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H. J. Seybold ,1,2 H. A. Carmona ,1 F. A. Leandro Filho ,1 A. D. Araújo,1

F. Nepomuceno Filho,1 and J. S. Andrade, Jr.1,*

1Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza,
Ceará, Brazil

2Physics of Environmental Systems, D-USYS, ETH, Zurich, 8093 Zurich, Switzerland

(Received 8 June 2020; accepted 11 September 2020; published 9 October 2020)

We investigate through numerical simulations of the Navier-Stokes equations the in-
fluence of the surface roughness on the fluid flow through fracture joints. Using the
Hurst exponent H to characterize the roughness of the self-affine surfaces that constitute
the fracture, our analysis reveals the important interplay between geometry and inertia
on the flow. Precisely, for low values of Reynolds numbers, Re, we use Darcy’s law to
quantify the hydraulic resistance G of the fracture and show that its dependence on H
can be explained in terms of a simple geometrical model for the geometric tortuosity τ

of the channel. At sufficiently high values of Re, when inertial effects become relevant,
our results reveal that nonlinear corrections up to third order to Darcy’s law are approx-
imately proportional to H . These results imply that the resistance G to the flow follows
a universal behavior by simply rescaling it in terms of the fracture resistivity and using
an effective Reynolds number, namely, Re/H . Our results also reveal the presence of
quasi-one-dimensional channeling, even considering the absence of shear displacement
between upper and lower surfaces of the self-affine fracture.

DOI: 10.1103/PhysRevFluids.5.104101

I. INTRODUCTION

Understanding the behavior of a fluid flowing through a fractured rock is of great importance in
many practical applications [1–5]. In particular, it is crucial to investigate how the fracture’s surface
morphology influences the flow resistance in driving fluids through naturally or artificially fractured
carbonate reservoirs [6–9]. Since at the reservoir scale fractures are mostly composed of networks
of interconnected cracks with very different sizes, it is important to understand how the behavior
of the flow in a single fracture scales with its size, as well as how it is affected by the details of its
geometry [7]. The local flow structures are a direct result of the fracture’s morphology and many
studies have been devoted to understand their upscale in order to derive consistent macroscopic
relations [10–13].

It is generally accepted that the morphology of brittle fractures follows self-affine scaling
laws [14]. More precisely, it means that by rescaling an in-plane vector r by λr, the out-of-plane
coordinate z needs to be rescaled by λH z for the surface to remain statistically invariant, where
the scaling exponent H is called the Hurst exponent. It was first suggested that rock fractures have
a unique exponent H = 0.8 [15–21]. However, recent studies indicate that some natural fractured
systems exhibit other values of H (ranging from 0.45 to 0.85) depending on the material and the
fracturing process [22–25]. As a result, more than one universality class exists for fractured rocks
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and therefore it is important to understand how the flow properties are affected by variations in the
Hurst exponent.

A single-phase flow in a fractured rock is usually characterized in terms of Darcy’s law [3,26,27],
which defines a linear relation between the mean flow velocity U and the pressure drop �P
across the system, namely U = −k�P/μL. Here μ is the fluid’s viscosity, L is the length
of the fracture in the flow direction, and the proportionally constant k is the permeability.
Essentially Darcy’s law is a good approximation at low Reynolds numbers, Re = ρUw/μ �
1, where w is usually taken as the aperture of the fracture and ρ is the density of the
fluid. However, in order to understand the interplay between the geometry and the flow in-
side the fracture, it is necessary to examine local aspects of the surface roughness and
relate them to the relevant mechanisms of momentum transfer through viscous and inertial
forces.

The influence of surface roughness on the flow properties inside a fracture has been first studied
theoretically by Roux et al. [10]. They predicted that the permeability of a self-affine fracture
should scale with the length of the system as k ∼ L2H . This result is based on the assumption
that the fracture behaves like a system of parallel plates with an effective aperture w, where
the self-affinity implies that w ∼ LH , and k ∼ w2 follows the solution of the Stokes equation.
Since then, several theoretical and experimental studies focused on how the permeability scales
with the fracture’s opening and length in the viscous flow regime. Using perturbation theory,
Drazer and Koplik [28] calculated for two-dimensional flows that the permeability should scale as
k0 − k ∼ LH , where k0 is the permeability of the unperturbed system. Later they extended their study
to three-dimensional flows and confirmed these results in terms of the effective medium analysis and
numerical simulations at low Reynolds numbers. Talon et al. [11] conjectured that the permeability
is controlled by the minimum aperture of the fracture wmin and found that, for two-dimensional
flows, k ∝ w

3−1/H
min . For three-dimensional flows, however, Talon et al. have shown numerically that

k ∼ w2.25
min for H = 0.8 and k ∼ w2.16

min for H = 0.3.
The role of inertia on fluid flow through two-dimensional self-affine fractures has been ad-

dressed by Skjetne et al. [29], who considered fractures with constant aperture and H = 0.8.
Their numerical simulations show that, in the range of intermediate Reynolds number Re ≈ 1,
the flow can be described by a weak inertia equation [30,31], whereas for moderate Reynolds
numbers (25 � Re � 52) inertial effects can be described by the Forchheimer equation [32]. More
recent numerical studies [33] extended these results for different Hurst exponents with long-range
correlations, namely H > 0.65.

It is evident that inertia has very different impact on two- and three-dimensional flow sys-
tems. Here we address the question on how the permeability and the nonlinear corrections
to Darcy’s law depend on the surface roughness of three-dimensional self-affine fractures. To
do so we systematically examine the behavior of the fluids hydraulic resistance as a function
of the Reynolds number in the range from Re = 10−2 to Re = 500, and for different val-
ues of the Hurst exponent, varying from strongly anticorrelated H = 0.3 to strongly correlated
values, H = 0.9.

The remainder of this paper is organized as follows. Section II describes the methodology we
have used to generate the geometry, and the setup of the computer simulations. In Sec. III we present
and discuss our simulation results and Sec. IV is devoted to the conclusions.

II. METHODS

The three-dimensional numerical domain used in our analysis consists of the volume between
two identical self-affine surfaces, representing the fracture walls. The surfaces have been displaced
perpendicular to the mean surface plane (the x − y plane). Specifically, no additional shear displace-
ment is added to the surfaces in this plane, so that the fracture aperture w is constant throughout the
numerical domain (see Fig. 1).
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FIG. 1. Fluid flow through a typical fracture joint calculated for Re = 100 and Hurst exponents (a) H = 0.8
and (b) H = 0.4. The fluid flows from left to right. Streamlines are also shown, colored according to the local
velocity magnitude.

The wall surfaces are generated using a two-dimensional generalization of the fractional Brown-
ian motion [34–37], which satisfies the following scaling relation:

〈[z(r2) − z(r1)]2〉 = σ 2
z

∣∣∣r2 − r1

L

∣∣∣2H

, (1)

where σ 2
z is the mean square increment for points separated by a distance L. Here z(r) defines the

elevation of the wall surface and r is a vector in the x − y plane. The Hurst exponent H characterizes
the spatial correlations of the surface. Surfaces with H < 0.5 are spatially anticorrelated, while
for H > 0.5 long-range spatial correlations are present. For the case H = 0.5 we obtain ordinary
Brownian surfaces formed by successive uncorrelated increments [37]. In order to create a discrete
fractional Brownian surface with a given exponent H numerically, we use the Fourier filtering
method [37,38]. This method imposes a scaling behavior on the spectral density Sz as

Sz(k) ∝ 1

kξ
, (2)

where the parameter ξ is related to the Hurst exponent via ξ = 2 + 2H for two-dimensional
surfaces [39]. Equation (2) is used to define the amplitudes of the discrete Fourier spectrum of
the wall surface, which is then transformed back to real space using a fast Fourier transform.

For all fracture realizations, the aperture is kept constant, w = 40, and the length in x and y
directions is set to be L = 500, both in dimensionless units. In order to obtain fractures with a
comparable variability in the z direction, the amplitude of the surfaces is also fixed for all realizations
to be σz = 5 in dimensionless units. In this way, σz/w = 0.125 for all simulations, independent of
H .

We now turn our attention to the flow between the two rough fracture walls. The three-
dimensional flow is described by the incompressible Navier-Stokes equations under isothermal
steady-state conditions. The momentum and mass conservation equations are written as

ρ u · ∇u = −∇p + μ∇2u , (3)

∇ · u = 0 , (4)

where u, p, and ρ are the velocity, pressure, and the fluid’s density, respectively. We apply nonslip
boundary conditions at the top and bottom walls. The fluid is injected in the x direction at x = 0
using a uniform velocity profile with amplitude U at the inlet, and a constant pressure defines the
outlet boundary, at x = L. Laterally symmetrical boundary conditions were applied to minimize
finite-size effects. In order to solve Eqs. (3) and (4) numerically, we first discretize the volume
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FIG. 2. Hydraulic resistance G as a function of the Reynolds number Re for different values of the Hurst
exponent H . In all cases, the plateau corresponding to Darcy’s law (constant G) is followed by a nonlinear
regime that reflects the effect of convection on the flow. The error bars are smaller than the symbols and the
solid lines are the best fit to the data using Eq. (6). For each value of the parameters Re and H , the value of G
is obtained as the average over a total of five realizations.

between the top and bottom surface of the fracture using a tree-dimensional unstructured hexahedral
mesh generated using the OpenFOAM’s meshing tool snappyHexMesh [40]. Close to the surface,
the hexahedral cells were refined at least three times in order to capture small variations of the
fracture surface. Reliable numerical solutions were obtained with meshes containing a total number
of cells that varied from a minimum of approximately 8 × 106 cells for H = 0.8 to a maximum of
approximately 15 × 106 cells for H = 0.3.

For each value of the Hurst exponent in the range 0.3 � H � 0.9, we generated five realizations
of the computational domain to compute ensemble averages. For each realization, flow simulations
are performed with different values of the Reynolds numbers in the range 0.01 � Re � 500 by
adjusting the inlet velocity U .

III. RESULTS AND DISCUSSION

The Forchheimer equation [32,41] has been extensively used as an extension of Darcy’s law to
account for inertial corrections in flow through disordered pore structures [3,27,42]. Expectedly, the
addition of higher-order corrections in the velocity to the Forchheimer equation allows for a better
agreement with experimental data over the full range of the laminar regime [26,43–45]. Up to cubic
order, these corrections can be written as

−�P

L
= αμU + βρU 2 + γ ρ2U 3

μ
, (5)

where α ≡ 1/k corresponds to the reciprocal of the permeability of the channel, and β and γ are
the coefficients of the second- and third-order corrections, respectively. Rewriting Eq.(5) in terms
of Re, we obtain

G = αw2 + βw Re + γ Re2, (6)

where G ≡ −�Pw2/μUL is a dimensionless measure of the hydraulic resistance of the fracture.
Figure 2 displays the results from all our numerical simulations, where G is plotted as a function of
Reynolds number and for different values of the Hurst exponent. The solid lines are the nonlinear
fits of Eq. (6) to the data sets in order to determine the coefficients α, β, and γ .
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FIG. 3. Dependence of αw2 on the Hurst exponent H . The parameter α ≡ 1/k approaches the limiting
value of 12/w2 (dashed black line), as expected for the Poiseuille flow. The solid black line is obtained by the
combination of Eq. (8), with the previously estimated parameters a and b, and Eq. (7), with δx = 2, σz = 5,
and L = 500.

For small Reynolds numbers, G is dominated by the viscous term in Eq. (6), namely, αw2, which
decreases monotonically with the Hurst exponent H as shown in Fig. 3. Consistent with the results
for a Poiseuille flow between two parallel planes with constant aperture w, it approaches the value
α = 12/w2 for large values of H . In order to understand the particular form of this relation, we
consider, as a first approximation, the fracture as composed of a sequence of parallel plates with
varying angles with respect to the x − y plane. Similar to flow in porous media [46], for a self-affine
fracture surface, one can define a geometric tortuosity factor as

τ ≡ Lp

L
=

√
1 +

(σz

δx

)2( L

δx

)−2H

, (7)

where Lp is the perimeter in the direction of the flow and δx � L is the smallest length scale
used to generate the rough surface (see Sec. I of the Supplemental Material [47]). Considering
this simplified geometrical model, we now conjecture that the first term in Eq. (6) can be described
as

αw2 = aτ + b. (8)

Here, to be consistent with the limiting value for the hydraulic resistance of parallel plates at
very low Re, the parameters a and b should be obtained from the numerical simulations with the
constraint that a + b = (αw2)min � 12. Figure 4 shows that αw2 follows very closely Eq. (8) for
H � 0.7. From the least-squares fit to the data, combining Eqs. (7) and (8) with σz = 5 and δx = 2,
we obtain a = −42.4 ± 0.7 and b = 58.9 ± 0.6, which consistently gives a + b = 16.5 � 12. For
large values of the Hurst exponent, the influence of the self-affine geometry on the flow is less
strong because the local slopes in the channel are not so high as compared to those present in
channels generated with smaller values of H . As a consequence, this purely geometrical model
tends to overestimate the hydraulic resistance αw2 for H > 0.7. This systematic discrepancy is
better visualized in Fig. 3, where the solid black line is also obtained from Eqs. (7) and (8), with the
same previously estimated parameters a and b.

In agreement with experiments [48], we observe that the transition from a linear (constant G)
to a nonlinear regime occurs at lower Re for rougher surfaces. Although the absolute value of G
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FIG. 4. Variation of αw2 with the geometric tortuosity τ . The error bars are smaller than the symbols. The
solid lines correspond to the least-squares fit to the simulation data using αw2 = a + bτ , with a = −42.4 ± 0.7
and b = 58.9 ± 0.6, where τ was computed from Eq. (7) with σz = 5 and δ = 2.

significantly depends on the tortuosity, and decreases with H , our results shown in Fig. 2 suggest
that the general increasing trend of the nonlinear corrections as a function of Re is independent of
the Hurst exponent. In order to quantify the impact of the surface roughness on the departure from
Darcy’s law, we plot G as a function of an effective Reynolds number, defined as Re/H . Following
this procedure, all curves collapse onto a single master curve, as shown in Fig. 5. This collapse is
an indication that the onset of the nonlinear contributions to the hydraulic resistance increases in a
linear fashion with the parameter H . As a matter of fact, the excellent quality of the collapse implies
the scaling relations

βw ∝ αw2/H (9)
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FIG. 5. Hydraulic resistance G as a function of Re/H . The excellent collapse of the simulation data onto
a single curve indicates that the onset of the nonlinear contributions to Darcy’s law increases linearly with the
Hurst exponent.
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FIG. 6. (a) Parameter βw as a function of αw2/H . The black solid line corresponds to the least-squares fit
to the data using βw = c0(αw2/H ) with c0 = 0.0023 ± 0.0001. (b) The scaling of γ with αw2/H 2. The solid
line corresponds to γ = c1(αw2/H 2) with c1 = (1.01 ± 0.05) × 10−6. The simulation data deviates from the
expected linearity for small H < 0.4 (αw2/H 2 > 110).

and

γ ∝ αw2/H2. (10)

As depicted in Fig. 6, the second-order term follows the proposed scaling relations rather well.
For the third-order coefficient, however, we observe significant deviations from the proposed linear
trend for H < 0.4 (αw2/H2 > 110).

Next, we analyze the impact of the surface roughness on the velocity field directly. Figures 1(a)
and 1(b) show typical realizations of fluid flows through two fracture joints at Re = 100 for Hurst
exponents H = 0.4 and 0.8, respectively. Streamlines of the velocity field are also shown, being
colored by the velocity magnitude. The contour plots in Fig. 7 denote the magnitude of the velocity

FIG. 7. Contour plots of the velocity magnitudes in the cross sections along the channels as indicated in
Fig. 1, for Re = 100 and Hurst exponents (a) H = 0.8 and (b) H = 0.4.

104101-7



H. J. SEYBOLD et al.

0.2 0.4 0.6 0.8
H

0.4

0.5

0.6

0.7

0.8

0.9

1.0

π

Bulk
w/2 level

FIG. 8. Participation index π as a function of the Hurst exponent H . Red circles correspond to the bulk
participation index and the blue triangles denote the participation index in the w/2-level surface, obtained by
translating the bottom surface of the channel by w/2 in the z direction. The dashed horizontal line corresponds
to π = π0, namely, the value of participation for the flow at low Re between two parallel plates. The results
were obtained by statistically averaging over five realizations.

field on the cross-sectional planes along the main flow direction, as indicated in Fig. 1. For the larger
Hurst exponent, H = 0.8, the fluctuations in the local velocity field are visually smoother, with the
maximum velocity near the center of the channel approximately equal to 3U/2, as expected in the
limiting case of parallel plates [49] (see Sec. II of the Supplemental Material [47]). For H = 0.4,
however, the situation is rather different. Due to continuity, regions of higher velocities are clearly
more confined at the center of the channel, since the zones of almost stagnated flow close to walls
broadens. As a consequence, the velocity magnitudes climb up to 2.5U , which is consistent with
a relatively higher effective Reynolds number, Re/H , as suggested by the collapse in Fig. 5. An
enhancement in the velocity magnitude due to local disorder in the surface morphology can then
persist and propagate further into the fracture joint forming preferential flow paths, where the fluid
follows trajectories connecting “valleys” and around “mountains” of the rough surfaces. This effect
is only possible in three-dimensional flows, since in two dimensions the flow is forced through local
bottlenecks.

A similar flow heterogeneity effect has been found in previous experiments [50] and compu-
tational simulations [51–53]. This effect, however, has always been associated to an additional
shear displacement between the upper and lower surface, which generates a heterogeneous aperture
distribution throughout those fractures. Our simulations, however, show that no lateral displacement
is needed and that this effect thus should be a result of an effective aperture field which is
significantly affected by the surface topology.

The flow heterogeneity can be quantified by the participation ratio π , which has been previously
utilized to describe the spatial localization of kinetic energy inside the flow through disordered
porous media [44], being defined as

π = 〈e〉2

〈e2〉 , (11)

where 〈en〉 = (1/V )
∫∫∫

(u · u)nd3r is the nth moment of the kinetic energy and V is the vol-
ume of the system. If the kinetic energy is uniformly distributed across the sample, one obtains
π → 1, whereas if the flow field is strongly localized, π → 1/V , approaching zero in the limit of
an infinitely large system.

Figure 8 shows the variation of π as a function of H for Re = 100. For H → 1 the participation
ratio approaches a value of π0 = 0.7, which is the expected value for a Poiseuille flow between two
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parallel plates (see Sec. III of the Supplemental Material [47]). By decreasing H , the participation
ratio decreases monotonically, indicating a more localized flow field. Also shown in Fig. 8 is the
participation ratio computed only in the w/2-level surface, defined as the surface for which all points
are at the vertical half distance between the lower and upper boundary of the crack. Compared to
the bulk flow, the kinetic energy is distributed more homogeneously in this surface as the effect of
the wall roughness is minimal. In this case, π also increases with the Hurst exponent, reflecting the
formation of flow channels in fractures generated with low values of H .

IV. CONCLUSIONS

In summary, we have presented an extensive numerical study of single-phase flow through
three-dimensional self-affine fracture joints. Our results show that the hydraulic resistance of the
fracture to the flow G at low Reynolds numbers follows Darcy’s law with a dependence on the Hurst
exponent that can be explained in terms of a purely geometrical model for the channel tortuosity τ .
For higher values of Re, at the onset of inertial effects in the flow, we find that nonlinear second-
and third-order corrections to Darcy’s law are approximately proportional to H . These results enable
us to propose a universal curve to describe the variation of G with Re at laminar flow conditions
and for any value of H . Finally, we find that preferred flow paths arise in the flow field, indicating
that, even in three-dimensional fracture joints with no shear displacement between top and bottom
surfaces, the effective fracture aperture field is heterogeneous. As a perspective for future work,
we intend to investigate the effect of the ratio σz/w on the hydraulic resistance G. Preliminary
results for low Reynolds numbers suggest the occurrence of a transition from bulk-dominated to
surface-dominated types of flow that is particularly evident for H < 0.5. Such a transition might be
relevant to the characterization of real flows through rough fracture joints.
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