in the experiment, the coordination number of each pore
body is 4, which may be less than that in 3D porous media. More than two menisci can be interplayed
with each other in a 3D porous medium, much more complex than the interaction of two menisci
in the quasi-2D pore network revealed in the present study. In spite of this, we conjecture that the
underlying mechanisms for menisci movement in the 2D and 3D pore networks should be similar.
Since it is not easy to observe directly the interplay between the menisci in a 3D porous medium,
an alternative is to exploit the pore network modeling approach. It is of vital importance to develop
a pore network model that can accurately describe the movement of the menisci. Although the 2D
pore network cannot represent the 3D porous media, the mechanism for the two-phase displacement
revealed by the 2D microfluidic experiment guides the development of the pore network model
presented in the following section.

III. PORE NETWORK MODEL

In the present pore network model, the inertial forces are considered for flow in all liquid-filled
pores. The gas pressure is assumed constant. In addition, the capillary forces, liquid viscous forces,
and capillary valve effect are also taken into account in the model.

The liquid flow in a pore is taken as a 1D fully developed laminar flow. A filled pore is the
one with the local liquid saturation sl > 0 in pore throats or sl > sl,re in pore bodies. Here sl,re

is the saturation of the residual liquid. To determine sl,re, we assume that the residual liquid in a
pore body connects the mouths of two pore throats, and its shape is a triangle. A partly filled pore
(sl � 1) contains menisci and has at least one adjacent empty pore, while a fully filled pore (sl = 1)
is surrounded by filled pores. The empty pore is the one with sl = 0 for pore throats or sl = sl,re for
pore bodies.

The liquid flow in a filled pore throat k between two filled pore bodies, i and j, can be described
as

∂
[
hwkρl

( li
2 + lk + l j

2

)
vl,k

]
∂t

= (Pl,i − Pl, j )hwk − gk

(
li
2

+ lk + l j

2

)
vl,k, (2)

where ρl is the liquid density, μl the dynamic viscosity, vl the liquid velocity, and gk is expressed
as [37]

gk = π4μl

8
[
1 − 2h

πwk
tanh

(
πwk
2h

)] wk

h
. (3)

The pore width and length are depicted in Fig. 1. The liquid flow in a filled pore throat k with
sl,k < 1 from a filled pore body i to an empty pore body j is depicted as

ρl hwk

{(
li
2

+ sl,klk

)
d2(sl,klk )

dt2
+

[d (sl,klk )

dt

]2}
= (Pl,i − Pl,k )hwk − gk

(
li
2

+ sl,klk

)
d (sl,klk )

dt
. (4)

The liquid pressure in a partly filled pore is determined as Pl = Pg–Pc, for which the gas pressure
Pg is constant. The capillary pressure, Pc, for a moving meniscus in a pore throat i is gained by the
MSP method [33,34]:

Pc = σ (k1 + 2k2k4)

wih − 2k3k2
4

, (5a)

k1 = (2h + wi )cosθs,i + wi, (5b)

k2 = π − 3θs,i − (2 cosθs,i − 3 sinθs,i + 2) cosθs,i, (5c)

k3 = cos2θs,i + cosθs,i − 3 sinθs,i cosθs,i

2
− π

2
+ 3θs,i

2
, (5d)

k4 =
−2k1k3 +

√
4k2

1k2
3 − 8k2

2k3wh

4k2k3
. (5e)

The detailed derivation of Eq. (5) can be found in Ref. [38].
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The capillary pressure for a meniscus in a partly filled pore body depends on the shape of the
meniscus

Pc = σ

(
1

ri
+ 1

rh

)
, (6)

for which rh = h/(1 + cosθs), whereas ri depends on not only the liquid saturation of the pore body
but also the state (empty or filled) of the adjacent pore throat. For a partly filled pore body i with
only one adjacent empty pore throat [e.g., pore throat k in Fig. 4(a)], the curvature radius and the
liquid saturation are

ri = wk

2 cosA
, (7a)

sl,i = 1 −
r2

i sin(π − 2|A|) A
|A| + (π + 2A)r2

i

2l2
i

, (7b)

where A is the angle shown in Fig. 4(a). The contact angle A is positive when the angle between the
meniscus and the wall of the pore body is equal to or smaller than 90◦, and negative when this angle
is larger than 90◦.

For a partly filled pore body i with two adjacent empty pore throats neighboring to each other
[e.g., pore throats k an l in Fig. 4(b)], the curvature radius and the liquid saturation are

ri = Lkl

2 cosA
, (8a)

sl,i = 1 − LkLl

2l2
i

− L2
kl

4l2
i

tanA − π + 2A

2l2
i

r2
i + 1

8l2
i

(lp − Wl )(lp − Wk ), (8b)

where Lk = Wk/2 + lp/2, Ll = Wl/2 + li/2, Lkl =
√

L2
k + L2

l , and A the contact angle shown in
Fig. 4(b). In Fig. 4(b), the meniscus in the pore body is connected to the mouths of two pore throats.
As liquid in the pore body increases, the shape of the meniscus changes. When the contact angle
between the gas-solid interface of an empty pore throat and the meniscus reaches to π − θs, the
meniscus starts to enter this pore throat, as illustrated in Fig. 4(c). If the meniscus first enters the
pore throat l , the curvature radius and the liquid saturation are

ri = Wl + lp

2[cosθs,l + cos(2A − θs,l )]
, (9a)

sl,i = Ip − It,l

l2
p

, (9b)

Ip = 1

2
[ri cos θs,l + ri cos (2A − θs,l )][ri sin (2A − θs,l ) − ri sin θs,l ]

− 1

2

[
(π − 2A)r2

i − r2
i sin (2A)

]
+ 1

8
(Wl + li )(li − Wk ) + 1

2
li(li − Wl ) + 1

8
(li − Wl )(li − Wk ), (9c)

It,l = r2
i sin βl

2
+ |x1 − x2||y1 − y2|

2
− βl r2

i

2
, (9d)

(x1, y1) = (ri cos θs,l , ri sin θs,l ), (9e)

(x2, y2) = (√
r2

i − y2
2, ri sin(2A − θs,l ) − (li + Wk )/2

)
, (9f)

βl = arccos

[
1 − (x1 − x2)2

2r2
i

− (y1 − y2)2

2r2
i

]
., (9g)
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When the meniscus enters both pore throats l and k, the curvature radius and the liquid saturation
are

ri = Wl + li
2[cos θs,l + cos B]

, (10a)

sl,i = Ip − It,l − It,k

l2
i

, (10b)

Ip = 1

2
(ri cos θs,l−risin θs,k )(ri cos θs,k−risin θs,l )−1

2

[
(π − θs,l−θs,k )r2

i − r2
i sin(θs,l + θs,k )

]
+ 1

4
(Wl + li )(li − Wk ) + 1

2
li(li − Wl ) + 1

8
(li − Wl )(li − Wk ), (10c)

It,k = r2
i sinβk

2
+ |x3 − x4||y3 − y4|

2
− βkr2

i

2
, (10d)

(x3, y3) =
(

ri cos θs,l − li + Wl

2
,

√
r2

i − x2
3

)
, (10e)

(x4, y4) = (risinθs,k, ri cos θs,k ), (10f)

βk = arccos

[
1 − (x3 − x4)2

2r2
i

− (y3 − y4)2

2r2
i

]
, (10g)

where B is the angle between the vertical line through the center of the meniscus and the line
connecting the center and the intersectional point between meniscus and vertical side wall of the
pore body, as illustrated in Fig. 4(c). The meniscus will leave the pore body and enters pore throat l
and k when the curvature radius of the meniscus reaches

ri = −b − √
b2 − 4ac

2a
, (11a)

a = 1 − cos2θs,l − cos2θs,k, (11b)

b = 2Wl cosθs,l + (li + Wk ) cosθs,k, (11c)

c = −W 2
l −

[ (li + Wk )

2

]2

. (11d)

For a partly filled pore body i with two adjacent empty pore throats opposite to each other [e.g.,
pore throats l and m in Fig. 4(d)],

ri = A

|A|
Llm

2cos(A)
, (12a)

sl,i =
(
li − Wm+Wl

2

)
2li

− A

|A|l2
i

(
(π − |2A|)r2

i

2
− r2

i

2
sin|2A|

)

+ (li − Wk )(li − Wm)

8l2
i

+ (li − Wl )(li − Wk )

8l2
i

, (12b)

where contact angle A is positive when the meniscus is concave towards the liquid phase but negative
when the meniscus is convex.

Based on the mass conservation law, the following equation is applied to the fully filled pore
body: ∑

Ajvl, j = 0, (13)
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where Aj is the cross-sectional area of the adjacent pore throats and vl, j is the liquid velocity from
the pore throat to the pore body. For a partly filled pore body

∑
Ajvl, j + dVl,i

dt
= 0, (14)

where Vl,i is the volume of liquid in the pore body.
The procedure to simulate the capillary instability induced gas-liquid displacement in the pore

network is summarized below as well as in Fig. S14 in the Supplemental Material [24]:
(1) The liquid saturation, velocity, and pressure in each filled pore at time t are given.
(2) The volume of liquid, Vl , in each partly filled pore with an active meniscus (i.e., the moving

meniscus) at time t + �t is determined. Here, �t = 1.7 × 10−4 s is the step time. The liquid volume
of a partially filled pore throat j adjacent to a filled pore body i is updated as

V t+�t
l, j = hw j l js

t+�t
l, j , (15a)

(
st+�t

l, j

)2 = 2hw j

l2
j g j

{(
Pt

l,i − Pt
l, j

)
�t + ρl

g j

[(
Pt

l,i − Pt
l, j

)
hw j − g js

t
l, j l jv

t
l, j

](
e

−g j �t

ρl hw j − 1
)} + (

st
l, j

)2
.

(15b)

If the updated liquid volume in the pore throat j, V t+�t
l, j , is negative, then the liquid volume in

the adjacent filled pore body i is V t+�t
l,i = V t+�t

l, j + V t
l,i, and V t+�t

l, j is set to be zero. If V t+�t
l, j is larger

than the volume of the pore throat j, Vj , then the liquid volume in the adjacent empty or partially
filled pore body k is V t+�t

l,k = V t
l,k + V t+�t

l, j − Vj , and V t+�t
l, j is set to b Vj .

The volume of liquid in a partly filled pore body i adjacent to a filled pore throat j is updated as

V t+�t
l,i = V t+�t

l,i +
∑

Ajv
t
l, j�t . (16)

If the updated liquid volume in the pore body i, V t+�t
l,i , is smaller than the volume of the residual

liquid Vrel,i, then the liquid volume in the adjacent filled pore throat j with the lowest capillary
pressure is V t+�t

l, j = V t
l, j − (Vrel,i − V t+�t

l,i ), and V t+�t
l,i is set to be Vrel,i. If V t+�t

l,i is larger than the

volume of pore body i, Vi, then the liquid volume in each adjacent empty pore throat j is V t+�t
l, j =

V t
l, j + (V t+�t

l,i − Vi )/nt , and V t+�t
l,i is set to be Vi. Here, nt is the number of adjacent empty pore

throats.
Based on the volume of liquid in each pore, the liquid saturation of each filled pore at time t + �t

is calculated straightforwardly.
(3) The state of each meniscus (i.e., the gas-liquid interface) is determined. A static meniscus is

the one that cannot move, and an active meniscus is movable.
For each partly filled pore throat with an active meniscus and sl < 0.1 or >0.9, if the liquid flow

direction therein is different at time t and t − �t , then the meniscus in this partly filled pore throat
is labeled as static at time t + �t so as to avoid the numerical error. The explanation is as follows.
For instance, as shown in Fig. S15a in the Supplemental Material [24], a meniscus in a partly filled
pore throat is invading a neighboring empty pore body at time t − �t . At time t , the meniscus enters
the pore body, and the partly filled pore throat becomes fully filled. However, the liquid pressure in
the fully filled pore throat can be smaller than the liquid pressure in the pore body. To this end, the
meniscus in the pore body may recede to the mouth of the filled pore throat, leading to the change
of the direction of the liquid flow in the filled pore throat. But, owing to the different curvature radii
of the meniscus in the pore body and the pore throat, Pg–Pl across the meniscus can be smaller than
the capillary pressure of a moving meniscus in the pore throat. Hence the meniscus cannot recede
into the pore throat and will stop at the mouth of the pore throat. For this reason, this meniscus is set
to be static at time t + �t . After liquid saturation update at time t + �t , the liquid saturation in the
pore throat is smaller than 1, but larger than 0.9 (actually close to 1), owing to the small time step.
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Similarly, as shown in Fig. S15b in the Supplemental Material [24], when a meniscus in the
partly filled pore throat invades a filled pore body, it can first enter the pore body and then recede
(the liquid flow direction in the pore throat is changed), and finally stop at the mouth of the pore
throat with the liquid saturation being close to 0 (not more than 0.1). As a result, if the liquid flow
direction in a partly filled throat with active meniscus and sl < 0.1 (or sl > 0.9) is changed in the
last two time steps, the meniscus is set to be static, and the liquid saturation in the pore throat is set
to sl = 0 (or sl = 1).

For a partly filled pore throat with sl = 1 and a static meniscus, if the Pg–Pl across the meniscus
is larger than the capillary pressure of the moving meniscus in the pore throat or smaller than the
capillary pressure in the adjacent empty pore body with sl = sl,re, then the static meniscus is set to
be active. For a partly filled pore body with sl = 1 and a static meniscus attached to an empty pore
throat, if the Pg–Pl across the meniscus is smaller than the capillary pressure of the moving meniscus
in the connected pore throat or larger than the capillary pressure in the pore body when the contact
angle between the meniscus and the wall surface is right (the capillary pressure at this moment is
the largest because of the capillary valve effect), then the static meniscus is set to be active.

(4) The liquid and gas clusters in the pore network are identified.
(5) The liquid pressure and velocity in each filled pore are determined by the following guess-

and-correct method.
(5.1) The pressures of liquid in the partially filled pore with active menisci, Pt+�t

l , are determined
by the capillary pressure, Eqs. (5)–(12). For the partly filled pore throat with static menisci, the liquid
velocity, vt+�t

l , is zero. The pressures of liquid in the fully filled pore are guessed as P∗, t+�t
l .

(5.2) Based on the guessed liquid pressure field, the guessed liquid velocity in each fully filled
pore throat, e.g., pore throat k connecting pore bodies i and j, is determined by solving Eq. (2):

v∗,t+�t
l,k =

(
P∗, t+�t

l,i − P∗, t+�t
l, j

)
�thwk + hwkρl

( li
2 + lk + l j

2

)
vt

l,k

hwkρl
( li

2 + lk + l j

2

) + �tgk
( li

2 + lk + l j

2

) . (17)

The guessed liquid velocity in the partly filled pore throat with an active meniscus, e.g., pore
throat k connected to filled pore body i, is gained by solving Eq. (4) analytically

v∗,t+�t
l,k = 1

gklkst+�t
l,k

{(
P∗,t+�t

l,i − Pt+�t
l,k

)
hwk + [(

P∗,t+�t
l,i − Pt+�t

l,k

) − gklkst
l,kv

t
l,k

]
e

−gk �t
ρl hwk

}
. (18)

In Eqs. (17) and (18), if the pore body is the partly filled pore with active menisci, then
P∗, t+�t

l = P t+�t
l .

(5.3) The correct liquid pressure and velocity are defined as Pt+�t
l = P∗, t+�t

l + P
′, t+�t
l and

vt+�t
l = v∗, t+�t

l + v
′, t+�t
l , respectively. Here, Pl

′ is the liquid pressure correction, and vl
′ is the

liquid velocity correction. It should be noted that the correct liquid pressure and velocity also satisfy
Eqs. (2) and (4), and the following equations can be gained:

vt+�t
l,k =

(
Pt+�t

l,i − Pt+�t
l, j

)
�thwk + hwkρl

( li
2 + lk + l j

2

)
vt

l,k

hwkρl
( li

2 + lk + l j

2

) + �tgk
( li

2 + lk + l j

2

) , (19)

vt+�t
l,k = 1

gklkst+�t
l,k

{(
Pt+�t

l,i − Pt+�t
l,k

)
hwk + [(

Pt+�t
l,i − Pt+�t

l,k

) − gklkst
l,kv

t
l,k

]
e

−gk �t
ρl hwk

}
. (20)

Subtracting Eq. (17) from Eq. (19) yield the liquid velocity correction in the fully filled pore
throat:

v
′,t+�t
l,k = �thwk

(
P

′,t+�t
l,i − P

′,t+�t
l,k

)
hwkρl

( li
2 + lk + l j

2

) + �tgk
( li

2 + lk + l j

2

) . (21)
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Subtracting Eq. (18) from Eq. (20) yield the liquid velocity correction in the partly filled pore
throat:

v
′,t+�t
l,k = 1

gklkst+�t
l,k

(
hwk + e

−gk�t
ρl hwk

)
P

′,t+�t
l,i . (22)

(5.4) Substituting the correct liquid velocity in the filled pore throat, vl = vl
′ + vl

∗, into Eq. (13)
yields ∑

Aj
(
v

′,t+�t
l,k + v∗,t+�t

l,k

) = 0. (23)

Substituting the liquid velocity correction in Eqs. (21) and (22) into Eq. (23) yields a set of linear
equations for the liquid pressure correction in the each fully filled pore body. For instance, for the
fully filled pore body i adjacent to pore body j and filled pore throat k, we have

P
′,t+�t
l,i = ap − Qp

at
, (24a)

ap =
∑

at,kP
′,t+�t
l, j , (24b)

at =
∑

at,k, (24c)

Qp =
∑

Akv
∗,t+�t
l,k , (24d)

Ak = hwk. (24e)

If the pore throat k is fully filled, at,k = A2
k�t/(hwkρl lkst+�t

l,k ); if pore throat k is partly filled with
liquid saturation smaller than 1, at,k = A2

k[1 + exp(−gk�t/ρl Ak )]/(gklkst+�t
l,k ).

By solving the linear equations, the liquid pressure correction is determined for each fully filled
pore body. Then the liquid velocity correction in each filled pore throat is calculated based on
Eqs. (21) and (22). In this way, the correct liquid pressure, Pt+�t

l = P∗, t+�t
l + P

′, t+�t
l , for each

fully filled pore body and the correct liquid velocity, vt+�t
l = v∗, t+�t

l + v
′, t+�t
l , for each filled pore

throat are obtained.
(5.5) The guessed liquid pressure in each fully filled pore body is updated to equal to the correct

liquid pressure gained in the step (5.4), i.e., P∗, t+�t
l = Pt+�t

l . Repeat from steps (5.2) until the
prescribed convergence criteria are satisfied.

(6) Repeat the steps (2)–(5) until all menisci become static.
To simulate the observed capillary instability induced gas-liquid displacement in the pore net-

work, the initial liquid pressure at time t = t0 in each filled pore is needed, which, however, cannot
be obtained experimentally. To get the initial condition, the following method is employed. Based
on the visualization image, we can get the liquid velocity and volume in each filled pore at time
t = t0 − �t . The liquid volume in each partially filled pore throat, e.g., pore throat j, at time t = t0
is determined as V t0

l, j = V t0−�t
l, j − v

t0−�t
l, j �t . Then liquid volume, liquid pressure, and liquid velocity

in each filled pore at time t = t0 can be determined based on the algorithm mentioned above, and
are taken as the initial conditions.

To validate the developed model, we first simulate the refilling of pores with liquid shown
in Fig. 2. However, we just focus on the process from stages VI to VII, since the wettability
of pore bodies are unknown. Although during this process meniscus A is in pore body 7, the
adjacent pore throats 6 and 8 have very similar contact angle (40.5° and 41.7°, respectively), Fig. 2.
Hence, the contact angle of pore body 7 is taken as the averaged value of these two adjacent pore
throats. The contact angle of pore throat 2 is 27.5°. The calculated speed of the moving meniscus A
agrees well with the experimental data; see the blue line in Fig. 3(a).

The developed pore network model is also employed to simulate the bubble movement shown in
Fig. 1. The modeling and experimental results are compared in Fig. 5. Only the top right zone of
the pore network (the zone marked by the red box in Fig. 1) is shown in the experimental images.
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FIG. 5. Bubble movement in the top right zone of the pore network (i.e., the zone marked by the red box
in Fig. 1); top: experiment; bottom: pore network model. The pore contact angles needed in the pore network
model are also shown.

In the modeling images, the solid, liquid, and gas are shown in dark, gray, and white, respectively.
In the model, the gas pressure in the bubble is assumed to be uniform and equal to the atmospheric
pressure.

The contact angles of pores needed in the model are also shown in Fig. 5. The contact angles
of pore bodies are set based on the contact angles of the neighboring pore throats. It should be
noted that the contact angles in the pore throats adjacent to the same pore body can be different,
which indicates the nonuniformity of the wettability of the pore body. In the present model, if the
maximum difference of contact angles in the pore throats adjacent to the same pore body is more
than 7◦, the wettability of the pore body is considered to be nonuniform; then a linear relationship
between contact angle θ and liquid saturation sl is used to describe the wettability of the pore body,
Fig. 5. If the maximum difference of contact angles in the pore throats adjacent to the same pore
body is less than 7◦, the contact angle of the pore body is considered to be uniform and is equal to
the average of contact angles of the adjacent pore throats, Fig. 5.

As shown in Fig. 5, the bubble movement predicted by the pore network model agrees well with
the experimental results. It takes a relatively long time for meniscus B to enter the pore body at the
center of the pore network (see images of t = 2.4 and 9.4 s). The main reason is that when meniscus
B meets the residual liquid in the pore body, its curvature radius, ri, increases, thereby leading to
the reduced capillary pressure and hence the increased liquid pressure, which in turn hinders the
movement of meniscus B. The good agreement between the modeling and experimental results in
terms of meniscus moving speed [Fig. 3(a)] and variation of the liquid phase distribution (Fig. 5)
demonstrates the effectiveness of the developed pore network model.

IV. DISCUSSION

By using the pore network model developed in Sec. III, we take the bubble movement shown in
Fig. 5 as an example to illustrate the impacts of the inertial forces on the gas-liquid displacement
in porous media. To do this, the bubble movement is simulated by the pore network models with
the inertial effect (PNMwI) and without the inertial effect (PNMwoI). The surface tension value is
varied between 0.001 σ f and 50 σ f . Because of this variation, the gas bubble can move at different
speeds (the higher the surface tension, the faster the bubble moves). Here, σ f = 0.0221 Nm−1 is
the reference surface tension, which is the surface tension of ethanol used in our experiments. In
all simulations, the initial conditions are the same, mimicking the experiment (e.g., see Fig. 5). The
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FIG. 6. Evolution of the gas bubble in the transformed pore network at the surface tension of 46.5 σ f

obtained by the pore network model without (top) and with (bottom) the inertial forces.

average speed of the receding meniscus is calculated from the distance travelled divided by the
associated time. The average speed, vr,wi, obtained from PNMwI simulations is used to determine

the Weber number (
ρl v

2
r,wih
σ

) and the capillary number (μlvr,wi

σ
), as well as the Reynolds number

( ρl vr,wih
μl

). The average speed of the receding meniscus is used because more than one advancing
meniscus can get involved during the bubble movement (e.g., Fig. 5).

All the pores in the microfluidic pore network have a rather small height (50 μm). Even if the
surface tension is increased by a factor of 50, both the capillary number (1.9 × 10−5) and the Weber
number (1.6 × 10−5) are rather small. Hence, the capillary forces dominate the bubble movement,
and the inertial and viscous forces can be neglected. To this end, the final bubble configuration
predicted by the PNMwI and the PNMwoI are almost the same as that in Fig. 5. The time used to
determine the average speed of the receding meniscus is the period from the initial moment to the
final stable moment.

In order to elucidate the role of the inertial forces, we change the pore height to 500 μm, and
contact angle values of the silicon surfaces in all pores to 40◦. In addition, the widths of pore throats
12, 14, 8, and 10 are changed to 0.4, 0.5, 0.5, and 0.6 mm, respectively (the numbers of pores are
illustrated in Fig. 6 as well as in Fig. 2). For bubble movement in this transformed pore network,
there is only one advancing meniscus (A) and only one receding meniscus (B). We find that the final
stable bubble configuration predicted by the PNMwI and the PNMwoI are different when surface
tension is equal to or larger than 46.5 σ f (the Weber number is 0.085), Fig. 6. The time steps used
in the PNMwoI and PNMwI simulations are 3.33 × 10−8 s and 1.66 × 10−6 s, respectively. The
average speed of the receding meniscus is the distance from the initial point to the entrance of
pore body 13 divided by the time for the receding meniscus moving through this distance. In the
PNMwoI, when the advancing meniscus, initially in pore body 9, reaches the entrance of pore throat
10, and the receding meniscus reaches the entrance of the pore body 13, then the bubble halts. The
reason is that the capillary pressure of the moving meniscus in pore throat 10 is larger than that
of pore body 13. However, because of the inertial forces in the PNMwI, the advancing meniscus
invades pore throat 10 and pore body 11, and the receding meniscus enters pore body 13 and pore
throat 14; see images at time 2.67 × 10−3 s, 1.05 × 10−2 s, and 1.78 × 10−2 s at the bottom of Fig. 6.

When the Weber number is smaller than the critical value 0.085, the final bubble configuration
in the transformed pore network is the same for PNWwoI and PNWwI. However, we observe the
menisci oscillation in PNWwI when the Weber number is smaller than but close to the critical value
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FIG. 7. Evolution of the gas bubble in the transformed pore network at the surface tension of 45σ f obtained
by the pore network model with the inertial forces.

0.085 (this menisci oscillation cannot be predicted by the PNW_woI).When the Weber number
is 0.082, the advancing meniscus can enter pore throat 10 and pore body 11, and the receding
meniscus can enter pore body 13, because of the inertial forces in PNWwI; see images at the time
of 2.67 × 10−3 and 1.05 × 10−2 s in Fig. 7. But, the inertial forces cannot overcome the capillary
forces. Eventually, the advancing meniscus moves back to pore body 9, and the receding meniscus
moves back to the entrance of pore throat 12; see the image at time of 2.32 × 10−2 s in Fig. 7.

To elucidate the role of inertial forces on the gas-liquid two-phase displacement, we compare the
average speed of the receding meniscus moving from the initial point to the entrance of pore body 13
obtained from PNMwI and PNMwoI, vr,wi and vr,woi. The Weber number is varied by changing the
surface tension from 0.001 σ f to 45 σ f . The Weber number is varied from 5.1 × 10−5 to 8.2 × 10−2,
Reynolds number from 0.021 to 174.1, and the capillary number from 4.7 × 10−4 to 2.5 × 10−3. In
PNMwoI, the average speed of the receding meniscus is

vwoi ∼ σ

μl
. (25)

In PNMwI, the average speed of the receding meniscus can be expressed based on the definition
of the Weber number mentioned above:

vwi =
√

σWe

ρl h
. (26)

From Eqs. (25) and (27), we can get

vwi

vwoi
∼

√
σWe
ρl h

/
σ
μl

=
√

μlWe

ρl hσ
=

√
We

ρl hvwoi
, (27)

and Eq. (27) indicates that

vwi
2

vwoi
∼ We. (28)

Equation (28) shows that vwi
2/vwoi is a linear function of We, i.e., vwi

2/vwoi = c1 + c2We, which
agrees well with the pore network simulation results shown in Fig. 8. Our calculations show that
the coefficients c1 and c2 depend on the pore network structure and wettability as well as on the
physical properties of the liquid (e.g., density and viscosity).

V. SUMMARY AND CONCLUSIONS

In summary, we report experimentally that during evaporation of a microfluidic pore network
composed of pore throats and pore bodies, the pores occupied by gas can be refilled with liquid,
snapping off a gas bubble, which then moves as long as a stable configuration is reached. The
phenomena of the pore refilling and the bubble formation and movement are induced by the
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FIG. 8. Variation of the vr,wi
2/vr,woi with the Weber number for gas-liquid displacement in the transformed

pore network. vr,wi and vr,woi are the average speed of the receding meniscus obtained from the pore network
models with and without the inertial effect, respectively. We is the Weber number. The fitted line is also shown.

capillary instability due to the heterogeneity in wettability. Such capillary instability induced gas-
liquid displacement is explained in detail based on the optical images acquired from visualization
experiment. We find that the capillary valve effect, which hinders the menisci movement, can be
suppressed by the residual liquid in the pore body. The residual liquid in a pore body and the
menisci inside the neighboring pore throat can be connected by corner liquid films. The speed of
the capillary instability induced moving menisci depends on the interaction between the advancing
and the receding menisci, i.e., through the liquid-filled pores (pore flow) or the corner liquid films
(corner flow). The moving menisci induced by the capillary instability with the pore flow have a
higher speed than those with the corner flow. To form the gas ganglion, the threshold pressure for
the receding meniscus to refill a pore body connected to at least two empty pore throats should be
surmounted by the driving force, i.e., the difference in capillary forces between the advancing and
receding menisci.

A pore network model that accounts for not only the capillary and viscous forces but also the
inertial forces is developed to predict the experimentally observed capillary instability induced
gas-liquid displacement. The pore network simulation results agree well with the experimental
data, validating the effectiveness of the developed model. We find that the ratio of the square of
the average meniscus moving speed predicted by the pore network model with inertial effect to
the average meniscus moving speed predicted by the model without the inertial effect is a linear
function of the Weber number. When the Weber number exceeds a critical value, more pores are
invaded by the gas-liquid interface in the pore network model with the inertial effect than in the
model neglecting the inertial effect. The developed pore network model opens up a route for better
understanding of the role of inertial forces in two-phase transport in porous media. We believe that
unveiling, both experimentally and numerically, the capillary instability effect paves the way toward
fundamental understanding of the two-phase transport phenomena in porous media.
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