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Euler-Lagrange point-particle simulation has emerged as a premier methodology for
studying dispersed particle-laden flows. This method’s popularity stems from its ability to
resolve fine-scale fluid structures while also tracking individual particles at reduced cost
using an appropriate particle acceleration model. However, the point-particle model has
known convergence issues in that refinement of the fluid grid can lead to changes in the
predicted statistics. The reasons for nonconvergence are twofold: the point-particle two-
way coupling force in the Navier-Stokes equations requires a numerical regularization and,
without careful implementation, yields a singular force on the fluid with grid refinement.
The second factor that yields grid-dependent statistics is that the point-particle force model
in general depends on the undisturbed fluid velocity. When the undisturbed fluid velocity is
not robustly modeled in a grid-insensitive way, the calculated force for both particles and
fluid will be grid-dependent, contaminating their respective statistics. While the first issue
regarding regularizing the point-particle source term has received attention in the literature,
the consequences of robustly modeling the undisturbed velocity in the context of grid
refinement of turbulence has received little attention. In this work, we consider decaying
homogeneous isotropic turbulence laden with particles at different Stokes numbers. For
a given Stokes number, we systematically refine the grid and demonstrate that explicitly
modeling the undisturbed fluid velocity yields relative grid insensitivity for the energy of
the particle and fluid phases, as well as acceleration of the particles. We also demonstrate
that an appropriately defined dissipation rate is also grid-insensitive when an undisturbed
fluid velocity correction is used. In contrast, when the undisturbed fluid velocity is modeled
using the conventional approach of interpolating the local fluid velocity to the particle
location, we show this procedure yields divergent statistics with grid refinement. In par-
ticular, we show that higher-order interpolation of the fluid velocity in two-way coupled
problems is worse than lower-order interpolation, in the absence of a correction procedure
to estimate the undisturbed fluid velocity. We also examine velocity derivative statistics
of the fluid phase and demonstrate that these statistics are not in general convergent even
when the undisturbed fluid velocity is explicitly modeled. Collectively, the observations in
this work are used to present a philosophy on the types of questions which are answerable
with point-particle methods.
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I. INTRODUCTION

In the decades since the term “point particle” was used by Saffman in 1973 [1], it has become
a leading paradigm for the numerical simulation of coupled particle-laden flows. The term is not
unfamiliar to other branches of physics to describe, for example, small charged particles like
electrons. Conceptually, the point-particle idea represents a model reduction whereby physical
phenomena near small particles are modeled instead of resolved. To understand what effects may
need to be modeled, it is important to first develop the view of physical description resulting from
sufficient resolution.

In the context of fluid suspensions where small solid particles interact hydrodynamically, the
governing equations describing the system are well known. Fluid and solid material evolve owing to
their respective momentum equations, and the fluid momentum equation is called the Navier-Stokes
equation for Newtonian fluids following Batchelor’s notation [2]. At the boundary of the dispersed
and continuous phase, physical boundary conditions close the problem. For many applications, the
no-slip and no-penetration boundary conditions accurately describe the behavior of fluid elements
in the neighborhood of dispersed phase boundaries. The condition of local dynamic equilibrium at
particle boundaries, namely, that fluid and solid are not in relative motion, does not in general imply
that the respective phases are globally in dynamic equilibrium. The presence of fluid viscosity allows
for a deviatoric stress distribution to exist in the fluid which cannot preclude the deformation of fluid
elements. Therefore in viscous fluids, the condition of dynamic equilibrium at phase boundaries
generally accompanies stress nonequilibrium. The integrated stress over the particle surface will in
general result in a change of both its linear and angular momentum.

The above picture is how we view reality, how we would describe particle-fluid interactions in
an experiment, and how we would set up a numerical calculation given the available resources.
The latter example is what has come to be called Particle Resolved Direct Numerical Simulation
(PR-DNS). In PR-DNS, the Navier-Stokes equations are solved on a fine enough grid to resolve
all fluid scales including the boundary layer between each particle and the fluid. This allows the
fluid stress distribution to be calculated on the scale of the particle. The net force and torque
experienced by each particle then causes them to translate and rotate [3]. PR-DNS, while a powerful
tool, often contains some model simplifications. In many gas-solid flows, the stress distribution is
not solved for directly inside particles. During collisions, spring-mass-damper models are often
used [4]. PR-DNS has only recently become possible owing to the computational resources it
requires with grid resolution depending on volume fraction and Reynolds number [5,6], and some
recent studies include [5–11]. The point-particle method on the other hand uses a coarser grid, one
which cannot resolve all fluid scales (including the ones created by the particle phase) [12–15].
Historically, the community has divided point-particle methods into two categories, point-particle
DNS (PP-DNS) and point-particle LES (PP-LES). In PP-DNS, the fluid grid is chosen to resolve
all fluid scales in the absence of the particle phase, whereas in PP-LES, the grid is coarser than
PP-DNS. In both PP-DNS and PP-LES, the fluid phase has unresolved scales. The former has
unresolved scales exclusively owing to the dispersed phase, and the latter has unresolved scales
owing to the dispersed phase and unresolved small scales that would exist even in absence of the
dispersed phase. While PP-LES has met some success in reproducing PP-DNS isotropic turbulent
predictions [16], challenges in predicting turbulence modification in turbulent channel flow [17] has
been a motivation for development of more sophisticated point-particle methods applicable to both
PP-LES and PP-DNS [18–20].

The unresolved scales owing to the particle phase are a characteristic of the point-particle
method. Because the fluid grid in PP-DNS and PP-LES is not fine enough to resolve the stress
distribution at the particle scale, a model must instead be used to couple the particle and fluid
phase. This model is called the point-particle method. In the point-particle method, models for
the integrated stress are prescribed which allow the force (and less commonly) the torque to be
calculated from computed (resolved) quantities. These models are chosen by the assessing the
nondimensional parameters of a given problem. For example, if one wishes to simulate a single
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particle moving unidirectionally at low Reynolds number in an unbounded domain, it is known
that the particle obeys Stokes drag [21] and experiences no lift or torque. Since this particle is
experiencing a net force, Newton’s second law says the particle will experience a rate of change of
its linear momentum. Two integrations respectively give a new velocity and position for the particle.

How is the point-particle’s motion coupled to the fluid? In the PR-DNS method, the particle
location and velocity provide a boundary condition to the fluid. In PP-DNS and PP-LES, no
boundary condition is imposed. Rather, as was suggested by Saffman [1], the particle is represented
by a multipole expansion, where the force and torque represent the coefficients in the multipole
expansion. For a nonrotating particle moving under Stokesian conditions, we have just the force
term. Using observed quantities, the drag force may be calculated, but since the particles may
exist anywhere in space while fluid quantities are generally stored at fixed Eulerian locations,
the calculated drag force must be projected back to the fluid grid. This drag force serves to slow
down the fluid local to the particle. Suppose we seek to calculate the drag force at the next time
step. The fluid velocity near the particle will now have two components, one which is just due
to the underlying flow field, and the second, which is owing to a disturbance field created by
that particle. To calculate the new drag force there is now a problem, because drag laws, whether
they be Stokes drag [21] or a more complicated formula, are formulated a priori, that is, they are
formulated based on “undisturbed” variables evaluated at the location of the particle. For example,
FStokes = 3πμdp(ũp − vp). The drag the particle experiences which is equal to and opposite to the
force exerted on the fluid is proportional to the fluid viscosity μ, the particle diameter dp, and
the difference between the undisturbed fluid velocity evaluated at the particle location, ũp, and the
particle velocity, vp. The undisturbed fluid velocity ũp found in every known drag law is not trivial
to evaluate in two-way coupled point-particle simulations precisely because the fluid velocity which
could be naturally computed at the location of the particle by interpolating from surrounding fluid
grid points will contain an additional disturbance velocity created by that particle.

In a recent paper [22], we proposed a correction method to estimate the undisturbed fluid
velocity from the computed velocity field which contained a velocity disturbance generated by a
point particle. The correction was formulated by recognizing that the disturbance field created by a
point particle is nearly symmetric in the Stokes limit and locally looks like an enhanced curvature
in the fluid velocity field. We presented a verification problem involving a settling particle in an
otherwise quiescent flow and found that the proposed correction was able to reproduce the analytical
settling velocity for a range of parameters. We also showed that if this correction is not accounted
for, the drag force a particle experiences will be underpredicted, which results in an artificially
higher settling velocity. We showed this error increases for two reasons: as the particle to grid size
increases, so too does the computed disturbance field. This means the fluid velocity near the particle
is farther from the undisturbed value. In other words, as a particle moves and drags fluid with it, a
slip velocity calculated using the difference between the disturbed and particle velocity will always
be lower than the slip velocity calculated using the difference between the undisturbed fluid and
particle velocity. The second error comes from the choice of interpolation scheme. Higher order
interpolation schemes used to calculate the (disturbed) fluid velocity at the location of the particle
resulted in larger errors in settling velocity compared with lower-order schemes. This was explained
by the fact that higher-order schemes provide a better estimate of the computed disturbed fluid
velocity at the location of the particle, which is farther from the correct value of the undisturbed
fluid velocity which is sought for in the drag formula. Hence, a new paradigm has arisen in the
simulation of two-way coupled flows with point particles: in the absence of using a scheme to
correct for the undisturbed fluid velocity, lower-order interpolation schemes should be used.

The above observation was counter to standard practice, namely using higher-order interpolation
projection for Lagrangian-Eulerian data transfer, which had been the standard paradigm since
the seminal work of Sundaram and Collins [23], owing to symmetries in the quadratic form for
point-particle dissipation. In the limit of very small particles compared to the grid size, the Sundaram
and Collins derivation was exact. However, it was shown in [6] that explicitly accounting for the
undisturbed fluid velocity (which may differ greatly from the interpolated fluid velocity at the
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particle location when dp �� dx) causes the symmetry in the quadratic form to disappear. In that
work, it was argued that in two-way coupled point-particle simulation, regardless of what projection
scheme is used, it is best to calculate the drag force as accurately as possible by explicitly modeling
the undisturbed fluid velocity. Together Refs. [6,22] showed, under homogeneous conditions, that
a consequence of explicitly modeling the undisturbed fluid velocity was that the implied dissipation
rate, defined as the resolved plus the point-particle model form dissipation rate together would equal
the analytically correct dissipation rate consistent with the prescribed drag force. In this work, we
will refer to this observation as the correspondence principle. In recent years, several methods have
been proposed for estimating the undisturbed fluid velocity [15,18,24–26]. The details of each of
these methods will be briefly discussed in the methods section. Overall, the goal of the present study
is understanding what are the consequences of explicitly modeling the undisturbed fluid velocity in
two-way coupled particle-laden turbulence versus not modeling the undisturbed fluid velocity. In
this work, we will use the approach developed in Horwitz and Mani [22].

The purpose of this paper may now be addressed. Having developed a verifiable method for
computing Stokes drag in two-way coupled flows, the aim of this paper is to examine the effect of
computing Stokes drag with and without this correction in a more complicated flow environment.
In this work, using PP-DNS, we will examine decaying homogeneous isotropic turbulence laden
with small inertial particles of different Stokes numbers. The problem we wish to answer is, in
an otherwise dynamically equivalent setup, e.g., fixed mass loading, particle size, Stokes number,
initial Reynolds number, etc., how do fluid and particle statistics change if we model the coupling
between fluid and particles as Stokes drag, and calculate the fluid velocity, on the one hand using
the undisturbed fluid velocity, and on the other hand, using the disturbed fluid velocity, calculating
the latter quantity with standard interpolation schemes? For the dynamically equivalent setup, how
do the statistics change as the fluid grid is refined? In Sec. II we summarize the PP-DNS algorithm
including the different formulations for computing the particle drag force. In Sec. III the results of
the simulations are presented and discussed. Concluding remarks are given in the final section.

II. METHODS

We are using the code originally developed by Pouransari [27]. We use an Eulerian-Lagrangian
formulation which solves the Navier-Stokes equations (1) subject to the constraint of continuity (2):

∂

∂t
ρ f ui + ∂

∂x j
ρ f uiu j = − ∂ p

∂xi
+ μ

∂2ui

∂x j∂x j
−

Np∑

k

F k
i P{δ(x − xk )}, (1)

∂

∂t
ρ f + ∂

∂x j
ρ f u j = 0. (2)

Here, ρ f and μ are, respectively, the fluid density and dynamic viscosity, ui and p are respectively
the fluid velocity and pressure, and F k

i is the drag force on the kth particle. The summation is over
the total number of particles Np in a control volume, and P is a projection operator, to be defined,
which is used to transfer discrete Lagrangian data to the Eulerian mesh. The fluid solver is a second-
order finite difference-based scheme. Time integration of fluid and particle equations is performed
using explicit fourth-order Runge-Kutta. A divergence-free velocity field is enforced via a Poisson
equation for pressure; the pressure equation is solved directly using fast Fourier transforms. The
kth particle is tracked in a Lagrangian frame. The position and velocity of each particle are updated
using (3) and (4), respectively:

dxk
i

dt
= vk

i , (3)
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i

dt
= F k

i = mp

τp

(
ũk

i − vk
i

)
. (4)
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Here, xk
i and vk

i are, respectively, the position and velocity of the kth particle, τp = ρpd2
p/18μ is

the particle relaxation time, where ρp and dp are, respectively, the particle density and diameter. The
mass of the particle, mp, is (π/6)ρpd3

p . The drag force F k
i of the kth is assumed to be Stokesian. In

Stokes’s formula, the undisturbed fluid velocity at the location of the particle is ũk
i . In the discussion

to follow, when we speak of calculating the disturbed fluid velocity, it means Eq. (4) is being
used with uk

i , that is, the fluid velocity from the surrounding grid points interpolated to the particle
position. The distinction between the undisturbed and disturbed fluid velocity pertains only to the
two-way coupled problem, which is the focus of this paper.

To complete the Euler-Lagrange algorithm we must specify the method for calculating the fluid
velocity used in Stokes’s formula and the projection operator in (1). In this work, we consider two
paradigms for calculating the velocity that appears in Stokes drag. The first paradigm is an explicit
model for the undisturbed fluid velocity at the particle location. The explicit model we use in this
work was developed in [22]. In that work, we proposed estimating the undisturbed fluid velocity via
a formula of the form

ũk
i

(
xk

i (t )
) = uk

i

(
xk

i (t )
) + Ck

(
�, xk

i (t )
)∇2uk

i

(
xk

i (t )
)
. (5)

Conceptually, Eq. (5) suggests that the undisturbed fluid velocity at the particle location,
ũk

i (xk
i (t )), differs from the fluid velocity which could be naturally interpolated to the particle loca-

tion, uk
i (xk

i (t )), because this latter fluid velocity contains a component owing to the fluid disturbance
created by the particle force. This model assumes the additional disturbance velocity correlates to
enhanced curvature in the fluid velocity field in the neighborhood of the particle. The correction
scheme depends on an empirical coefficient Ck (�, xk

i (t )) which has been calibrated for different
ratios of the particle to grid size � = dp/dx and depends on the location of the particle within a
grid cell. In other words, for a computational user incorporating particles of a known size and a
fluid grid with a known grid spacing, we have tabulated the amount of correction required in the
form of C(�). This calibration for different nondimensional particle sizes was an effort to remove
grid sensitivity from the point-particle algorithm. Relative grid insensitivity has been demonstrated
for the corrected point-particle algorithm under laminar conditions [22]. It is important to note
that these C coefficients were developed specifically for spherical particles and the second-order
finite difference solver used in this work. Different coefficients may be required for other spatial
discretizations [20]. In this work, it will be important to test whether the corrected point-particle
algorithm is relatively grid-insensitive under turbulent conditions. To compute the undisturbed fluid
velocity at the particle location, the disturbed fluid velocity uk

i (xk
i (t )), the correction coefficient,

Ck (�, xk
i (t )), and disturbed fluid velocity Laplacian, ∇2uk

i (xk
i (t )) are trilinearly interpolated to the

particle location at each sub-step of the Runga-Kutta solver. Though this method of estimating
the undisturbed fluid velocity was developed under laminar conditions, scaling analysis [6,26]
has demonstrated this scheme is applicable in turbulent environments provided the particle size is
small compared to the Taylor microscale. Incorporation of this correction procedure to estimate the
undisturbed fluid velocity combined with a suitable drag law for particles has shown good agreement
when compared to fully resolved Kolmogorov-sized particles [6].

There are other methods which have been developed to explicitly estimate the undisturbed
fluid velocity for particle-laden flows. Recent works [15,24,25] have been developed whereby the
projection operator in Eq. (1) is assumed Gaussian. The method of Gualtieri et al. [24] characterizes
some of the unsteadiness in the particle drag force by transiently releasing vorticity into the fluid
once the particle disturbance can be resolved on the grid. The work of Ireland and Desjardins [25]
and Balachandar et al. [15] are based on analytical solutions to the Stokes equations assuming
a Gaussian-regularized point force. In addition, Balachandar et al. has extended their analysis to
the Oseen equations to account for finite Reynolds number effects on drag. They also develop
analytical results for other undisturbed quantities appearing in the Maxey-Riley-Gatignol equation
[28,29]. Esmaily and Horwitz [18] have also developed a scheme to estimate the undisturbed
fluid velocity by appealing to solid mechanics and determining the drag force required to move
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a control volume at its average velocity. All of these works have examined the accuracy of an
undisturbed velocity correction under laminar conditions and compare favorably with [22]. The
works [6,18,25,26] have demonstrated that incorporation of an undisturbed fluid velocity correction
can have a significant effect on particle and/or fluid statistics in a turbulent environment. However,
to the best of our knowledge, there has not been a point-particle study examining the effect of
an undisturbed fluid velocity correction applied in the two-way coupling regime (significant mass
loading) under turbulent conditions while also exploring the effect of grid refinement. In this work,
we employ the scheme developed in [22] to estimate the undisturbed fluid velocity. In the Discussion
section, we will mention where we expect other correction schemes to produce similar behavior and
where we expect the results of our method to differ from other methods, had the latter been used to
study the model problems presented here.

There is a second paradigm for treating the fluid velocity appearing in Stokes’s formula, namely,
to make no make no explicit model of the undisturbed fluid velocity and simply interpolate the
(disturbed) fluid velocity from the surrounding fluid grid points. In [22,30], we showed under
laminar conditions that higher-order interpolation of the disturbed fluid velocity would result in
larger error. The reason this happens is because a better estimate of the disturbed fluid velocity
translates to a worse estimate of the undisturbed fluid velocity. Therefore, in this work, it will be
worth testing whether the observations about order of accuracy of interpolation of the disturbed
fluid velocity hold under turbulent conditions. In this work we will consider trilinear, fourth-order
Lagrange (Lagrange-4), and Cubic-Spline interpolation schemes.

To complete the point-particle algorithm, the projection operator should be defined. The correc-
tion procedure [22] adopted in this work is consistent with trilinear projection. In comparing the
results for the undisturbed fluid velocity correction to those obtained with a disturbed fluid velocity,
we use a symmetric projection operator for the latter results. In other words, trilinear interpolation
of the fluid velocity will be combined with trilinear projection of the drag force, Lagrange-4
interpolation with Lagrange-4 projection, and Spline interpolation combined with Spline projection.
This method was chosen to be consistent with the recommendation of [23] who suggested that
the point-particle dissipation term would be consistent if symmetric interpolation-projection was
used. However, we recall that work did not account for the difference between the undisturbed
and disturbed fluid velocity; doing so removes the symmetry in the quadratic form [6], central
to the arguments of [23]. While their derivation [23] is asymptotically correct when � → 0, the
dissipation error may be large (as we will show in the Results section) for finite �. Notwithstanding,
symmetric interpolation projection as well as nonsymmetric direct interpolation of disturbed fluid
velocity/particle drag force has been the leading paradigm for point-particle simulations for the
last few decades, with a number of studies incorporating these paradigms within the past year, e.g.,
[31–37]. Therefore, it will be important to test this traditional paradigm in turbulent settings subject
to grid refinement.

III. RESULTS AND DISCUSSION

The model problem we investigate in this work is decaying particle-laden isotropic turbulence.
This model problem was chosen to understand how particles modify turbulence under homogeneous
conditions [12,38,39]. Previously, we explored the effect of our correction scheme in a forced low
mass loading suspension and observed that slip velocity statistics of particles showed less sensitivity
to grid refinement when the undisturbed velocity is modeled compared with when the fluid velocity
is the interpolated disturbed fluid velocity [26]. Studying a decaying turbulent suspension will allow
us to examine turbulence modification without the difficulty in interpreting how the particle two-way
coupling term is influencing a stationary forcing term in the Navier-Stokes equations. As we will
show in the results section, a suitable normalization of the statistics will demonstrate that a decaying
suspension is a viable setting to study turbulence modification under grid refinement.

The paradigm used to study the model problem is point-particle “direct” numerical simulation
(DNS). The term “DNS” here is understood to mean that the Kolmogorov scale is resolved [40],
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TABLE I. Summary of parameters used in decaying particle-laden cases.

N3 2243, 4483, 8963

kmaxη0 3.14, 6.28, 12.57
k f ,0 0.01309, 0.01309, 0.01309
ε f ,0 0.001549, 0.001598, 0.001611
Reλ,0 27.2, 26.7, 26.6
Te 8.45, 8.19, 8.13
�t 0.015, 0.0075, 0.00375
η0 0.028
L 2π

ν 0.001
� 0.25, 0.5, 1.0
Stη,0 3.5, 10, 100
ρp/ρ f 1008, 2880, 28 800
Np 1.36 × 106, 4.77 × 105, 4.77 × 104

φ 9.92 × 10−4, 3.47 × 10−4, 3.47 × 10−5

dp 0.007012
dp/η0 0.25
φm 1.0

without consideration of the fluid scales introduced by the particle phase. In the results section, we
will demonstrate that some fluid and particle statistics are grid-insensitive when the undisturbed
fluid velocity is accounted for while some statistics are not in general grid convergent. This will
help clarify how a point-particle “DNS” compares and differs from a traditional direct simulation
of single phase flow.

The simulations in this work are summarized in Table I. The simulations are initialized with
a divergence-free velocity field in a periodic box using Rogallo’s procedure [41]. The initial
velocity field obeys Pope’s model spectrum [40]. Three grid resolutions N3 ∈ [2243, 4483, 8963]
are considered in this study. The number of grid points required for the finer simulations dictated
a relatively low initial Taylor Reynolds number, Reλ,0 ≈ 27. The turbulence develops from the
initial condition until the skewness of the velocity derivative reaches a physical value of about
−0.5 after about 0.2 turnover times. At this stage, particles are seeded into the domain randomly,
each with a velocity equal to the local fluid velocity. Three Stokes numbers τp/τη0 are considered in
this work, Stη,0 ∈ [3.5, 10, 100], where η0 is the Kolmogorov scale calculated based on the initial
condition. At the time of the particle seeding, the turbulence has less energy than initially, and
as a consequence, the Stokes numbers at seeding are about 25% below the nominal value. After
the particles are seeded, the simulations are continued for at least four turnover times. To examine
the effect of turbulence modification, we run three unladen simulations, one for each resolution,
to compare to the fluid statistics observed in the presence of particles. The mass loading ratio,
φm, is unity for all particle cases which is a regime expected to have significant two-way coupling
effects [42]. The suspension is considered dilute, with the volume fraction φ < 10−3 for all cases.
For this reason, we have neglected particle collisions. The particle size is sub-Kolmogorov for all
cases, dp/η0 ≈ 0.25. In addition, the density ratio for all cases is greater than one thousand. These
two conditions together justify the assumption that particles obey Stokes drag. For each Stokes
number, we explore cases where our correction scheme is used to estimate the undisturbed fluid
velocity against standard interpolation-projection methods including the trilinear, Lagrange-4, and
Cubic-Spline schemes while also examining the effect of fluid grid refinement on the predictions of
these respective schemes.

In the results section, we report fluid and particle energetics and particle acceleration. For brevity,
we omit some of the intermediate Stokes number results which are qualitatively similar to the low
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FIG. 1. Particle rms acceleration normalized by unladen Kolmogorov acceleration, showing effect of grid
refinement, St0 = 3.5, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline, (d) Correction scheme. Different lines
show different grid resolutions: dotted-coarse, dash-medium, solid-fine.

Stokes number results. These omitted results can be found in the first author’s dissertation [43].
We forgo presenting sensitive quantities such as energy spectra owing to contamination from the
two-way coupling disturbance. As a surrogate, we report velocity derivative statistics to demonstrate
that giving physical meaning to fine-scale statistics in two-way coupled point-particle simulations
should be done so with extreme caution.

A. Particle acceleration

The direct effect of different procedures to calculate fluid velocity in Stokes drag is to vary
the drag force each particle experiences as well as the reaction force the fluid feels. Particle rms
acceleration is shown in Figs. 1 and 2 for different Stokes numbers and grid resolutions, where
the predictions of the proposed correction are compared against standard interpolation-projection
schemes. The particle accelerations have been normalized by the Kolmogorov acceleration aη(t ) =
uη(t )/τη(t ) of the corresponding unladen simulation at the same grid resolution. This normalization
allow us to assess whether the decay rate of particle acceleration eventually matches the decay rate
in the acceleration of fluid elements. For each interpolation-projection method, we also show the
effect of grid refinement while keeping all other parameters constant.
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FIG. 2. Particle rms acceleration normalized by unladen Kolmogorov acceleration, showing effect of grid
refinement, St0 = 100, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline, (d) Correction scheme. Different
lines show different grid resolutions: dotted-coarse, dash-medium, solid-fine.

In examining the particle rms acceleration of standard interpolation-projection schemes,
[Figs. 1(a)–1(c) and 2(a)–2(c)], it is clear that none of these schemes converge under grid refinement,
for any Stokes numbers considered, at any nondimensional time. In contrast, the correction scheme
shows no great grid sensitivity for any of the Stokes numbers investigated. No variation is apparent
in particle rms acceleration predicted by the correction scheme for about the first turnover time for
the lower Stokes numbers, while for the St0 = 100 case, the correction scheme shows almost no
variation with grid resolution for almost three turnover times. At late times there is some modest
variation with grid refinement for the correction scheme for each of the Stokes numbers. However,
close inspection reveals the coarsest and finest grids are in closest agreement for the correction
scheme, suggesting this scheme is making a relatively grid-insensitive prediction of the particle
acceleration rather than merely a slower divergence with grid refinement compared with the standard
interpolation-projection schemes.

Besides the nonconvergence of particle acceleration under grid refinement using standard
interpolation-projection schemes, the main trend is for the magnitude of the particle acceleration to
decrease with grid refinement for each of these schemes. Consequently, point particles employing
standard interpolation-projection routines will feel less coupled to fluid motion and the fluid will feel
less influence of the particle force than they would had the drag force been calculated correctly using
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the undisturbed fluid velocity. This observation of less coupling could be interpreted qualitatively as
an artificial increase in the effective Stokes number observed when simulations are performed with
standard interpolation-projection schemes. In other words, when simulating point particles with
standard interpolation-projection schemes, if the nominal Stokes number based on τp and τη is X ,
the simulated Stokes number using these procedures will be X + a little bit. These results appear
consistent with our previous observations [26] that point particles (with St > 1) in two-way coupled
forced turbulence obeying standard interpolation-projection schemes showed narrower acceleration
PDFs and lower preferential concentration than did point particles computed with the undisturbed
fluid velocity, hence underscoring the artificially inflated Stokes numbers predicted by standard
interpolation-projection schemes.

Interestingly, the point-particle schemes employing standard interpolation-projection find the
best agreement with the correction scheme when the former schemes are employed on coarse grids.
To clarify, the coarse grid was chosen as the grid resolution needed to resolve the Kolmogorov scale,
and we have chosen a slightly more conservative kmaxη than suggested in [40] owing to the finite
difference solver employed in this work. The virtue of examining finer grids here draws connection
to problems requiring stricter resolution of higher moments of the velocity field [44]. Though
the difference is nominal, the trilinear scheme shows slower divergence with grid refinement than
Lagrange-4 and Cubic-Spline schemes, consistent with the observations of [22] and [30] that lower-
order interpolation-projection schemes perform better under laminar conditions in the absence of
a correction scheme. The closest agreement between coarse interpolation-projection and correction
scheme results presented here combined with the good agreement of the correction scheme against
particle-resolved simulations [6] suggests that reducing two-way coupling error at the cost of lower
resolution of small scales may be a worthy tradeoff when performing particle-turbulence simulations
with uncorrected point-particle schemes.

Finer model appraisal can be ascertained by examining particle acceleration probability density
functions (PDFs). Acceleration pdfs comparing performance of the correction scheme with Cubic-
Spline scheme at two times are shown in Figs. 3 and 4. The PDFs for the trilinear and Lagrange-4
schemes are qualitatively similar to the Spline predictions and are not shown for brevity. In compar-
ing the uncorrected and corrected acceleration pdfs, it is clear that not only are the uncorrected PDFs
narrower than the corrected schemes’, the uncorrected PDFs become narrower with grid refinement.
Higher acceleration events become monotonically less likely with grid refinement while lower
magnitude acceleration events become more probable when the undisturbed fluid velocity is not
explicitly modeled. In contrast, the corrected pdfs are remarkably stable to grid refinement for each
Stokes number. No discernible variation can be observed in the lower magnitude acceleration events
while some nominal variation is observed in the higher acceleration events. However, the trend is
not monotonic with grid refinement so the correction scheme does not exhibit bias in its prediction
of acceleration events in the PDF tails. These observations surrounding the respective schemes’
predictions are reflected throughout the turbulence decay. Interestingly, the Spline predictions for
Stη,0 = 10 [Fig. 4(b)], shows little variation with grid refinement for low magnitude acceleration
events, however this appears coincidental as the rms acceleration curves shown in the inset appear
to have similar magnitudes at this time despite the overall trend of these curves being nonconvergent
with grid refinement. The present observations extend the findings in [26] showing explicitly the
effect of grid refinement on the PDFs of particle acceleration. Though the shape of the acceleration
pdfs and trend of acceleration rms with Stokes number are in qualitative agreement with forced one-
way coupled observations [45] at higher turbulence Reynolds number, it is difficult to make a direct
quantitative comparison of the present work with available literature owing to the (1) relatively low
flow Reynolds number, (2) decaying turbulence, (3) two-way coupling (high mass loading). We
note that a direct comparison of point and fully-resolved particles has been performed recently [6],
where the point particles incorporated the present correction scheme and when combined with an
appropriate drag model produced particle acceleration PDFs in fairly good agreement with the PDFs
predicted by the fully resolved particle simulations.
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FIG. 3. Particle acceleration PDFs for different Stokes numbers extracted at t/Te ≈ 1.3, (a–c) Cubic-
Spline, (d–f) correction scheme. Insets show grid refinement collapse/divergence near PDF centers.
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FIG. 4. Particle acceleration PDFs for different Stokes numbers extracted at t/Te ≈ 3.2, (a–c) Cubic-
Spline, (d–f) correction scheme. Insets show grid refinement collapse/divergence near PDF centers. Additional
insets for the Stη,0 = 10 cases show rms acceleration vs time to explain the apparent collapse of the Cubic-
Spline scheme with grid refinement. Normalization for the rms acceleration histories is the same as given in
Figs. 1 and 2.
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FIG. 5. Particle kinetic energy normalized by initial fluid kinetic energy showing effect of grid refinement,
St0 = 3.5, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline, (d) Correction scheme. Different lines show
different grid resolutions: dotted-coarse, dash-medium, solid-fine.

B. Particle kinetic energy

Figures 5 and 6 show particle kinetic energy for different Stokes numbers and grid resolu-
tions, comparing the predictions of the correction scheme against standard interpolation-projection
schemes. Because the unladen simulations are free of particles, we choose to normalize the particle
kinetic energy by the initial fluid energy. At seeding, the particle kinetic energy is equal to the
instantaneous fluid energy, which is a little over 80% of the initial fluid energy.

In examining Figs. 5 and 6, no significant variation is observed under grid refinement of the
particle kinetic energy predicted by the correction scheme for any of the Stokes numbers considered.
In contrast, the standard interpolation-projection schemes show grid sensitivity for all Stokes num-
bers. While the sensitivity is modest at St0 = 3.5, it is clear that refinement predicts monotonically
more particle kinetic energy at early times, and less at late times, where no such variation with
grid refinement is observed with the correction scheme. For St0 = 10 and St0 = 100, the standard
schemes predict higher particle kinetic energy at all times with increasing grid refinement. Since the
standard schemes predict lower acceleration (higher Stokes numbers) for a given nominal Stokes
number under grid refinement, these uncorrected particles will behave more inertially and retain the
kinetic energy associated with their initial condition for longer than they would had their drag been
computed correctly by accounting for the undisturbed fluid velocity in a grid-insensitive way.
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FIG. 6. Particle kinetic energy normalized by initial fluid kinetic energy showing effect of grid refinement,
St0 = 100, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline, (d) Correction scheme. Different lines show
different grid resolutions: dotted-coarse, dash-medium, solid-fine.

C. Turbulence kinetic energy

In Figs. 7 and 8 we show fluid kinetic energy of the particle-laden simulations for different Stokes
numbers and grid resolutions, comparing the predictions of the standard interpolation-projection
schemes against the correction method. In these figures, the fluid energy of the laden cases k f at
a given mesh resolution has been normalized by the corresponding fluid energy of the unladen
simulation k f ,ul (t ) at the same resolution. We may then define the deviation of the normalized fluid
kinetic energy from unity as a measure of turbulence modification. Even though each grid resolution
formally corresponds to a different realization of the same turbulent flow (the initial conditions
have the same spectrum but are pointwise different velocity fields), our goal here is to show that
the errors resulting from inaccurate interpolation projection of the drag force will dominate the
variation that results from simulating different realizations of the same turbulence on finer grids.
In addition, normalizing by the unladen simulations will allow us to assess whether the particle-
laden simulations eventually reach a state where they are decaying at the same rate as the unladen
simulations.

In examining the laden fluid energy predicted by standard interpolation-projection schemes
(Lagrange-2, Lagrange-4, Cubic-Spline), it is clear that none converge with mesh refinement for
any Stokes number. In addition, with the exception of the St0 = 3.5 cases, none of these schemes
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FIG. 7. Fluid kinetic energy of particle-laden cases normalized by unladen fluid energy showing effect of
grid refinement, St0 = 3.5, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline, (d) Correction scheme. Different
lines show different grid resolutions: dotted-coarse, dash-medium, solid-fine.

predict convergence in fluid energy even at early times. As was observed for particle acceleration
and kinetic energy, the fluid energy predicted by Lagrange-2 interpolation projection diverges less
rapidly with grid refinement, while Cubic-Spline and Lagrange-4 exhibit greater divergence. In
contrast, the statistics of laden fluid energy predicted by the correction scheme in Figs. 7(d) and
8(d), show relative insensitivity to the choice of grid. In particular, Fig. 7(d) clearly demonstrates
grid convergence at early times with modest variation at late times. Similar late time variation was
also observed for rms particle acceleration predicted by the correction scheme. We suspect this late
time behavior is partially a consequence of the realization effect. At late times in the simulation,
most of the little remaining fluid energy is associated with small wave number big eddies, which
are most likely to be realization-dependent. It is worth noting that the fluid energy predicted by
the correction scheme for the highest Stokes number [Fig. 8(d)] shows no discernible variation
among the three grid resolutions. The realization effect may not be observable here since the particle
relaxation time for the highest Stokes number is considerably longer than the eddy turnover time.
For this Stokes number, observing the realization effect would require sufficiently large eddies with
timescale comparable to the particle relaxation time; this would require a much larger simulation
domain. This high Stokes number case in particular demonstrates the divergence in fluid energy
is a result of not robustly modeling the undisturbed fluid velocity in the particle drag. The finest
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FIG. 8. Fluid kinetic energy of particle-laden cases normalized by unladen fluid energy showing effect of
grid refinement, St0 = 100, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline, (d) Correction scheme. Different
lines show different grid resolutions: dotted-coarse, dash-medium, solid-fine.

grid solutions of the standard interpolation-projection schemes have approximately 15% more fluid
energy at late times than that predicted by the correction scheme. As we have observed for the other
statistics, the coarsest grid solutions of standard interpolation-projection schemes best predict the
results of the correction scheme, with the Lagrange-2 scheme being the least inaccurate method not
incorporating an explicit model for the undisturbed fluid velocity.

D. Turbulence dissipation rate: Demonstration of the correspondence principle

The previous sections have demonstrated that incorporation of an explicit estimate for the
undisturbed fluid velocity yields relatively grid-insensitive predictions of particle and fluid kinetic
energy. Therefore, it may be expected that a similar conclusion should apply to the fluid dissipation
rate. This hypothesis is correct, provided we are careful to specify which dissipation rate should
be grid-insensitive. Starting from the Navier-Stokes equation for the fluid and the momentum
balance for each particle, the evolution equation governing the mixture energy of the system
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em = (1 − φ)ρ f k f + φρpkp is [6]

dem

dt
= −ε f + 1

V

Np∑

i=1

Fi · [vi − u f (xi )] + φ
1

V

Np∑

i=1

Fi · u f (xi ). (6)

In Eq. (6), −ε f = (1 − φ)(1/V )
∫

V μu f ∇2u f dV , is the fluid dissipation rate which is resolved
on the fluid grid, with V being the whole fluid volume. The remaining two terms in Eq. (6) comprise
an additional particle-dissipation rate [22,23]. The particle-dissipation rate can be interpreted as
an additional dissipation rate owing to the point-particle model. In particle-resolved simulation,
all of the fluid dissipation rate appears in the ε f term and there is no particle-dissipation term
[6,7]. Therefore the additional particle-dissipation rate term can be interpreted as a compensation
to the resolved dissipation rate since not all of the true fluid dissipation of the system is being
resolved on the fluid grid. In a direct comparison of point particles against fully resolved particles
[6], it was verified that both the dissipation rate resolved on the fluid grid and the additional
particle dissipation together should be compared to the viscous dissipation rate obtained from the
particle-resolved simulation. Further, it was shown that with an explicit estimate for the undisturbed
fluid velocity and an appropriate drag model for the point particles, the sum of the resolved and
additional dissipation rate in the point-particle simulation showed excellent agreement with the
particle-resolved simulation.

In Figs. 9–11 we show the total dissipation rate (sum of resolved and additional dissipation) as
well as resolved dissipation rate for the various interpolation-projection schemes. Note, the dissipa-
tion results presented here consider one to three orders of magnitude more particles depending
on the Stokes number than the O(103) particles considered in [6]. The results here have been
normalized by the viscous dissipation of the unladen simulations at the same resolution. The total
dissipation rate for the standard interpolation-projection schemes is highly grid sensitive while for
the correction scheme, nominal variation in total dissipation is observed for a given Stokes number
on different grids. It is important to remark that the resolved dissipation rate is highly grid sensitive
for both correction and noncorrection schemes. For example, in considering the coarse grid for
the St0 = 10 and 100 cases, one could erroneously conclude that the (resolved) dissipation rate
for the particle-laden suspension is lower than for the unladen suspension. At least for the cases
considered here, we see that the total (true) dissipation rate is in fact always greater than for the
unladen suspension. This observation underscores the point that the resolved fluid dissipation rate
should never be reported as indicative of the true (total) fluid dissipation rate of the mixture energy
of the system. As the resolved viscous dissipation rate changes significantly with grid refinement, so
too does the particle-source term (shown in the insets). These observations suggest that neither the
resolved dissipation nor particle-dissipation terms extracted from point-particle simulation should
ever be reported alone. They are not physically meaningful by themselves. Rather, each of these
terms varies in such a way that with grid refinement, their sum is grid-insensitive, with the proper
incorporation of an undisturbed fluid velocity correction.

We call these collective observations the correspondence principle. Using a point-particle method
does not guarantee a pointwise convergent velocity field to a particle-resolved simulation. The
no-slip boundary condition cannot be enforced for point particles, nor are the velocity gradient
structures found in a point-particle simulation statistically identical to those found in a particle-
resolved simulation. However, incorporation of the proper drag model for point particles combined
with a good estimate for the undisturbed fluid velocity implies a total dissipation rate (which can be
compared to a particle-resolved simulation) which is grid-insensitive. The results presented here
regarding grid insensitivity of total dissipation rate in a time-evolving flow combined with the
validation of this corrected point-particle method against a particle-resolved simulation in decaying
turbulence [6] are particular noteworthy. We had previously demonstrated the correspondence
principle under laminar conditions [22]. In that work, we showed analytically that a settling point
particle would dissipate the correct amount of energy consistent with the drag law chosen if an
accurate undisturbed fluid velocity correction is adopted. That is, a Stokesian particle should,
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FIG. 9. Total and resolved fluid dissipation rate of particle-laden cases normalized by unladen fluid
dissipation rate showing effect of grid refinement, St0 = 3.5, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline,
(d) Correction scheme. Different lines show different grid resolutions: dotted-coarse, dash-medium, solid-fine.
The insets show the particle dissipation term.

in steady state, dissipate an amount of an energy per unit time consistent with the Stokes drag
model. The same applies for the dissipation rate for a Schiller-Naumann particle for example.
The observations here, combined with the particle-resolved comparison study [6], shows that
the steady correspondence principle [22] may in fact apply to time-evolving flows. Though this
hypothesis should be explored in more detail, we suspect that, in the case of highly unsteady
flows or big particles such that history terms are important in describing the particle equation of
motion, a correspondence principle may be satisfied if the particle drag force is evaluated with
suitable corrections to the undisturbed history terms; see, e.g., [15]. Nevertheless, it remains an
open question whether there is a cutoff particle Reynolds number above which no correspondence
should be expected. In other words, at high enough particle Reynolds number, vortex recirculation
or shedding will occur and it seems that it would be difficult for a point model (even with an
appropriate drag-formulation and undisturbed-quantity corrections) to be able to recover critical
dissipation events occurring in particle wakes.
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FIG. 10. Total and resolved fluid dissipation rate of particle-laden cases normalized by unladen fluid
dissipation rate showing effect of grid refinement, St0 = 10, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline,
(d) Correction scheme. Different lines show different grid resolutions: dotted-coarse, dash-medium, solid-fine.
The insets show the particle dissipation term.

E. Higher-order statistics

The previous results provide insight into what can be reasonably expected from a point-particle
method. Within the scope of the model problem chosen and the Stokes numbers considered, accurate
estimation of the undisturbed fluid velocity yielded relatively grid-insensitive particle acceleration,
fluid, and particle energy. In addition, the total dissipation rate was found to be grid-insensitive
when an explicit model for the undisturbed fluid velocity was adopted. However, the resolved
fluid dissipation rate was found to be grid sensitive for all interpolation-projection schemes. This
observation serves as a harbinger for the results in this section.

In this section, we focus on the skewness S = ( ∂u1
∂x1

)
3
/[( ∂u1

∂x1
)
2
]
3/2

, and kurtosis K =
( ∂u1

∂x1
)
4
/[( ∂u1

∂x1
)
2
]
2

of the velocity derivative. The skewness is related to the behavior of the two-point
correlation function at intermediate separations [46] as well as the distribution of vortex tubes and
sheets in the flow [47] while the kurtosis characterizes flow intermittency. To anticipate that particles
will modify velocity-derivative statistics, we report the evolution equation for the unnormalized nth
moment of the velocity derivative under homogeneous, zero-mean conditions. This equation can be
derived by taking the gradient of the point-particle equations (1), taking the 1 − 1 component of the
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FIG. 11. Total and resolved fluid dissipation rate of particle-laden cases normalized by unladen fluid
dissipation rate showing effect of grid refinement, St0 = 100, (a) Lagrange-2, (b) Lagrange-4, (c) Cubic-Spline,
(d) Correction scheme. Different lines show different grid resolutions: dotted-coarse, dash-medium, solid-fine.
The insets show the particle dissipation term.

resulting equation, then multiplying through by n( ∂u1
∂x1

)
n−1

and ensemble averaging yields

∂

∂t
Zn + nZn−1

∂u j

∂x1

∂u1

∂x j
= −nZn−1

∂2 p/ρ f
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In Eq. (7), Zn is the unnormalized nth moment of the velocity derivative, with Zn = ( ∂u1
∂x1

)
n
, and

f1 is the 1-component of a forcing term owing to particle two-way coupling.
The effect of grid refinement on velocity derivative skewness and kurtosis in the unladen simu-

lations are demonstrated in Figs. 12(a) and 12(b). The unladen skewness appears to exhibit nominal
changes with grid refinement. The variation may be attributed to stricter resolution requirements
for higher moments [44] as well as the different realizations of the initial conditions on different
grids. Overall, this gives a baseline for the amount of variation which may be expected from grid
refinement versus the variation of skewness which will be owing to the particles.

Velocity derivative skewness for the laden simulations is shown in Fig. 13. It is most evident
when examining the St0 = 10 and St0 = 100 cases that the velocity derivative skewness is slowly
diverging with grid refinement for all interpolation-projection schemes. This implies that the
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FIG. 12. Velocity derivative (a) skewness and (b) kurtosis of the unladen simulations. Different lines show
different grid resolutions: dotted-coarse, dash-medium, solid-fine.

FIG. 13. Velocity derivative skewness from particle-laden simulations for different Stokes numbers, (a–c)
St0 = 3.5, (d–f) St0 = 10, (g–i) St0 = 100; each column shows variation from coarse to fine grid resolution.
Note the differences in magnitude on the ordinates. Colors represent different numerical schemes: blue:
Lagrange-2, green: Lagrange-4, magenta: Cubic-Spline, red: Correction scheme, black: unladen.
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structures responsible for the energy cascade are grid-dependent, even if for the correction scheme,
the total dissipation rate is grid-insensitive. The observation of grid dependence of the resolved
dissipation rate in the previous section is consistent with the grid dependence of velocity derivative
skewness, since the skewness is a source term for enstrophy, the latter quantity directly proportional
to dissipation in homogeneous turbulence.

At present, it is not known whether it is possible to form a correspondence principle for skewness
expressed as a resolved plus point-particle model form skewness. The fact that the resolved
skewness is related to the distribution of vortex structures in the flow means that these structures
are also grid-dependent. Because the distribution and magnitude of these structures are tied to
particle preferential concentration, we feel it would behove point-particle modelers to interpret with
extreme caution preferential-concentration statistics (especially at small separations) predicted from
two-way coupled simulations, especially when the particle size is comparable to or larger than the
grid spacing. At small separations, two-way coupled point particles will see their mutual disturbance
fields. But these disturbance flows will not have a Stokesian structure even for Stokesian point
particles. Rather these disturbance structures in the particle near-fields will have the symmetries
endowed by the projection operator used to transfer the particle force to the grid. We suspect this
artificial projection step, which is necessary to two-way couple point particles to the fluid, likely
causes contamination of two-particle statistics at small separations (even for grid-independent,
Gaussian-type projections).

The unladen derivative kurtosis [Fig. 12(b)] shows nominal variation with grid refinement (the
peak kurtosis changes by about 10% from coarse to fine simulation). In contrast, the laden velocity
derivative kurtosis (Fig. 14) clearly diverges with grid refinement for all schemes and Stokes
numbers (note the difference in the values on the ordinates). To make the point most clear, for
the finest grid and St0 = 100, the correction and spline schemes predict kurtosis values exceeding
1000, which is greater than the highest kurtosis ever measured (as of 1980 and in unladen flow),
by more than a factor of 10, corresponding to Reλ in excess of 10 000 [48]. A physical explanation
for the increase in kurtosis with time (assuming these simulations model a real particle-laden flow)
may be explained by the fact that heavy particles (which hold onto their energy longer than the fluid)
are injecting fluctuations into the fluid characteristic of the energy the particles acquired at earlier
times. These relatively high velocity fluctuations may show up as rare velocity derivative events.
Similarly, it could be argued that collisions present in a real particle-laden flow (but neglected in
these simulations) would, under certain filtering of the fluid velocity field predict enhanced kurtosis.
However, these collective observations of velocity derivative statistics suggests that certain physical
quantities cannot be reliably predicted, at least at present, from point-particle simulations. Another
example would be fluid velocity spectra, especially at high wave numbers.

The great dependence of velocity derivative statistics on the fluid grid suggests that the name as-
signed to the method used to conduct these simulations, Point-Particle Direct Numerical Simulation
(PP-DNS), is inappropriate and should no longer be used in the literature. We would like to propose
the name “Point-Particle Resolving-if-Unladen Numerical Simulation (PP-RUNS),” which removes
the ambiguity that this method represents a direct simulation of particle-laden flow, yet distinguishes
it from point-particle large eddy simulation, by acknowledging in the former method that all of the
artificial scales are owing to the adoption of a point-force model instead of the latter approach
which does not resolve all flow features even in the absence of particles. An alternative name
which is amenable to point-particle simulations across various flow resolutions is “PP-Modeled
Particle-Fluid Simulation.”

IV. CONCLUSION

The main purpose of this work was to understand how different two-way coupling schemes in
conjunction with grid-refinement affect the statistics predicted by point-particle simulations. These
effects were studied in particle-laden decaying homogeneous isotropic turbulence for three Stokes
numbers. Point-particle simulations which did not use an explicit model for the undisturbed fluid
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FIG. 14. Velocity derivative kurtosis from particle-laden simulations for different Stokes numbers, (a–c)
St0 = 3.5, (d–f) St0 = 10, (g–i) St0 = 100; each column shows variation from coarse to fine grid resolution.
Note the differences in magnitude on the ordinates. Colors represent different numerical schemes: blue:
Lagrange-2, green: Lagrange-4, magenta: Cubic-Spline, red: Correction scheme, black: unladen.

velocity in the particle-drag force yielded grid-dependent particle and fluid statistics across all of
the Stokes numbers studied.

Simulations that incorporated an undisturbed fluid velocity correction scheme yielded grid-
insensitive predictions of particle acceleration and kinetic energy, as well as fluid energy. It was also
found that the correction scheme predicted grid-insensitive dissipation, provided the dissipation
reported is the total dissipation rate (i.e., the sum of the resolved plus particle-dissipation rate).
In conjunction with a validation of the correction scheme against a particle-resolved simulation
[6], we stated a correspondence principle that point particles satisfy: We propose that for a given
particle-resolving simulation, there exists a point-particle model which predicts some of the low-
order statistics from the PR-DNS provided the point-particle method incorporates the correct drag
model required to capture the physical interactions in the particle-resolving simulation, and the fluid
quantities found in the chosen drag law are accurately calculated with an undisturbed fluid velocity
correction. In particular the undisturbed velocity correction scheme used in this work is valid for
low volume fractions; however, in highly concentrated regimes, directly modeling the influence of
particle neighbors on the forces each particle experiences is essential for a point-particle simulation
to be predictive [49]. Overall, the correspondence principle stated here has been tested only in
simple configurations (laminar flows and homogeneous turbulence). More work should be focused
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on inhomogenous settings comparing point and particle-resolved predictions to understand what are
reasonable expectations from a point-particle method in these regimes.

Whereas in single-phase turbulence, higher-order statistics can be resolved with a sufficiently
refined grid, that may be impossible for two-way coupled point-particle simulations. All point-
particle methods studied in this work predicted diverging velocity derivative skewness and kurtosis
with grid refinement. Based on these findings, we feel that computational users should interpret
small-scale statistics extracted from two-way coupled point-particle simulations with extreme
caution. Specifically, we expect that grid-dependent fine-scale structures could yield quantitative
mispredictions about the magnitude of preferential concentration at small separations, and the
conditional structures correlated with the particle-field.

In spite of the results presented here, we feel point-particle simulations continue to be of value
for studying particle-laden flow physics; however, computational modelers should be mindful of
what are reasonable questions to study using this methodology, and cautious when interpreting
statistics (especially from nonverified two-way coupled simulations). To emphasize the logic usually
associated with direct numerical simulation in single phase does not apply to PP-DNS, we propose
renaming PP-DNS as PP-RUNS (point-particle resolving-if-unladen numerical simulation). This
name makes clear that resolution is chosen to resolve the unladen Kolmogorov scale, yet acknowl-
edges there will be artifacts introduced when a fluid is coupled to a noncontinuum phase modeled
by regularized point sources.
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