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Highly resolved numerical simulations by the immersed boundary method are used to
study neutrally buoyant spherical particle motion when carried by fluid approaching a wall.
The carrying flow studied is the Hiemenz-Homann (HH) axisymmetric straining flow into
a stagnation point at a flat rigid wall, with a boundary layer of thickness 3δ = 3

√
ν/B, with

B the strain rate of the flow and ν the kinematic viscosity of the fluid. The pressure in the
carrying flow increases on approach to the stagnation point, as a result of the deceleration
of the fluid. A single particle moving toward a smooth wall along the axis of the HH flow
was studied by Li et al. [Li et al., J. Fluid Mech. 892, A32 (2020)]. Results for the particle
and fluid motion from this prior work are coupled here with numerical analysis of the
impact using a simple model of roughness effects, with contact allowed at a radius slightly
larger than the hydrodynamic radius, but with no detailed analysis of roughness otherwise
considered. Solid contact is modeled for particle-wall separations below a threshold of
order 1% of the particle radius, while the abruptly changing fluid flow during the collision
is resolved numerically. The model is validated against existing experimental results of
heavy particle settling and rebound, allowing for variation of the scale of the contact
threshold. One particle impacting on the wall and two particles impacting each other as well
as the wall are studied for neutrally buoyant particles in the stagnation point flow. Defining
the Reynolds number based on the particle radius a, Re = 2Ba2/ν = 2(a/δ)2, and the
Stokes number as St = Re/9, the influence of inertia is related to the particle size relative
to the boundary layer thickness. For one particle of a/δ < 1, the particle asymptotically
comes to rest at the wall without rebound. Impact begins for a/δ ≈ 1.3–1.6 for particle
roughness (onset of impact) from 6% to 4% of a, respectively, with progressively stronger
impact as a/δ increases beyond the threshold. The particle collision dynamics and the
collision time deduced from this model are presented. For pairs of particles constrained to
remain on the flow axis, a range of initial separations and sizes are studied. For the case
when impact of the pair occurs before the closer particle reaches the wall, an impulse from
the trailing particle to the leading one results in a much stronger collision than seen with
a single particle, and multiple collisions are predicted to occur before the particles come
to rest. A surprising contactless rebound of the particle closer to the wall is found, as the
pressure variation associated with the carrying flow pushes this particle away from the wall
while it is shielded from drag by the farther particle.
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I. INTRODUCTION

Solid contact between freely moving particles immersed in a viscous fluid and a wall is of interest
in many situations, the most common of them being impact-induced surface damage or erosion.
Liquid mixtures impinging on an obstacle have rarely been considered, yet these are encountered
in a number of applications, including slurry mixing with impellers [1], river transport of sand
past bridge pillars, or water ice-jet machining [2]. Slurry grinding in a ball mill [3,4] is another
application where the efficiency of the process depends on the mixture dynamics squeezed between
moving obstacles (the grinding balls). On a different level, the interaction between a small number
of flow-driven particles with a wall is the basis of particle sorting in microfluidic chips based on
deterministic lateral displacement [5]. In such applications, the particle motion toward the wall is
driven by a flow with a strong wall-normal component.

The prediction of conditions that favor or prevent solid contact between moving surfaces requires
understanding mechanics at different scales. To illustrate this, we consider the collision between a
freely settling particle and a wall in a viscous fluid at rest. The breakdown of the fluid model,
which predicts no contact for smooth surfaces, and the resulting impact in this settling problem
have received significant attention. Experiments [6–11] and numerical simulations [12,13] agree
that a particle bounces from the wall if its inertia relative to viscous effects is sufficiently large.
The relative influence of inertia depends on both particle and fluid properties and is commonly
evaluated through the Stokes number St, which is the ratio between particle relaxation time and
a fluid characteristic timescale (based on the particle size and settling velocity in this case). The
particle experiences total viscous damping before reaching the wall at small inertia, whereas at
intermediate St, it bounces back with partial energy loss due to hydrodynamic interaction. At
very large St, viscous energy dissipation is negligible and the particle rebound is similar to the
one that occurs in dry conditions given the same solid materials. Thus, in the settling problem,
inertia controls the particle motion at a distance from the wall comparable to or smaller than
the particle size. When the gap width between the particle and wall surfaces is reduced to a few
percent of the particle radius, viscous resistance by the film squeezed in the gap results in a large
local pressure that should grow as predicted by lubrication theory toward a divergence at contact
provided that the surfaces are perfectly smooth. This would, in principle, prevent smooth surfaces
from reaching contact. At high interstitial pressure, surfaces of finite-stiffness materials can deform
before a bounceback motion is observed. The coupled fluid and deformable solid motion has been
solved in the realm of the elastohydrodynamic theory [14]. However, surfaces are not perfectly
smooth, and once the gap between approaching surfaces becomes of the order of surface roughness,
continuum fluid mechanics can break down in the gap, leading to solid contact. Smart and Leighton
[15] used deviations of particle motion from predictions based on smooth surface lubrication theory
to estimate the average roughness of micrometer-scale particle surfaces. Davis [16] found that
surface roughness, represented by bumps at small surface coverage, has a negligible effect on the
viscous lubrication until the gap between the smooth surfaces becomes equal to the size of the
largest roughness element. At this point, the bumps make solid contact due to the discrete molecular
nature of the fluid, potentially influenced by attractive London–van der Waals forces. The particle
velocity subsequent to rebound seems to depend weakly on elastic material properties [9], but more
importantly on material plasticity [17] and on geometrical parameters of surface roughness [18].

The question of how solid contact takes place in a viscous fluid thus depends on both particle
properties and surface features and may demand consideration of molecular physics in the fluid.
Putting these issues aside, from a continuum perspective, collision is often viewed as an event of
singular nature since momentum reversal takes place within a very short timescale compared to the
characteristic timescale of particle motion (e.g., its relaxation time during settling). However, the
actual wet contact timescale can be information of interest for applications. Prior studies [10,19]
have shown that when rebound occurs, the wet collision time is of the order of the solid contact
timescale. However, around the onset of collision, the contact time and energy restitution are not yet
rationalized. Their measurement seems to depend on microscopic surface details, as shown in the
recent study by Birwa et al. [20].
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FIG. 1. Axisymmetric Hiemenz-Homann [22,23] boundary-layer flow, transporting a neutrally buoyant
particle of size finite compared to the boundary-layer thickness 3δ. (a) Vorticity contours. (b) Pressure contours,
slightly perturbed by the particle. Note that the flow deceleration to match the nonpenetration condition at the
wall leads to pressure rise near the stagnation point. Here P0 and P∞ denote the pressure at the stagnation point
at the wall and in the far field, respectively.

We develop a collision model similar to others noted, with the goal of studying the collision with
the flow boundary by a particle moving under the influence of a carrying fluid flow, a phenomenon
that has yet to be carefully examined. In the case studied here, the driving force that promotes
surface approach is of hydrodynamic nature. In this paper we consider the collision with a wall
of a particle driven by a flow that has a strong wall-normal component. Following our previous
work [21], we consider the axisymmetric stagnation-point flow, which we term Hiemenz-Homann
(HH) flow, recognizing the original work developing the boundary layer analysis by Hiemenz in
the planar [22] and by Homann in the axisymmetric [23] versions of the pure fluid flow. This
flow is represented in Fig. 1, a configuration close to that encountered in impinging jets [24] and
symmetric T-junction flows [25]. In that case, a boundary layer with thickness 3δ = 3

√
(ν/B) forms,

where B is the characteristic strain rate of the wall-normal flow. Across this boundary layer, all
velocity components decrease to zero to satisfy the no-slip condition at the wall. Fluid inertia at the
particle scale is evaluated through the Reynolds number Re = 2Ba2/ν ≡ 2(a/δ)2. Particle inertia
is intrinsically related to the particle response time compared to the fluid characteristic timescale
(here B−1), with the result that for a neutrally buoyant flow the Stokes number is proportional
to the Reynolds number, or more specifically St ∝ (ρp/ρ f )(a/δ)2. In order to disentangle inertial
effects associated with particle density and size, we consider matched particle and fluid densities
ρp = ρ f , so that particle inertia results exclusively from particle size compared to the flow length
scale. Moreover, the particle motion is along the axis of symmetry of the flow, in order to focus on
normal relative motion. A particle slightly shifted from the axis would lead to coupled normal and
tangential interactions with the wall, a more complicated situation deferred to future work.

In Ref. [21] we considered particles in the size range 0.8 � a
δ
� 3.2 in the HH flow. There it was

shown that far from the wall the particle decelerates as it approaches the wall and keeps a negligible
slip velocity with respect to the fluid. As it moves forward through the boundary layer, the particle
lags behind the fluid due to hydrodynamic interactions that tend to decelerate it before reaching the
wall. As the separation distance to the wall decreases, two distinct evolutions of the slip velocity and
hydrodynamic force are observed, depending on the particle size. A critical particle size acrit ≈ 2δ is
found. For a < acrit , the particle is entirely immersed in the boundary layer, with the result that the
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velocity and total hydrodynamic force experienced by the particle vanish monotonically as it asymp-
totically approaches the stagnation point at the wall. However, for a > acrit , the slip is delayed until
the gap between the particle and the wall becomes small, leading to a much larger lubrication force
and a nonmonotonic variation of the hydrodynamic force. Despite this tendency toward a divergence
of the net hydrodynamic force as a/δ grows, the particle is decelerated inefficiently, so it carries a
significant velocity while the separation gap width becomes of the order of 1% of the particle radius,
suggesting that rebound due to solid contact with the wall might occur for realistic roughness.

In this study we address the later stage of the neutrally buoyant particle motion, allowing
for particle-wall solid contact. This results in a rebound for a > acrit , where the particle carries
significant momentum upon approaching the wall. We investigate whether the particle bounce
behavior is similar to that in the settling problem or differs due to the wall-normal carrying flow
that provides the momentum in the case studied here. The particle and fluid equations of motion are
solved numerically and coupled via the immersed boundary method (IBM). The grid resolution is
fine enough in the gap region in order to avoid the need to complement the hydrodynamic force by
subgrid modeling. The IBM used for this work does not take into account the surface deformation
subsequent to pressure divergence inside the gap, nor does it consider nonsmooth surface profiles;
thus we use a simple model with no detailed roughness analysis. A collision model is activated
when the separation distance becomes less than a threshold distance ηa, where η is of order of
a few percent. Although slightly larger in scale than in some experiments, this threshold gap is
representative of characteristic microscopic surface imperfections of micrometer-scale particles,
which can lead to solid contact as discussed above. Our approach in this study of particle-wall
collision is similar to that of Ardekani and Rangel [12], who considered the settling problem.
Their numerical method is based on the distributed Lagrange multiplier to solve the particle-fluid
interaction, combined with a solid-body collision model which estimates the particle velocity after
collision while ensuring momentum conservation of the colliding system (particle-wall or particle
pair). Their model neglects fluid effects during the collision process and is expected to be accurate
if the collision time is smaller than the characteristic timescale of fluid motion by several orders of
magnitude. However, it implies discontinuity of the particle velocity upon collision and therefore
would induce numerical instability when combined with the IBM. Instead, we use the discrete
element method with a finite solid stiffness. A spring force is applied to reverse, in a continuous
way, the motion of overlapping solid surfaces within a short timescale after initial contact. The
spring stiffness is connected to the Hertzian solid contact time that depends on solid properties and
impact conditions.

The paper is organized as follows. In Sec. II the IBM is briefly outlined followed by a detailed
explanation of the particle-wall collision model. Validations of the numerical method and collision
model for the case of a settling particle in quiescent fluid are placed in an Appendix; this includes a
discussion of the influence of the numerical parameters on the restitution coefficient and on the wet
contact time relative to particle-wall collisions. Two sections are dedicated to the particle approach
toward a stagnation point at a wall. Section III discusses the rebound dynamics of a single particle,
as a sequel to our previous work [21]. The dependences of the rebound velocity and the wet contact
time as functions of the particle size are the quantities of interest. Section IV considers the dynamics
of a pair of particles constrained to the flow’s axis of symmetry as a first step to expand this study
toward suspension flows. Interestingly, this section shows that while approaching a stagnation point,
an unexpected contactless rebound leads to significant height of rebound of the pair away from the
wall, a situation that apparently is specific to wall-normal flows.

II. NUMERICAL METHOD

A. Fluid-particle interaction

The numerical method applied here to solve the particle-fluid interaction is based on the im-
mersed boundary method [26]. The numerical implementation is explained in the work of Pierson
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and Magnaudet [27]. The main information on the coupling between particle and flow equations
of motion can be found in our previous work [21]. In summary, a force density FIBM is added to
the fluid momentum equation to enforce the no-slip boundary condition at the particle surface. This
force density is prescribed in the form

FIBM = αρ f
UD − U

τ
, (1)

where U is the local fluid velocity, UD is the desired velocity in the solid volume (equal to the
particle velocity), ρ f is the fluid density, and τ denotes a characteristic time which is set equal to
the time step in computational practice. The volume fraction α equals 1 in the solid and decreases
to 0 in the surrounding fluid following a sine distribution within a spherical shell of thickness 3�,
where � denotes the local cell size [28]. The equation of motion of a neutrally buoyant particle is

ρpυp
dV
dt

= d

dt

∫
υp

ρ f U dυp −
∫

υp

FIBMdυp + Fc, (2)

where ρp and V are the particle density and velocity, respectively, and d/dt represents the time
derivative along the particle motion. The first and second terms on the right-hand side are the
integral of the flow momentum and the force density inside the particle volume υp, respectively.
They represent the effect of hydrodynamic interaction on the particle motion. The last term Fc

(detailed below) is the force added to the particle equation of motion in case a collision takes place.
It is equal to zero otherwise.

The way the fluid and particle motion are coupled together does not lead to discontinuity owing
to the smooth interface representation. Usually, the time step of the fluid solver is a small fraction
of the flow or particle relaxation timescales. In comparison, the particle-wall collision is a nearly
singular event that leads to momentum exchange at a very short timescale. In standard simulations
based on the immersed boundary method, the fluid-particle interactions are solved with several grid
points per particle diameter (typically 10–20). When a pair of particles or a particle and a wall
are close to contact, an additional contribution is added to compensate the underresolution of the
viscous resistance in the thin gap between the surfaces [13,29–31]. If the particle inertia is large
enough, particle-particle or particle-wall collisions are taken into account by adding a contact force,
inspired by the Hertzian contact theory where the force is a nonlinear function of the deformation
or a linear model like the soft-sphere approach [32].

The simulations realized for the present work focus on the interaction between one or two
particles approaching a stagnation point at a wall; in all cases we constrain motion to the line of
symmetry of the axisymmetric flow. We aim to avoid as much as possible subgrid modeling of the
hydrodynamic force while the particle approaches the wall. The fluid motion in the gap is very well
resolved, using small time steps and a fine grid distribution, such that there is no need for additional
lubrication forces, until the gap becomes small so that surface roughness can come into play, leading
to collision. We do not consider the influence of roughness on the lubrication flow. This numerical
approach is quite expensive for simulation of a suspension flow in general, but the cost is reasonable
for study at the level of one or two particles as considered here. In the following, the collision model
will be explained for the case of a single particle in contact with a wall. The model extension is
straightforward to consider particle-particle collisions, as discussed in Sec. IV.

B. Collision model

In this work, we consider only small elastic deformation of the particle and wall upon contact.
The theory of elasticity allows prediction of the stress distribution in the deformed region, as well
as its radius and depth, and the particle-wall contact time, for a given particle size, density, and
impact velocity. In the numerical simulations, in order to account for contact-induced particle-wall
deformation, using nondeformable objects, we use the approach of Cundall and Strack [32]. This
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method captures solid deformation during contact by a model allowing the overlap of nonde-
formable objects. The description of this approach will be focused on particle-wall collision only
in the wall-normal direction, as this is the only particle motion considered in this work. If the gap
ζ = ZP − a (with ZP the axial position of the particle center) is smaller than a given threshold ηa,
then a wall-normal contact force Fc is added to the particle equation of motion (2), with the force
modeled by

Fc = −
(

knζ + γn
dζ

dt

)
. (3)

In the absence of viscous liquid (dry particle-wall collision), the parameters of the linear viscoelastic
spring-dashpot system are determined by solving the particle deformation equation, which can be
classified as a damped harmonic oscillator:

m
d2ζ

dt2
+ γn

dζ

dt
+ knζ = 0. (4)

The mass m is the equivalent mass of the binary system, which is equal to the particle mass in
the case of particle-wall collision. Equation (4) is solved assuming that at the instant at which the
collision begins (t = 0), ζ = 0 and dζ/dt = Vimp is the impact velocity. At the end of the collision
that lasts for a contact time Tc, the particle leaves the wall with a velocity dζ/dt = −edryVimp,
where edry is the normal restitution coefficient in the absence of viscous fluid. The system solution
leads to a relation between the spring-dashpot parameters and the colliding system properties γn =
− 2m

Tc
ln(edry) and kn = mπ2

T 2
c

+ γ 2
n

4m . The spring stiffness is a key parameter that should reflect the
material strength. Its relation to the contact time is different from the one found in elasticity theory,
since the soft-sphere model assumes that the force varies linearly with ζ (instead of ζ 3/2 in the
elasticity theory). The larger the value of kn, the more the objects behave like a rigid material, but the
smaller the time step should be in order to correctly solve the deformation equation. Nevertheless,
it has been shown that the spring stiffness can be underestimated without significant impact on the
dynamics of a granular system, for instance, on the collapse of a granular column [33].

In the case of particle-wall interaction mediated by a solvent, viscous dissipation influences the
particle motion. A theoretical study of elastohydrodynamic particle-wall interaction was made by
Davis et al. [14], in work that accounts for the viscous dissipation in the small gap between the
particle and the wall, in addition to small elastic deformations in both the sphere and the wall.
Their analysis assumes that the surfaces are perfectly smooth and that the particle does not come
into physical contact with the wall because of the persistence of a liquid film between them. In
the present study, we take into account the viscous dissipation by solving instantaneously the flow
equation of motion in the whole domain (including the gap region) while the particle interacts with
the wall. A contact force described by Eq. (3) is added to the particle equation of motion (2). The
definition of the overlap ζ is slightly modified, ζ = ZP − a(1 + η), in order to avoid the overlap of
the immersed particle boundary with the wall, which would lead to numerical inconsistency in the
hydrodynamic force computation. Since we are interested in situations where the energy dissipation
in the solid material is negligible compared to the viscous energy dissipation in the fluid, we consider
an elastic dry interaction edry = 1, and consequently the damping parameter γn is set to zero. The
spring stiffness is then

kn = mπ2

T 2
c

(5)

and we are left with two parameters for the collisions: Tc and η.

C. Particle-wall contact time Tc

For a particle-wall collision in the gas phase, measurements have shown that the Hertzian model
(see details in Ref. [34]) gives a good prediction of the collision timescale. According to the Hertzian
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model, two contacting grains mechanically deform and the percussion force is proportional to ζ 3/2,
where ζ represents the grain deformation. The collision duration is expressed in terms of the particle
materials [35]

tHertz = 7.894

(
ρ2

p

E∗2Vimp

)0.2

a, (6)

where a and Vimp are the particle radius and impact velocity, respectively. The equivalent elasticity
of the particle-wall system E∗ depends on the elastic modulus E and Poisson ratio ν of the particle

(subscript p) and wall (subscript w) as follows: 1
E∗ = 1

π
(

1+ν2
p

Ep
+ 1+ν2

w

Ew
). If all other parameters are

held constant, Eq. (6) indicates that tHertz increases with the particle size and decreases with the
particle impact velocity.

In the present paper, the contact time in the collision model is set to be a multiple of tHertz,
i.e., Tc = NctHertz. In this way, tHertz depends on the particle size and density that set the particle
inertia and the resulting impact velocity, while Nc allows us to tune the collision stiffness associated
with, for example, the solid elasticity. The elasticity is set to a constant value, large compared to
the characteristic viscous stress. At the numerical level, low stiffness leads to large deformation,
which is not appropriate for describing solids, whereas high stiffness leads to small deformation
and therefore small time steps for the collision stage to be well resolved in time. When solid contact
takes place in viscous liquid, the effective collision time is slightly longer but has the same order of
magnitude as Tc, as will be shown in the following sections. When this collision time is sufficiently
small, we have confirmed through results not presented here that the jump in the velocity field,
corresponding to the impulsive particle motion subsequent to particle-wall collision, is irrotational
in the Hiemenz-Homann flow, like in the settling problem. Thus there is no jump in the vorticity
field during the collision event. It takes a time longer than the collision timescale considered here
for the produced vorticity to diffuse.

D. Surface roughness η

The threshold gap width ηa, below which the collision model is activated, can be thought of
as a characteristic roughness scale of the surfaces that leads to solid contact. However, η simply
defines a scale at which we begin to impose a contact force, with no detailed roughness considered.
We consider η = O(0.01). The choice of this parameter influences the impact velocity at the
onset of a collision during which motion reversal occurs: For other parameters held fixed, Vimp

increases as η increases. In reality, when the surfaces are rough, the presence of asperities reduces
the effective surface of contact and slightly increases the contact time. The microscopic details
associated with the bumps, including their stiffness, curvature, and size distribution, can influence
the solid contact time, as can be inferred from a recent study [20]. These details are not accounted
for in the present simulations as the wall is perfectly smooth and the particle surface is defined using
a smooth function distribution on the mesh. In all the results presented in this study, we checked
a posteriori that the amplitude of surface overlap ζ remains smaller than ηa. Indeed, numerical
overlapping of the surfaces can lead to spurious forcing induced by the immersed boundary method
algorithm (while ensuring no slip at the particle surface), which can lead to overestimation of
rebound velocities.

The validation of the numerical model has been carried out in a configuration well referenced
in the literature, that of a particle settling in viscous fluid toward a solid wall. The velocity of the
settling particle that experiences three consecutive stages, i.e., acceleration from rest, steady fall at
terminal velocity, and deceleration near the wall, agrees quantitatively very well with experiments
of Ten Cate et al. [8]. These results are included in Ref. [36]. Moreover, at small separation gaps
between the falling particle and the wall, numerical simulations were carefully compared to the
experimental results of Mongruel et al. [6] (see [21]). The Appendix details the rebound velocity
and wet collision time as a function of particle inertia, above the onset of particle-wall collision.
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FIG. 2. (a) Time evolution of the particle velocity as it approaches the wall on the axis of axisymmetric
Hiemenz-Homann flow. The red and black lines correspond to a/δ = 1.6 and 3.2, respectively. (b) Evolution in
time of the gap ε between the particle and wall surfaces. The red, pink, and blue lines correspond to a/δ = 2.4,
3.2, and 4.48, respectively. The collision parameters are Nc = 1 and η = 0.01.

III. PARTICLE-WALL COLLISION AT THE STAGNATION POINT

We consider a neutrally buoyant particle transported along the axis of symmetry of a wall-
normal (Hiemenz-Homann) flow, as shown in Fig. 1. While the fluid flow decelerates to match
the nonpenetration condition at the wall, the pressure increases along the flow streamlines toward
the stagnation point. The viscous boundary layer, in which the vorticity induced by the wall shear
stress is confined, scales with δ = √

ν/δ, where ν is the fluid kinematic viscosity and B is the strain
rate of the flow into the wall. Far from the wall, the particle is carried by the flow with negligible
motion relative to the fluid (slip), i.e., it behaves essentially as a tracer. As can be observed from
Fig. 2, a slip with respect to the local fluid flow is observed when the gap between the particle
surface and the wall becomes comparable to the particle radius a. The slip is a consequence of
the particle’s finite size and rigidity. The dynamics depends significantly on a/δ, the particle size
compared to the boundary-layer scaling. A transition in the behavior is observed at acrit/δ ≈ 2. From
the trajectories considered in Ref. [21], it was found that the slip is relatively strong for particle
radii a/δ = 0.8 and 1.6. While approaching the wall, these particles become fully immersed in the
boundary layer. Indeed, the effective thickness of the boundary layer, above which the carrying
flow velocity becomes negligibly different from linear, is 3δ. Hydrodynamic interaction with the
wall decelerates these small particles efficiently such that the net hydrodynamic traction tends
toward zero monotonically as the gap decreases, thus approaching the behavior in Stokes flow [37].
However, particles of a/δ = 2.4 and 3.2 are transported with negligible slip until they are closer to
the wall. Since they are large compared to the boundary layer, they experience small hydrodynamic
interaction with the wall until small gap widths are reached. When such a small gap is reached, the
net hydrodynamic force grows rapidly due to lubrication and the slip increases significantly. Unlike
the smallest particles whose motion is efficiently damped before reaching the wall, the largest
particles become critically close to the flat wall while their velocity is not negligible, suggesting
that, like in the settling problem, solid contact at finite velocity may occur for realistic roughness
levels.

The numerical setup used to simulate the flow exploits the axisymmetry of the problem. The
fluid velocity obeys the no-slip boundary condition at the wall. On the domain boundary parallel to
the wall, the velocity is prescribed using the theoretical solution of axisymmetric Hiemenz-Homann
flow. An outflow condition is imposed on the domain boundary parallel to the axis of symmetry.
The domain size is Lz = 64δ and Lr = 32δ in the axial and radial directions, respectively. A single
nonuniform mesh distribution is used for all the simulations. The grid size varies between δ/30
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far from the stagnation point and 1.6 × 10−5δ and 3.2 × 10−5δ near the stagnation point, in the
axial and radial directions, respectively. The ratio between the solid elastic stress and fluid viscous
stress is set as E∗/μB = 1.25 × 1011. This ratio corresponds roughly to poly(methyl methacrylate)
particles carried by a fluid whose viscosity is close to that of water and approaching a wall of the
same material in a flow with a characteristic strain rate of approximately 150 s−1. The particle
radius is varied in the following range: a/δ = [1.3, 1.6, 1.9, 2.4, 2.5, 2.8, 3.2, 4.4, 5.7, 6.3]. The
Reynolds number based on the strain rate, Re = 2Ba2/ν ≡ 2(a/δ)2, is in the range 3.4 � Re �
82. Particle inertia is intrinsically related to the particle relaxation timescale compared to the fluid
characteristic timescale (here B−1), so the Stokes number of the neutrally buoyant particle is also
proportional to (a/δ)2. The particle rebound on the wall is studied while varying the effective surface
roughness η. The collision stiffness is changed with Nc being set to 1 or 2. Note that the collision
stiffness is set through the choice of Nc in combination with the ratio E∗/μB = 1.25 × 1011, which
is larger here than in the settling problem (in the Appendix). Larger elasticity leads to a stiffer
collision (tHertz is smaller). This is compensated by slightly increasing Nc. The time step in most
of the simulations reported here is 8 × 10−5B−1. Several simulations were run with a time step of
one-tenth this value in order to verify that the collision dynamics does not depend significantly on
this numerical parameter. The collision event was solved with more than 100 time steps, a value
determined a posteriori as in the settling problem.

A. Rebound velocity

Figure 2(a) shows the typical evolution in time of the particle velocity during the approach to
the stagnation point on the wall, for a/δ = 1.6 and 3.2. If a < acrit , as is the case for a/δ = 1.6, the
particle velocity vanishes while the gap width tends to zero. In contrast to this behavior, for a/δ =
3.2 the magnitude of the particle velocity is finite at ε = η and the particle experiences rebound
with the wall. As in the settling problem, the particle motion reversal is very abrupt, approaching
the singular response expected for rigid surfaces. The velocity upon rebound VR is equal to the
maximum particle velocity which is measured at the end of the collision process (when once again
ε is larger than η) and whose sign is opposite to the sign of the incident velocity. To characterize
energy restitution in the wall-normal flow, the particle rebound velocity is compared to a reference
incident velocity. We choose to scale the rebound velocity by the unperturbed fluid velocity at
a distance from the wall equal to a, or at ε = 0, denoting this by |Uf |ε=0|. Scaling the rebound
velocity by the fluid velocity at (almost) the position of the particle center upon contact with the
wall results in a ratio that tends to unity if the particle experiences weak slip before impact. Figure 3
shows the evolution of the ratio VR/|Uf |ε=0| as a function of (a/δ)2, which represents particle inertia
since both Re and St are proportional to (a/δ)2. As the particle size increases, this figure shows
clearly that the rebound velocity can become significant for a > acrit , the smallest size resulting in
particle collision with the wall. The dimensionless rebound velocity increases from 0 to approach 1
over two decades in (a/δ)2. The spanned range of (a/δ)2 is similar to the range of Stokes numbers
considered in the settling problem. The data plotted in Fig. 3 suggest that the physics of particle-wall
collision is globally similar in the two configurations. However, Fig. 3 shows that both the value
of the rebound velocity and acrit depend strongly on the characteristic roughness η, much more
than is found in the settling problem for the same range of effective surface roughness. The value
of acrit decreases when the roughness is increased, since the viscous damping of particle motion
occurs at late stages during the particle approach to the wall, later than in the settling problem. The
dependence of the rebound ratio on the collision stiffness is weak within the range of Nc studied
here.

Figure 3(b) shows the rebound velocity as a function of the square of the particle size, when
rescaled by acrit (which decreases when η increases). This scaling leads to a partial collapse of
the rebound velocity curves obtained with different η, which suggests that the rebound velocity
depends uniquely on the particle inertia compared to its inertia at the onset of collision. A similar
observation is made in the settling problem [see the Appendix, Fig. 11(b)], in agreement with the
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FIG. 3. (a) Rebound velocity as a function of the square of particle size, in Hiemenz boundary-layer flow.
The rebound velocity is scaled by the fluid velocity at ε = 0 (which corresponds to z = a). The circles,
triangles, squares, and diamonds refer, respectively, to simulations with η = 0.01, 0.02, 0.04, and 0.06. The
closed and open symbols refer to Nc = 0.5 and 1, respectively. (b) Rebound velocity plotted as a function of
(a/acrit )2, where acrit corresponds to the particle radius at the onset of particle-wall collision.

work of Mongruel and Gondret [18]. These authors successfully modeled the restitution coefficient
resulting from experiments of particle collisions with a textured wall, assuming that at intermediate
Stokes numbers (characterizing particle inertia), energy dissipation is of viscous origin during
particle deceleration and solid contact with the wall until the particle bounces back. This causes
the effect of surface roughness on the rebound velocity to be merely lumped into setting the critical
Stokes number. In HH flow, the collapse seems to apply in particular at the smallest roughness
thresholds displayed here, i.e., η = 0.01 and 0.02. However, at η = 0.06, the velocity rebound
is systematically larger than the rebound velocity at smaller η [see the pink points in Fig. 3(b)].
Indeed, as the colliding particles are large compared to the boundary-layer thickness, the viscous
dissipation starts to be dominant only at small gaps (for instance, at ε < 0.1 for a/δ = 3.2 [21]).
While the collision barrier is set at η = 0.06, the contribution of additional inertial effects to particle
motion (like unsteadiness and inertial drag) is not yet negligible compared to the viscous dissipation
and should be taken into account. Modeling of these other inertial effects is still an open question,
as discussed in our previous work [21].

B. Collision time

The evolution of ε as a function of time is shown in Fig. 2(b) for different particle sizes. The
particle-wall contact time in the HH stagnation point flow is obtained from the time signal of ε,
while ε < η, as shown in Fig. 2(b). It is then compared to the Hertzian timescale (6) on which the
spring stiffness is built in the collision model (5). First, the Hertzian timescale is shown in Fig. 4.
It is two to three orders of magnitude smaller than the flow characteristic timescale B−1. This is
sufficiently small to allow representing the collision as a singular event. The dependence of tHertz

on the particle size is not monotonic, since tHertz ∝ V −0.2
imp a, while the particle impact velocity Vimp

increases with the particle size, as shown in the inset of Fig. 4. That figure shows that at η = 0.01, the
smallest roughness used here tHertz first increases with the particle size up to a = acrit . In this case, it
seems that the velocity damping through the boundary layer, before touching the wall, is the leading
contribution. This has no influence on the particle dynamics since the particle rests motionless at the
wall. For a > acrit , the increase of tHertz with the particle size progressively prevails. The same trends
can be observed for η = 0.02, but are less evident for η = 0.04 and 0.06. For a given particle size,
the Hertzian timescale decreases with the roughness, mainly because the impact velocity increases
with η, the most important influence being observed around the onset to collision. Second, the wet
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FIG. 4. Hertzian contact time tHertz as a function of the square of the particle size, in Hiemenz-Homann
flow, at different collision onset η = 0.01 (circles), 0.02 (triangles), 0.04 (squares), and 0.06 (diamonds). The
time is scaled by the inverse of the flow strain rate. The inset shows the evolution of the impact velocity scaled
by Ba as a function of the square of the particle size.

contact time in HH flow, scaled by the corresponding Hertzian timescale Tc = NctHertz, is shown
in Fig. 5 as a function of (a/δ)2. For a < acrit , the particle motion is sufficiently damped that the
intensity of the rebound velocity is similar to the fluctuations of the spring model when the particle
rests at the wall. The value of the collision time is then set to zero for a < acrit . At large particle
sizes, a finite contact time was measured, near 1.4 Tc for different a and η, being just slightly longer
for larger η.

To give further insight into the value of the contact time during particle-wall collision in the
HH flow, we can write a simplified force balance for the particle during the collision event. In
addition to the collision force Fc [following Eq. (3)], the particle is subject to forces of hydrodynamic
origin. At the first level, viscous lubrication in the thin gap between the particle and wall surfaces
is opposed to the particle approach toward (and departure from) the stagnation point. For a given
particle velocity dζ

dt during the collision with the wall, the lubrication force can be approximated
by FL = −6πμa 1

ε

dζ

dt , where flow inertia in the thin gap has negligible effect. The lubrication
contribution diverges when the gap width goes to zero, but this divergence is averted by the
allowance for contact at a gap of the scale ηa. The drag from the main flow applies a force in
the opposite direction, but it is much weaker compared to the viscous lubrication. At a second level,
a particle accelerating in a liquid phase experiences a force due to the unsteady nature of the flow
that can be written as FU = m f α

dVs
dt , where Vs is the particle slip with respect to the unperturbed

flow and m f is the mass of the fictitious fluid that would occupy the sphere volume (here equal to
the particle mass owing to neutral buoyancy). There is no simple expression for the coefficient α as
it depends on the flow inertia and on the particle position with respect to the wall. If the flow inertia
at the particle scale is weak (small a/δ), α = O(1). For the differential acceleration, we have shown
in previous work [21] that as ε → 0 the acceleration of the unperturbed fluid flow remains finite
near the wall, whereas the particle acceleration diverges at small gap widths for a > acrit . Therefore,
we consider that the dominant unsteady contribution comes from the particle deceleration FU ≈
−m f α

d2ζ

dt2 . Consequently, the particle momentum balance leads to the damped harmonic oscillator
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FIG. 5. Wet contact time as a function of the square of particle size, in Hiemenz-Homann boundary-layer
flow. The contact time is scaled by Tc = NctHertz. The circles, triangles, squares, and diamonds refer, respec-
tively, to simulations with η = 0.01, 0.02, 0.04, and 0.06. The closed and open symbols refer to Nc = 1 and 2,
respectively. The dashed line is an approximate theoretical value of twet from Eq. (7), considering α = 0.8 and
neglecting the viscous dissipation (therefore it does not depend on the particle size).

equation

m∗ d2ζ

dt2
+ 6πμa

1

η

dζ

dt
+ knζ = 0, (7)

where m∗ = mp + αm f and it has been assumed in the lubrication force that the gap width ε remains
of the order of magnitude of the roughness η. At η = O(0.01), if the particle velocity is finite, the
collision stiffness [estimated from Eq. (5)] is sufficiently large that the energy dissipation due to
viscous lubrication in the gap has negligible effect on the contact time. Therefore, the contact time

at the stagnation point can be approximated by twet ≈ π
√

m∗
kn

. The value of m∗ depends on α, i.e., on

the unsteady hydrodynamic force experienced by the particle during the collision. Due to matched
particle and fluid densities, if the coefficient α is O(1), the effective mass involved in the damped
oscillator model is significantly increased compared to the particle mass in the collision model (4).
This leads to twet being larger than the collision timescale Tc on which the collision stiffness is based.
From Fig. 5 it can be inferred that α depends weakly on the particle size in the range considered
here.

We end this discussion by commenting on the threshold that corresponds to the transition
between damped and bouncing particle dynamics. At the threshold, we expect that the particle
reaches the wall (ε ≈ η) with small but finite velocity. At small impact velocity, the Hertzian contact
time will diverge, and therefore the collision will be extremely soft. In this case, viscous lubrication
can lead to a relatively long contact time, as suggested by the half period of the damped oscillator

twet = π
√

m∗
kn

( 1
1−λ2/4knm∗ )1/2, with λ = 6πμa/η.

104301-12



PARTICLE APPROACH TO A STAGNATION POINT …

FIG. 6. Pair of particles approaching the stagnation point at the wall, along the axis of symmetry in
Hiemenz-Homann flow.

IV. PAIR OF PARTICLES APPROACHING THE STAGNATION POINT

We consider the wall-normal approach of two freely moving spheres of equal radius toward
the stagnation point along the axis of symmetry in the HH flow. Outside the boundary layer, the
undisturbed fluid motion is comparable to that on the compressive axis of an unbounded extensional
flow of strain rate B−1. In this linearly varying straining velocity field, a pair of particles is driven
toward close contact due to the relative velocity between their center positions. If inertial effects
were negligible, hydrodynamic resistance would not allow the pair to experience contact, whereas
inertial effects affect the pair interaction (hydrodynamic perturbation and solid contact). Moreover,
the presence of the wall provides an additional constraint on the pair dynamics. Overall, the motion
of the neutrally buoyant particles is expected to depend on their size compared to δ, with inertial
effects stronger for larger particle size. When a/δ → 0, the particles are smoothly driven toward
the stagnation point where they rest, in a manner similar to the single particle, one atop the other
in the constrained motion along the axis of symmetry. When a/δ = O(1), relative motion causes
solid contact to occur if roughness is considered, both between the particles and of the leading
particle with the wall. Additionally, the pair motion will depend on the initial distance between the
particles and with respect to the wall. As for the surface roughness that influences the dynamics at
solid contact, we consider that both particles have the same characteristic roughness η and that the
wall is perfectly smooth. Since the parameter space is quite large, the aim of this section is, without
being exhaustive, to provide some insight into the unusual dynamics that the particle pair exhibits
while approaching the stagnation point and following collision, limiting consideration to the slightly
artificial case of motion constrained to the axis of symmetry.

Two initially motionless particles P1 and P2 are placed at the flow axis of symmetry as illustrated
in Fig. 6. The simulation domain is similar to the one used to study the single-particle dynamics
(Sec. III). The particles are released with a starting distance d0 between their centers. In the
following, the closest particle to the wall will be called P1 and the farthest will be called P2. Being
closer to the wall, P1 decelerates faster than P2. The collision between P1 and the wall follows similar
considerations as described in Sec. III. In addition, when the gap between the surfaces of P1 and P2

becomes smaller than 2ηa, a solid contact force is applied, following Eq. (3) described in Sec. II B,
except that the mass m in Eq. (4) becomes equal to half of the particle mass and the equivalent

elasticity in the Hertzian timescale (6) is given by 1
E∗ = 2

π
(

1+ν2
p

Ep
). The grid spatial distribution is

identical to the one used in Sec. III. In the near-wall region, where the collision events take place,
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FIG. 7. Time evolution of the trajectories of P1 and P2 along the flow axis of symmetry. The red line
represents ε1 = [ ZP1

a − 1], while the black line represents ε2 = [ ZP2
a − 2(1 + η)]. The particle radius is a/δ =

3.2. The particles are initially located at ε1 = 4 and ε2 = 5.5. In comparison, the blue dashed and solid lines
represent the evolution in time of the gap width ε between the wall and the surface of a single particle of sizes
a and 2a located initially at ε = 4 and ε = 1.5, respectively. The starting times of the trajectories of the particle
pair and single particles were adjusted to match the instant of the first collisions with the wall.

P1 and P2 contain more than 200 and 150 grid points along their diameter, respectively. Using a grid
resolution twice finer did not significantly impact the pair dynamics.

Figure 7 shows the typical trajectory of particles P1 and P2 of radius a/δ = 3.2. The radius has
been chosen larger than acrit for all η so that a single particle bounces back at the wall. The gap width
ε1 = ZP1

a − 1 corresponds to dimensionless distance between the surface of P1 and the wall (the red
line in Fig. 7). The gap width ε2 = ZP2

a − 2(1 + η) describes the separation of P2 from the wall less
the distance at contact with P1 when that particle contacts the wall (the black line in Fig. 7). Using
this notation, ε1 = 0 occurs when the sphere P1 touches the wall, while ε2 = 0 occurs when the
sphere surface P1 is in contact with the wall on one side and with P2 on the other side; it is important
to note that if the two spheres are in contact away from the wall ε2 = ε1 	= 0. The sequence of motion
of the pair can be described as follows. First, P2 approaches P1 driven by their velocity difference
in the straining flow. Thus P2 overtakes P1, and when the gap width between their surfaces becomes
smaller than the roughness scale (ε2 < 2η), the collision process is activated, leading to momentum
transfer from P2 (being faster before the collision) to P1, which is then propelled toward the wall.
Second, P1 impacts the wall with a velocity strong enough that it bounces back. This is followed
by a second collision between P1 and P2, with the two having opposing velocities in this collision.
An unexpected event occurs afterward, at time t ≈ 3.9B−1 for this specific case as indicated in
Fig. 7 with a green circle. At that time, P1 is lifted away from the wall, without having experienced
any solid contact with the wall. This contactless rebound occurs while the upward velocity of P2

is tending toward zero (since ε2 tends to a maximum near that time). Both particles experience a
strong thrust away from the wall, lifting the pair together (P1 and P2 remain close together while
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FIG. 8. Time evolution of (a) ε1 and ε2 (taken from Fig. 7), (b) the net force experienced by the particles,
(c) the contribution of the ambient pressure gradient, and (d) the remaining hydrodynamic contributions. The
time is zoomed in around the contactless rebound event that occurs at t ≈ 3.9B−1. The red and black solid
lines represent P1 and P2, respectively. The blue dashed line corresponds to a single particle that experienced
a collision with the wall, with the collision time adjusted to match t ≈ 3.9B−1. The force signals are removed
during the collision event.

rising) until the center of P2 reaches a distance approximately 4a from the wall. The distance from
the wall reached by the pair during this motion is much larger than that reached by a single particle
of radius a/δ = 3.2 colliding with the wall, which is ε ≈ 1.1a (the dashed blue line), but is more
comparable to the postcollision distance (approximately equal to 5.8a) reached by a single particle
of twice the radius (i.e., a/δ = 6.4, represented by the blue solid line in the figure). Thereafter, the
particles are driven together again toward the wall, where they lose progressively their mechanical
energy within a sequence of collisions until they rest one on the other at the wall.

The thrust given to P1 and P2 without any solid contact with the wall is of hydrodynamic nature
and can be explained qualitatively as follows. Near the time t ≈ 3.9B−1, the velocity of P2 rising
away from the wall (subsequent to the second rebound with P1) tends to become small before the
flow drives it back toward the wall. At that moment, P1 being located downstream of P2 with respect
to the incident flow is “protected” against the drag toward the wall that it would have experienced
from the wall-normal flow in the absence of P2. Since the flow drag is largely reduced, the dominant
force contribution to P1 originates from the ambient pressure gradient established in the stagnation
point region, which arises from the conversion of the fluid kinetic energy into pressure and is not
significantly changed in the presence of the particle pair. For a particle relatively large compared
to the boundary-layer thickness, this force can be evaluated as m f DU/Dt , where we recall that
m f is the mass of the fictitious fluid that would occupy the sphere volume and DU/Dt (the fluid
acceleration at the position of the particle center) is oriented from the wall toward the fluid (see
Ref. [21] for more details). To support the above arguments, Fig. 8 shows the time evolution of the
forces experienced by both particles near the instant of the contactless rebound. In this figure, we
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have plotted the wall-normal component of the net hydrodynamic force equivalent to the surface
traction FT computed directly from the numerical simulations, the force resulting from the ambient
pressure gradient F∞ = m f DUz/Dt and the difference FH = FT − F∞. The last contribution FH

represents the force due to hydrodynamic interactions, which are essentially associated with the drag
experienced by the particle only near the wall (the slip is negligible away from the wall). Figure 8
shows that the net force FT is positive (it is approximately equal to 30 times the viscous force
scaling), while this force is negligible for P2 and the single particle, which both experience opposite
drag and ambient pressure-gradient forces. Since P1 and P2 are close at that time, the upward force
applied on P1 is transferred to P2 as well. As the pair moves toward higher flow velocity, the negative
drag increases until a balance is reached between the drag and the pressure-gradient contributions.
Afterward, the pair is then driven back toward the wall.

V. CONCLUSION

This paper has presented results supporting the understanding of the dynamics of neutrally
buoyant particles approaching the stagnation point in a wall-normal flow. A motivation for this work
was that it is a step toward identifying events that must be captured in the development of boundary
conditions that need to be applied for continuum descriptions of liquid-solid mixture flows in general
geometries. Density matching allowed uncoupling of inertial effects associated with particle size
from those due to differential density. The motion of a single spherical particle and a pair of particles
transported by the Hiemenz-Homann flow was numerically solved, with the fluid-particle coupling
based on the immersed boundary method. A fine grid resolution was used in the thin gap region in
order to fully resolve viscous lubrication flow between approaching and separating surfaces. If the
gap width becomes smaller than a threshold ηa (modeling the asperity scale, but with no detailed
roughness model), here taken from 1% to a few percent of the particle radius a, while the relative
motion is finite, a spring force proportional to overlapping of nondeformable objects is added to
model the collision event. The stiffness of this force is based on the collision timescale from the
Hertzian theory related to material elasticity, particle density, size, and relative velocity. The model
was validated by calculating the restitution coefficient and wet collision time in the case of a particle
settling toward a wall in a quiescent viscous fluid. The results agree with previous experimental and
numerical works.

Subsequent to the collision model development, the motion of a single neutrally buoyant particle
was studied in Hiemenz-Homann flow as an archetype of wall-normal flows. The particle ap-
proaches the stagnation point at the wall along the flow axis of symmetry. Particles small compared
to the boundary layer thickness 3δ were found to slow down before reaching the wall, their motion
being damped by hydrodynamic interaction with the wall when they become immersed in the
boundary layer. However, for larger particles with radius a above a critical size acrit ≈ 2δ, the
particle starts to slip with respect to the local flow very late, once the separation gap width with
the wall becomes small. Although viscous lubrication slows its motion, the gap width reaches
critically small values while the particle velocity is finite. These particles bounce back at the
wall. For a > acrit , the wet solid contact time and the particle rebound velocity were examined
as functions of particle inertia represented by (a/δ)2; we recall that both the particle-scale Reynolds
and Stokes numbers are proportional to (a/δ)2 in this flow. The onset of particle-wall collision
and rebound velocity depends significantly on the characteristic surface roughness η, whereas its
effect on the collision time is weak. The overall increase of the rebound velocity with particle
inertia is qualitatively similar to that observed in the settling problem. The essential difference
is that the collision time depends weakly on the size (and thus inertia) of the neutrally buoyant
particle. This has been interpreted based on the increase of the effective particle mass due to the
unsteady hydrodynamic force experienced by the particle while approaching and departing from
the stagnation point at the wall.

The near-wall dynamics of two equal spheres approaching the stagnation point was investigated
as well. Small particles compared to the boundary-layer thickness (not shown in this paper) are
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driven together by the flow, with their motion progressively decaying while approaching the wall.
Section IV showed the typical dynamics of two larger particles approaching the stagnation point.
A set of consecutive collisions takes place, while P1 (the closest particle to the wall) experiences a
contactless rebound and is lifted together with the other particle P2 away from the wall. The pair then
reaches a rebound distance much greater than the one reached by a single particle of the same size
bouncing at the wall. We found that the contactless rebound occurs as a result of P1 being sheltered
by P2 against the drag from the carrying flow. The thrust that lifts P1 is from the ambient pressure
gradient established in the wall-normal flow, which becomes the dominant hydrodynamic effect.
This unusual particle dynamics highlights the rich interactions that may take place in a suspension
flow near the stagnation point, a problem whose many-body extension will need to be studied to
describe suspension dynamics in wall-normal flows.
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APPENDIX: MODEL VALIDATION FOR THE SETTLING PROBLEM

A single solid sphere of density ρp and radius a, held at rest with its center initially located at
a distance ZP0 = 58a from the wall, is allowed to fall under its weight. The particle is assumed to
fall along the axis of a cylindrical vessel of radius R = 24a and of length Lz = 60a. The cylinder is
entirely filled with a liquid of density ρ f < ρp. An axisymmetric simulation domain is considered.
No-slip boundary conditions are imposed at the domain boundaries, except at the axis. The grid
distribution is nonuniform in the radial and axial directions, with the mesh size varying between
a/20 far from the wall to 10−4a at the wall in order to correctly capture the viscous lubrication in
the thin gap when the sphere approaches the wall. The particle inertia is varied with the density ratio
ρp/ρ f ranging between 2 and 16 while the diameter is kept constant so that all the simulations can
be carried out within the same simulation domain.

A typical velocity signal is displayed in Fig. 9(a). The particle starts from rest far away from
the wall and it relaxes toward a terminal velocity VT (seen as a plateau in the figure) over the
particle relaxation timescale. The terminal velocity is reached once the particle weight, corrected
for buoyancy due to the liquid, is balanced by the drag. The Stokes number based on this terminal
velocity, St = 1

9
ρp

ρ f
ReT , ranges between 2 and 80, where the Reynolds number ReT = 2aVT

ν
is based

on the terminal velocity. At the largest Stokes numbers studied (St = 58, 71, and 84), the axial
distance required to reach the terminal velocity is longer than the domain length (60a). In these
cases, the value of VT (on which the Stokes number is based) is chosen to be the maximum velocity
before the particle starts to decelerate near the wall. The ratio between the effective solid modulus
of elasticity E∗ (considered constant) and the viscous stress is given by E∗/(μVT /a), which varies
between 1.5 × 109 at the smallest Stokes number and 2 × 108 at the largest. Two sets of numerical
simulations are performed, for Nc = 0.5 and 1. The time step is set between 5 × 10−4 and 5 × 10−2

times the characteristic settling timescale (ts = 2a/VT ) when the Stokes number is varied between 2
and 80. During the collision event, the time step was automatically decreased within the simulation
to satisfy stability conditions. We verified a posteriori that the system dynamics was solved for at
least ten time steps during the collision time, which scales like the Hertzian time (this is not known
a priori, at the beginning of a simulation, since the impact velocity is a result from the simulation).

When the distance between the particle and the wall becomes of O(a), hydrodynamic interactions
lead to particle deceleration. At low St and Re, the wall-normal motion is damped before the
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FIG. 9. (a) Time evolution of particle velocity at St = 9.9 in the settling problem. The pink and black lines
correspond to simulations carried out with maximum imposed time steps dt = 2 × 10−2ts and 2 × 10−3ts,
respectively, where ts = 2a/VT is the settling timescale. (b) Evolution in time of the dimensionless gap,
ε = Zp

a − 1, between the particle and wall surfaces for different particle inertia. The red, pink, and blue lines
correspond to St = 3.5, 9.9, and 16.8, respectively. The simulations were carried out with Nc = 1 and η = 0.01.

particle reaches the wall due to dominance of viscous resistance. Therefore, the particle velocity
tends asymptotically to zero. However, if particle inertia is significant, the distance from the wall at
which the particle starts to decelerate decreases with an increase of the Stokes number [9]. Viscous
resistance is then not sufficient to damp the particle motion. Above a critical Stokes number, the gap
width between the particle surface and the flat wall ε = Zp

a − 1 becomes smaller than the threshold
η while the particle has significant velocity toward the wall (i.e., negative velocity in our reference
frame); the collision model is then switched on to simulate particle rebound. The transition from
viscous damping to collision is known to take place around a critical Stokes number Stcrit ≈ 10 in
the settling problem. In our simulations, Stcrit is smaller than 10, as will be discussed below. In
Fig. 9(a), the instant at which the collision occurs corresponds to a very abrupt jump in the velocity
signal, as the particle velocity changes sign in a very short time as compared to the deceleration time
before contact. The corresponding time evolution of the gap width ε (which obeys Vp = dε/dt) is
shown for different St in Fig. 9(b). The evolution of ε is fairly symmetric while ε < η, indicating that
viscous energy dissipation is weak during the collision process. The positive peak corresponding to
the maximum velocity, VR in Fig. 9(a), occurs at the end of the collision process, when the particle
bounces back. The nearly singular evolution of particle velocity is not sensitive to the time step
provided the equations of motion are solved using more than ten time steps during the collision
event. However, when the particle comes to rest, spurious fluctuations from the spring-dashpot
model due to alternating overlapping and nonoverlapping states take place when the time step is
not sufficiently small.

Above the critical Stokes number, a finite collision time is measured; this corresponds to the
time interval in which ε < η. The collision time twet, scaled by Tc = NctHertz, is displayed as a
function of St in Fig. 10. The wet collision time decreases slightly as particle inertia increases.
This is consistent with observations from experiments of Birwa et al. [20] and Chastel et al. [38]. In
the limit of high inertia, the contact time in liquid tends toward the dry Hertzian contact timescale,
similar to the findings of Zenit and Hunt [19]. For Stokes numbers below Stcrit , the particle velocity
decays until the particle comes to rest at the wall. Numerically, the particle velocity exhibits small-
amplitude fluctuations, again due to the spring model, which can be removed if the time step of the
simulation is extremely small (see Fig. 9). In practice, the onset condition is a topic that requires
careful examination of fluid and solid mechanics during the collision process, involving details at the
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FIG. 10. Collision time measured from the numerical simulations as a function of the Stokes number St.
The time is scaled by Tc = NctHertz. The circles and triangles correspond, respectively, to simulations with
η = 0.01 and 0.02, whereas the closed and open symbols correspond to Nc = 0.5 and 1, respectively. The inset
shows tHertz scaled by the settling time as a function of St.

roughness scale, and this is out of the scope of the present study, where a smooth-surface collision
model is used. Instead, the wet collision time is set to zero when St < Stcrit in our simulations.
Figure 10 shows that the value of the collision time does not depend significantly on the surface
roughness η. Increasing η leads to slightly increasing the impact velocity and therefore the Hertzian
contact time, as shown in the inset of Fig. 10. The wet contact time seems to follow the same trend
in such a way that the ratio twet/Tc remains independent of η. It also does not depend on the collision
stiffness when Nc is changed from 0.5 to 1.

In order to characterize the energy lost by the particle due to its interaction with the wall in a
viscous liquid, it is common to use the restitution coefficient defined as the velocity after rebound
scaled by the terminal settling velocity. If the particle rebound at a wall in “dry” conditions leads
to mechanical energy dissipation, the restitution coefficient e is usually scaled by edry. The ratio
e/edry tends to 1 when St � 2000 and to 0 when St � 10. In the present work, elastic solid contact
is assumed in the collision model, i.e., edry = 1. Thus the restitution coefficient induced exclusively
by hydrodynamic interactions is defined here as e = VR/VT . Its dependence on the Stokes number
is displayed in Fig. 11. The experimental results of Joseph et al. [9] and Gondret et al. [39] are also
displayed in this figure. For a given Stokes number, the numerical curves indicate systematically
higher e compared to experimental measurements. This shift occurs because the collision threshold
η = O(0.01) in the numerical simulations, and this is significantly larger than the roughness of the
particles and wall surfaces in most of the experiments on particle-wall collision in the presence
of viscous fluid; the experimental dimensionless roughness is typically between 10−4 and 10−3. A
similar dependence of the restitution coefficient on the surface roughness at moderate St has been
clearly shown by the numerical simulations of Ardekani and Rangel [12]. The diamonds added to
Fig. 11 correspond to the restitution coefficient found by these authors for η = 10−4 (the lower
point) and η = 10−2 (the upper point). At larger η, the numerical sphere experiences the collision
process before losing a significant part of its kinetic energy mainly by viscous lubrication, while the
gap width ε decreases from O(10−2) to O(10−4). This observation suggests that the critical Stokes
number is smaller in the simulations compared to the experiments. As energy loss by lubrication is
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FIG. 11. (a) Restitution coefficient as a function of the Stokes number in the settling problem: �, experi-
ments of Gondret et al. [39]; •, experiments of Joseph et al. [9]. The circles and triangles refer, respectively, to
simulations with η = 0.01 and 0.02, whereas the closed and open symbols refer to Nc = 0.5 and 1, respectively.
The pink diamonds represent the results of the numerical simulations of Ardekani and Rangel [12]: The lower
and upper points correspond to η = 10−4 and 10−2, respectively. The black dashed line indicates the critical
Stokes number above which Birwa et al. [20] have detected solid collisions. (b) Restitution coefficient plotted
as a function of St/Stcrit , where Stcrit corresponds to the Stokes number at the onset of particle-wall collision,
which depends on η.

significant at small gap widths, a weakly inertial particle approaching the wall would lose all of its
kinetic energy if the surfaces were completely smooth with η = 0, whereas it can rebound when a
finite rebound threshold η > 0 is set. When the collision stiffness Nc is decreased from 1 to 0.5 (the
collision becomes stiffer), the restitution coefficient is slightly increased since the absolute collision
time and the overall deformation are smaller during the collision event. Note, however, that e is
more influenced by the collision threshold η than by Nc at moderate Stokes numbers.

When the Stokes number is rescaled by the critical impact Stokes number (that corresponding
to the onset condition for particle rebound at the wall for a given η), the restitution coefficient for
different characteristic roughness collapses onto one curve, as shown in Fig. 11(b). This finding
agrees with the model established in Ref. [18], in the case of particle-wall collision dominated by
viscous dissipation.
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