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Hidden microscopic life of the moving contact line of a waterlike liquid
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We have used large-scale molecular dynamics (MD) simulations to investigate the
contact-line friction of a waterlike liquid interface moving across a flat solid surface. The
dynamic contact angle θD has been measured as a function of contact-line speed Ucl using
two configurations: a liquid drop spreading spontaneously on a stationary solid surface and
a liquid bridge in Couette flow between two solid surfaces moving in opposite directions at
a range of steady speeds. The wettability of the solid surface was systematically varied to
give a range of equilibrium contact angles θ0 from 38 to 126 deg. The coefficient of contact-
line friction ζ was determined from the expression ζUcl = γL (cos θ0 − cos θD ), where γL

is the surface tension of the liquid. This simple linear equation, which maybe derived
from the molecular-kinetic theory (MKT) of dynamic wetting, is predicted to apply at
sufficiently low values of Ucl . In addition, we have applied a Langevin formalism to extract
the coefficients of contact-line friction directly from the equilibrium fluctuations of the
contact line, without any additional theoretical interpretation or model. Both approaches
yield the same values for the coefficient within the probable uncertainty, confirming that
this intriguing property is determined only by equilibrium properties. Overall, our results
show that contact-line friction is a real phenomenon, intrinsic to wetting and applicable to
real liquids such as water. Thus, models of dynamic wetting that ignore it are incomplete.
From a practical perspective, the concept of a simple linear relationship between surface
tension driving force and contact-line velocity may provide a useful simplification in many
areas such as nanotechnology where contact-line speeds can be low. Another finding from
our study is that slip between water and a molecularly flat, partially wetted solid surface
is minimal, with slip lengths of little more than the diameter of a water molecule for
equilibrium contact angles of 90 deg or less. Furthermore, we have confirmed a mechanistic
link between the coefficients of slip and contact-line friction, specifically β = ζ/δ, where δ

is the thickness of the contact line when viewed at the molecular scale. Thus measurements
of the dynamic contact angle or contact-line fluctuations may potentially be used to predict
slip and vice versa.

DOI: 10.1103/PhysRevFluids.5.104004

I. INTRODUCTION

From both scientific and technological perspectives, the wetting of solids by liquids is an
extreme example of a multiscale problem, both spatially and temporally. Thus while the boundary
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conditions for continuum descriptions of wetting are set at the molecular level, i.e., the nanoscale,
the consequences may be felt at all scales up to kilometers, as, for example, in the transport of
groundwater in aquifers or the distribution of oil and gas in petroleum reservoirs. Similarly, while
the molecular events that determine wetting may have a duration of nanoseconds or less, their
consequences in the above examples may occur over geological time. In laboratory experiments,
we can make observations at the micrometre scale and, through modeling, describe events at as
large a scale as we wish, but bridging the gap down to the critical molecular level is much more
difficult, though some progress has been made [1–4]. It is for this reason that wetting research
turned to simulations, such as molecular dynamics (MD), to establish the physics that determines
the local, microscopic dynamic contact angle and associated properties such as contact-line friction
[5–9] and slip [10–12].

Because of computational limits and the need, nevertheless, to generate systems large enough
to demonstrate realistic macroscopic behavior, i.e., consistent with continuum models, MD stud-
ies of equilibrium systems, spreading drops, capillary flow, forced wetting, etc. were restricted
initially to rather simple molecular systems: usually Lennard-Jones (L-J) fluids on molecularly
smooth or only marginally rough solid substrates. The simulated liquids typically exhibited
rather low surface tensions and viscosities, which raised questions as to their generality. How-
ever, with the advent of faster codes and greatly improved computational resources, it has
become possible to carry out simulations of wetting using more realistic models of liquids
and solids [13,14]. This brings simulation closer to experiment and can lead not only to im-
provements in our theoretical understanding, but also to simulations that can be applied with
more confidence to practical issues, including condensation [15], superhydrophobic surfaces
[16], drop impact [17], and closely related problems such as flow through membranes [18] and
deicing [19].

In this work we have applied these improved computational methods to determine the contact-
line friction of a waterlike liquid at ambient temperature in contact with a molecularly smooth solid
substrate having a range of wettabilities. Two different approaches have been taken to interpret the
results based on our earlier MD studies with L-J liquids [20–23].

The first approach involves measuring the velocity dependence of the dynamic contact angle in
two configurations. In configuration 1, a liquid drop is brought into contact with a solid surface and
spreads towards its equilibrium state. During spreading, the contact angle relaxes from a nominal
180 deg at contact towards its equilibrium value as the velocity of the leading edge of the drop, the
contact line, decreases to zero. We record the position of the contact line and the contact angle as a
function of time, from which we can determine the dependence of the contact angle on contact-line
velocity [7,20] and so extract the contact-line friction ζ using the concepts of the molecular-kinetic
theory of dynamic wetting (the MKT) [24,25].

In configuration 2, we study a liquid bridge between moving plates in steady-state Couette flow
at a range of plate velocities [21]. This generates a corresponding range of dynamic advancing and
receding contact angles θadv and θrec, respectively, from which we may also obtain ζ . Snapshots of
typical drop and liquid-bridge configurations are shown in Fig. 1. Details of the methods are given
in Sec. III.

The second approach also exploits the liquid-bridge configuration. When the plates are stationary,
we recover the equilibrium contact angle and can follow the thermal fluctuations of the four contact
lines of the liquid bridge about their equilibrium positions. This enables us to open a new line
of attack using statistical theory to model the fluctuations as an overdamped Langevin oscillator
to extract ζ directly from an equilibrium system [22,23]. In Sec. V we compare the contact-line
frictions obtained in each case to demonstrate the value of the concept to our understanding of
dynamic wetting. We also discuss the link between contact-line friction and slip and the implication
of our findings to hydrodynamic treatments of dynamic wetting and related concepts such as the
generalized Navier boundary condition (GNBC).
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FIG. 1. (a), (b), and (c): Snapshots of drop spreading simulations at successive times t = 0, 0.09, and
1.1 ns, respectively. (d), (e), and (f): Snapshots of capillary bridge simulations for plate velocities Uplate = 0,
16, and 24 m/s, respectively. All correspond to a solid-liquid interaction coupling CSL = 9.

II. THEORY

A. Contact-line friction

A theoretical model relating the microscopic dynamic contact angle θD to the steady velocity of
the contact line Ucl was first proposed by Blake and Haynes in 1969 [24]. Their equations have been
developed further in the intervening years [25,26] and have proved effective in modeling dynamic
contact angle behavior found in both experimental studies and MD simulations, e.g., [9,25,27,28].
The basic idea is that the leading edge of the liquid (L) moves stochastically by way of individual
molecular displacements between discrete interaction sites on the surface of the solid (S). The
driving force for this process is the localized shear-stress induced by surface tension when the
contact angle deviates from its equilibrium value θ0. Per unit length of the contact line, this force
is Fcl = γL(cos θ0 − cos θD), where γL is the surface tension of the liquid. The force acts across
the width of the three-phase contact zone (TPZ), i.e., the contact line viewed at the molecular
scale, and is dissipated irreversibly in overcoming the activation energy barriers associated with
each molecular displacement. The principle equation linking θD to Ucl is

Ucl = 2κ0λ sinh

(
γL(cos θ0 − cos θD)

2nkBT

)
, (1)

where κ0 and λ are, respectively, the characteristic (i.e., most probable) frequency and length of
molecular displacements, n is the number of interaction sites per unit area, kB is the Boltzmann
constant, and T the absolute temperature. If the interaction sites are distributed uniformly and
molecules move only between adjacent sites, then λ ≈ 1/

√
n.

As yet, no simulation of dynamic wetting has unequivocally demonstrated the nonlinearity
predicted by Eq. (1), so the focus has been on using its linear approximation to determine the
so-called contact-line friction [7]. If the argument of the sinh function is small, i.e., at low velocities
near equilibrium or for systems in which the ratio γLλ2/kBT is intrinsically low, Eq. (1) reduces to

ζUcl = γL(cos θ0 − cos θD), (2)

where ζ = kBT/κ0λ3 is the coefficient of contact-line friction per unit length of the contact line
(Pa s). Therefore, once we have θD as a function of Ucl , we can select the region of sufficiently
low contact-line velocities and fit Eq. (2) to determine the coefficient ζ . This is straightforward
for steady contact-line velocities, as in our forced wetting simulations, but to apply the same
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procedure to spreading drops we must assume that the collective behavior of the contact line
follows some succession of local equilibrium states. The observable world being the result of
microscopic interactions, this is tantamount to assuming that Ucl < κ0λ. However, in practice, we
measure average values of Ucl and θD over a contact-line length 	L � λ and a small but finite time
interval 	t � τ 0 = 1/κ0, so this is not a critical limitation. Averaging is intrinsic to experimental
determinations of Ucl and θD, where we are limited by the time and spatial resolution of our imaging
device, but it is also true in simulations, where we follow an averaging protocol to minimize noise.

One complication is the possibility of slip between the liquid and the solid during forced wetting,
as in the simulations of a liquid bridge between moving plates [21]. Slip is especially prevalent in
simulations of L-J fluids on molecularly smooth solid surfaces [29]. There must always be slip at
the contact line, otherwise the contact line could not move [30], but slip at the general solid-liquid
interface has another effect: it reduces the effective contact-line velocity. If the apparent contact-line
velocity is U app

cl , then Ucl = U app
cl − Uslip, where Uslip is the slip velocity. Thus Eq. (2) becomes

Ucl = U app
cl − Uslip = γL

ζ
(cos θ0 − cos θD). (3)

Slip does not appear to be a problem in simulations of spreading drops, where the flow patterns are
entirely different [21].

B. Langevin formalism

In a recent study [22] we used MD simulations of a simple L-J liquid bridge at equilib-
rium between two solid plates to show that the intrinsic thermal fluctuations of contact-line
position xcl (t ) with time may be modeled as an overdamped, one-dimensional Langevin oscil-
lator [31,32] of stiffness k, confined about its equilibrium position x0

cl by an harmonic potential
V = 0.5k(xcl (t ) − x0

cl )
2 and damped by contact-line friction ζ . This leads directly to

ζ
dxcl (t )

dt
= −k̂

(
xcl (t ) − x0

cl

) + f̂ , (4)

where k̂ = k/Ly, and Ly is the length of the contact line used to compute xcl (t ). The random force
f̂ is due to the fluctuations of the contact angle θ (t ) about its equilibrium value θ0, which induce
a very fast variation in the capillary force γL(cos θ0 − cos θ (t )). This force is uncorrelated at very
short times, has a zero mean 〈 f̂ 〉t = 0, and must satisfy 〈 f̂ (t ) f̂ (t0)〉t0 = 2ζkBT δ(t − t0)/Ly. Here,
δ(t − t0) is the classic Dirac delta distribution. In consequence, there is a relation between k̂ and the
temporal evolution of the signal xcl (t ) which allows one to compute k̂:

k̂ = kBT

σ 2Ly
, (5)

where σ 2 is the variance of the contact-line position 〈x2
cl (t0)〉t0 . For a given system, the product

of the variance and the contact-line length, σ 2Ly, is independent of Ly. Furthermore, the contact-
line friction ζ may be determined from the time decay of the self-correlation function 〈xcl (t0 +
t )xcl (t0)〉t0 :

〈xcl (t0 + t )xcl (t0)〉t0 = σ 2 exp

(
− k̂

ζ
t

)
= σ 2 exp(−bt ). (6)

The parameter b = k̂/ζ determines the rate of decay. The larger the value of b, the more rapidly the
system becomes uncorrelated. Once we know both σ 2Ly and b from an analysis of the fluctuations,
we can compute the contact-line friction as

ζ = kBT

bσ 2Ly
. (7)

104004-4



HIDDEN MICROSCOPIC LIFE OF THE MOVING CONTACT …

TABLE I. Average equilibrium contact angles θ0 for the drop and liquid-bridge configurations and coef-
ficients of contact-line friction computed from simulations of spontaneous spreading ζSP, moving plates ζMP,
and fluctuations ζF at each solid-liquid coupling CSL studied. Also shown are the slip lengths Lslip and the
parameters σ 2Ly and b obtained from the contact-line fluctuations.

CSL θ 0 (deg) ζSP (mPa s) ζMP (mPa s) ζF (mPa s) Lslip (nm) σ 2Ly (nm3) b (1/ns)

5 125.8 ± 2.5 0.35 ± 0.16 0.33 ± 0.18 0.62 ± 0.16 2.06 ± 0.15 0.29 ± 0.04 21.3 ± 4.1
8 101.3 ± 2.8 0.87 ± 0.23 1.15 ± 0.25 1.00 ± 0.23 0.79 ± 0.17 0.21 ± 0.02 17.2 ± 3.0
9 91.0 ± 1.9 1.19 ± 0.26 1.34 ± 0.31 1.24 ± 0.24 0.59 ± 0.23 0.26 ± 0.03 13.1 ± 1.2
11 72.4 ± 2.1 1.50 ± 0.32 1.88 ± 0.32 1.75 ± 0.26 0.54 ± 0.22 0.25 ± 0.01 9.3 ± 1.4
14 37.5 ± 3.3 2.14 ± 0.41 1.86 ± 0.44 2.03 ± 0.49 0.41 ± 0.21 0.26 ± 0.04 7.6 ± 1.3

Thus we can use equilibrium measurements to determine a key parameter of dynamic wetting. This
is a major advantage, since it is quite independent of any theoretical explanation of the velocity
dependence of the dynamic contact angle.

III. MD SIMULATIONS

A. The model system

The MD simulations are performed within the LAMMPS software package [33], which has been
widely used to study wetting phenomena at the nanoscale [8,13,34–36]. The Newton equations are
integrated with a time step of 2 fs and the neighbor lists updated. In all cases, the temperature is set
to 300 K and controlled with the Nose-Hoover thermostat [37].

We use the SPC/E model for water [38] that utilizes a tetrahedral representation of the water
molecule having an oxygen-hydrogen (OH) distance of 0.1 nm, with a L-J site located on the oxygen
atom and positive (qH = 0.4236e) and negative (qO = −0.8472e) charges located on the hydrogen
and oxygen atoms, respectively. Coulomb interactions are treated using the particle-mesh-Ewald
method with a 1.2-nm real-space cutoff and a precision of 10−4 relative to the force between
unit point charges at a distance of 1 Å. The H-O-H bond angle of water (109.47◦) is fixed using
the SHAKE algorithm implemented in LAMMPS [39]. In the SPC/E model, no L-J interactions are
considered between oxygen and hydrogen, whereas the oxygen-oxygen interaction parameter is set
at εOO = 0.650 kJ/mol for the depth of the potential well and aOO = 0.3165 nm for the diameter.
The cutoff for the L-J interaction is at 1.2 nm. Standard masses of 16 and 1 g/mol have been used
for the O and H atoms, respectively.

The solid surfaces comprise carbonlike atoms with a mass of 12 g/mol, which interact
through a L-J potential characterized by a diameter aSS = 0.35 nm and a potential well depth
εSS = 0.3867 kJ/mol. The solid atoms are arranged in a three-layer, rectangular, fcc lattice with
lattice parameter 21/6aSS = 0.393 nm (the equilibrium distance of the solid-solid L-J interaction).
The solid atoms are allowed to vibrate thermally around their initial positions according to a
harmonic potential: Vh(r) = 1000εSS|r − r0|2, where r is the instantaneous position of a given atom
and r0 its initial position.

The L-J potential is also used to describe the interaction between the oxygen atoms of the
water and the solid atoms, with parameters εSO = 0.2CSL kcal/mol, aSO = 0.3581 nm, and a 2.5aSO

cutoff [13]. The nondimensional coupling parameter CSL enables us to adjust the relative affinities
between the water molecules and the solid atoms, which in addition to influencing the dynamics of
wetting, determines the equilibrium contact angle. The values of CSL studied range from 5 to 14,
corresponding to equilibrium contact angles from 126 to 38 deg, respectively, as shown in Table I.
The couplings are much higher than those used for L-J fluids. This is necessary to ensure the contact
angles span the partial wetting regime.
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In a preliminary simulation, we compute the surface tension of a plane liquid slab comprising
41,535 water molecules placed between two vacuum regions with surfaces normal to the z axis
and periodic boundary conditions enforced in the x and y directions. At its equilibrium density,
the slab has dimensions Lx = Ly = 10.6 nm and a thickness H = 17 nm, much greater than the
range of influence of the free surfaces. The surface tension is obtained from the relationship
γL = 0.5Lz(〈PN 〉 − 〈PT 〉), where 〈PN 〉 and 〈PT 〉 are the pressure tensors perpendicular and tangential
to the liquid-vacuum interface [37,40]. Averaged over 5 ns, we obtain γL = 56.8 ± 3.2 mN/m.
From the same simulation, we measure the liquid density ρL = 0.97 ± 0.03 g/cm3 and the liquid-
vacuum interfacial thickness d = 0.39 ± 0.02 nm. These values are consistent with previous MD
simulations using the SPC/E model for water [41]. The self-diffusion coefficient D = (2.90 ±
0.06) × 10−9 m2/s is computed from the mean-squared displacement using the Einstein relation
in an independent simulation of liquid molecules in a cubic box of side L = 7.1 nm, with periodic
boundary conditions in all directions and the same values of ρL and T . The value of the diffusion
coefficient is similar to that reported by Tazi et al. [42] for the same parameters, where the viscosity
ηL is given as 0.64 ± 0.02 mPa s.

B. Drop spreading simulations

For the substrate, we use a 40-nm-diameter solid disk constructed as described above and located
in the x-y plane. At the start, the liquid droplet comprises a cube of 13,634 water molecules located
20 nm above the center of the plate (the z direction) to avoid any interaction with the solid. We
then run the simulation with periodic boundary conditions in all directions for 2 ns, which is
sufficient to reach equilibrium, as characterized by constant energy and a spherical liquid drop with
a radius of 4.7 nm. After equilibration, we translate the drop towards the plate until the minimum
distance between the centers of the solid and liquid atoms is 0.5 nm and run the simulation for
an additional 2 ns, which is sufficient for the drop to spread and attain its equilibrium contact
angle.

To determine the contact angle and radius at any instant, we must first locate the L-V interface.
Details of the method have been given in previous publications [7,20]. In brief, we divide the
drop into horizontal layers 0.1 nm in thickness. We calculate the density of atoms as a function
of the radial distance from the midpoint of each layer as determined by symmetry. The L-V
interface for each layer is located at the distance at which the density decays to 50% of its central
value. To measure the contact angle, we find the best circular fit to the measured interfacial
profile. The circular fit is then extrapolated to the position of the first layer of liquid atoms in
contact with the solid. The tangent to the circle at this point gives the contact angle and the
base radius, as in a real experiment. An example of contact angle measurement is shown in
Fig. 2(a).

A limitation of this method is that for a short time after the drop contacts the solid, a large part
of the bottom surface of the drop is within range of solid-liquid interactions. For our droplets of
radius 4.7 nm, this amounts to some 17% at time zero. The localized attraction means that the S-L
interface is initially being created over a much larger area than that assumed by the simple geometric
model of a plate intersecting a sphere. A similar effect has been reported for the early stages of the
coalescence of liquid drops [43]. Creation of an equilibrium S-L interface takes a very short but
finite time [20], and its extent at any instant can be established by measuring the density of the first
layer of liquid in contact with the solid and comparing it with the density at long times. If we do this,
we find that at very short times (less than about 0.01 ns), the radius of equilibrium contact is larger
than that obtained by fitting a circle to the drop. This impacts the accuracy of the measured values
of both the contact-line velocity and the dynamic contact angle. However, by the time the angle
and speed have fallen to values at which there is a clear linear dependence between Fcl and Ucl , the
difference between the two measures of the base radius is within the noise of the simulations; hence
Eq. (2) may safely be applied to determine ζ .
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FIG. 2. (a) Drop profile and circular fit at equilibrium for CSL = 11. (b) Bridge profile and circular fits
at equilibrium for CSL = 11. (c) Comparison of the equilibrium contact angles obtained for the spontaneous
spreading and liquid-bridge simulations.

C. Capillary bridge simulations

The liquid bridge is constructed from 55,255 liquid molecules at equilibrium density between
two parallel solid plates separated by a distance H = 10.34 nm. The overall dimensions of the
simulation box are (Lx, Ly, Lz ) = (79.6, 6.6, 13.7) nm, and we impose periodic boundary conditions
in the x and y directions. At the start of the simulation, the liquid is equilibrated between the plates
for 1.5 ns, which is sufficient to achieve a stable configuration. To perform our analysis of the
contact-line fluctuations at equilibrium, we restart the simulation for additional 2 × 106 time steps
(4 ns).

We determine the equilibrium contact angles θ0 by first averaging 2 × 103 configurations at
intervals of 103 time steps (0.002 ns). To locate the front and back menisci, we compute the local
density in the x-z plane and define the interface at the point where the density falls to 50% of the
bulk density, as before. The menisci have constant curvature when averaged over time; hence θ0

may be found by fitting an arc of a circle to the meniscus profile and measuring its tangent at the
solid, as illustrated in Fig. 2(b).

For the dynamic studies we move the two solid plates in opposite directions parallel to the x
axis at a constant speed Uplate for 2 × 106 time steps (4 ns) until a steady state is achieved. This is
indicated by steady advancing and receding contact angles. The simulation is then continued for an
additional 1.5 × 106 time steps (3 ns), and the positions of the particles are saved every 103 time
steps (0.0015 ns) for 1.5 × 103 configurations. These are then averaged to measure the dynamic
contact angles using the same method as at equilibrium but fitting the upper and lower parts of the
menisci with separate circular arcs. Depending on the S-L coupling, plate speeds from 1 to 35 m/s
were used. The speed range is limited by the size of the simulation box and the stability of the liquid
bridge. At sufficiently high speeds the liquid bridge may rupture or the receding menisci cross the
lateral boundaries of the simulation box.

IV. RESULTS

A. Drop spreading

The evolution of the apparent radius of contact and the dynamic contact angle during the
spreading of a water droplet are shown in Fig. 3 for all five solid-liquid couplings, CSL = 5, 8, 9, 11,
and 14, that we studied. Figures 1(a)–1(c) show successive snapshots during the spreading process
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FIG. 3. Evolution of (a) radius of contact xcl (t ) and (b) dynamic contact angle θD(t ) for spreading drop
simulations with five different solid-liquid affinities CSL .

for CSL = 9. In each case the dynamic contact angle starts from a nominal 180 deg and relaxes to
its equilibrium value after a period that increases with the coupling. Equilibrium is assumed to be
achieved once no further change is detectable within the noise of the simulation. Table I lists the
average values of the equilibrium contact angles for the drop and the liquid-bridge configurations at
each coupling. The individual values are also plotted in Fig. 2(c). There is good agreement between
the results from the two sources.

To determine the contact-line frictions, we first compute the contact-line velocity using the
method described by de Ruijter et al. [7]. We fit the time evolution of the radius of contact with
a ratio of polynomials and extract the contact-line velocity by simple differentiation. Figure 4

FIG. 4. Spreading drop simulations. The main chart shows the capillary driving force γL (cos θ0 − cos θD )
plotted vs contact-line velocity Ucl for coupling CSL = 11. The dashed line is the fit to Eq. (2) (open symbols).
The inset shows the contact-line friction ζSP for all couplings studied vs the corresponding equilibrium contact
angle.
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FIG. 5. (a) Ratio of U1L/Uplate and (b) the slip length Lslip for simulations of a liquid bridge between moving
plates. Both are plotted vs the equilibrium contact angle. Also plotted in (b) are the slip lengths obtained using
Eq. (8), with δ = 1.06 nm, ηL = 0.64 mPa s, and averaged values of ζ from Table I. The solid line is the
correlation proposed by Huang et al. [45].

shows a typical plot of the capillary driving force versus the contact-line velocity for CSL = 11.
At sufficiently low contact-line velocities there is a clearly linear relation between Fcl and Ucl , in
agreement with Eq. (2), from which we may extract the coefficient of contact-line friction ζSP and
its error by simple linear regression. The values of ζSP for all the solid-liquid couplings studied and
the corresponding equilibrium contact angles are listed in Table I and plotted in the inset in Fig. 4.
The data in Fig. 4 do show nonlinearity at the highest velocities, and if one fits all the data shown
with Eq. (1), one recovers almost exactly the same value for ζSP as from the linear fit. However,
it is possible that the nonlinearity is due, at least in part, to the uncertainties surrounding the early
stages of contact between the liquid drop and the solid, as discussed in Sec. III B. Therefore we have
chosen not to take this approach until we can be more certain of the significance of the high-velocity
data.

B. Forced wetting of liquid bridge

Snapshots of the change in the shape of the liquid bridge as Uplate is increased from zero to
24 m/s for CSL = 9 are illustrated in Figs. 1(d)–1(f). In order to investigate the significance of slip
in our simulations, we determine the velocity of the liquid in contact with the plates as follows.
The system is symmetrical in the y direction; hence all the liquid atoms may be projected onto
the x-z plane, which we subdivide into a grid of squared bins of 0.5 nm side. First we compute
the average velocity of the atoms in the x and z direction within each bin every 103 time steps.
We then average the velocities over 500 saved snapshots to further reduce noise and determine the
standard deviation. This allows us to obtain the mean velocity of the atoms in each cell and measure
the velocity gradient dux/dz in the center of the liquid, well away from the contact lines. Finally,
from the velocity gradient at its intersection with the plates we compute the velocity of the liquid in
contact with the plates U1L.

Figure 5 shows the ratio U1L/Uplate and the slip length Lslip (the distance into the solid at which the
linearly extrapolated fluid velocity vanishes) for each solid-liquid coupling; Lslip = 0 corresponds to
no slip. The slip lengths are also listed in Table I. Clearly, there is significant slip at low couplings,
but this becomes almost negligible, within the uncertainty, for CSL = 8, suggesting that slip tends
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to a constant low value below a contact angle of about 90 deg. Based on this data, slip for water
is significantly less than we found for a very similar substrate with L-J liquids [21]. In this study
we found slip to be an exponentially decreasing function of the work of adhesion Wa0 = γL(1 +
cos θ0). But even without a formal link with Wa0, it seems self-evident that for a partially wetting
system, low slip requires a strong solid-liquid attraction combined with a high surface tension.
Hence, the principle reason for the reduction in slip is probably the much higher surface tension of
the simulated water: 56.8 mN/m compared with 2.49 mN/m for the L-J fluids.

Experimental studies of the dynamic contact angle of water on partially wetting substrates are
rare and do not usually cover a sufficiently wide range of speeds to extract reliable values of ζ .
However, one study of water wetting poly(ethylene terephthalate) (PET) at speeds up to 10 m/s
has been reported [25], which allows one to calculate a value of ζ = 11.8 mPa s. This is about
7 times higher than that found for CSL = 11, which yields a static contact angle of 72 deg, close
to the experimental value for water on PET. Presumably, the difference in ζ is due primarily to
the different structure and composition of the molecularly smooth, carbonlike surface used in our
simulations and the PET surface, which, though specularly reflecting, is rough and heterogeneous
at the nanoscale [44]. More work is required to verify this or provide an alternative explanation.

In Ref. [21] we proposed a direct link between the coefficients of slip and contact-line friction,
β = ζ/δ, where δ is the width of the three-phase zone and β = ηL/Lslip, i.e., we assume a linear
Navier slip condition. This leads to

Lslip = δηL/ζ . (8)

We can estimate δ from the distance over which the density of the first layer of liquid in contact
with the solid decays to zero at the contact line. For CSL = 9 (θ0 = 90 deg), δ = 1.06 nm. The
resulting values of Lslip predicted by Eq. (8) are plotted in Fig. 5(b) for ηL = 0.64 mPa s [42] and
the average value of ζ at each coupling. The agreement with the slip lengths measured directly from
the velocity gradients is excellent and would seem to confirm that contact-line friction and slip share
a common mechanism, namely, the interaction of the liquid molecules with the energy landscape of
the solid surface. Using scaling arguments, Huang et al. [45] have proposed that Lslip is related to θ0

by Lslip ∼ (1 + cos θ0)−2. This is shown by the solid line in Fig. 5(b) and is supported by our data.
Figure 6 shows the driving force γL(cos θ0 − cos θD) plotted versus the slip-corrected value of

the contact-line velocity Ucl for each solid-liquid coupling. Since Ucl = U app
cl − Uslip and U app

cl =
−Uplate, it follows that Ucl = −(Uplate + Uslip). As all the plots are linear, we can determine the
contact-line friction ζMP directly from the slopes using Eq. (3). The resulting values are listed in
Table I and plotted versus the corresponding equilibrium contact angle in the inset in Fig. 6.

C. Contact-line fluctuations

To study the fluctuations of the contact line at each solid-liquid coupling, we start from an
equilibrium configuration of a capillary bridge with its four contact lines, such as that depicted
in Fig. 1(d), and monitor the simulation for an additional 2 × 106 time steps (4 ns). To determine
the locations of the contact lines, we first select a slice of liquid in the x-y plane adjacent to each S-L
interface and determine the density profile in the z direction. The density is constant in the bulk but
becomes layered in proximity to the plates. We define the first layer of liquid as the slice containing
the first peak in the density profile. We save the averaged density profiles of this first layer in the x
direction every 10 time steps. Each saved density profile is constant across the majority of the S-L
interface but decays to zero at each contact line. We define the contact-line position xcl (t ) at time t
as the value of x at which the density profile decays to 50% of its central value.

Once we have located the position of the contact line at each time step, we compute its mean
location x0

cl and subtract it from its instantaneous position to determine the probability density
function (PDF) of 	x(t ) = xcl (t ) − x0

cl . The results for all five couplings studied are plotted in
Fig. 7. Each distribution can be fitted by a Gaussian function with a mean value of zero and a
standard deviation σ equal to half the width of the distribution between the two inflection points.
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FIG. 6. Forced wetting of a liquid bridge between moving plates. The main chart shows the capillary
driving force γL (cos θ0 − cos θD ) plotted vs the contact-line velocity Ucl = −(Uplate + Uslip ) for each coupling
CSL studied. The inset shows the corresponding coefficients of contact-line friction ζMP vs the equilibrium
contact angle.

We can then compute the values of σ 2Ly for the different solid-liquid couplings and equilibrium
contact angles. These values are listed in Table I and plotted in the inset in Fig. 7. The error bars are
computed as the standard deviation of the σ 2Ly parameters measured at the four contact lines. As
can be seen, the amplitude of the contact-line fluctuations, σ 2Ly, is insensitive to the coupling and,
within the error bars, tends to a constant value above CSL = 8, which corresponds to contact angles
below 90 deg. Significantly, this is the same threshold below which slip becomes very small.

Figure 8 depicts an example of the decay of the self-correlation function normalized by
the variance of the contact-line position 〈xcl (t + t0)xcl (t0)〉t0/σ

2 for the lowest coupling studied,

FIG. 7. Probability density function (PDF) of the contact-line position about its mean location computed
from the Gaussian fits (lines) to the density histograms (symbols) for a contact line of length 	y = Ly and solid-
liquid couplings CSL ∈ [5, 14]. Inset: Computed σ 2Ly parameters vs the average equilibrium contact angle.
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FIG. 8. Normalized self-correlation function 〈xcl (t + t0)xcl (t0 )〉t0/σ
2 vs time t for CSL = 5 and the fit to

Eq. (6). Inset: Decay parameter b vs the average equilibrium contact angle.

CSL = 5. The line through the data is the best fit to Eq. (6), which yields the decay parameter b. The
values of b found for each coupling are listed in Table I and plotted versus the equilibrium contact
angle in the inset of Fig. 8. The error bars represent the standard deviation of b measured at the four
contact lines. Now that we have both σ 2Ly and b, the coefficients of contact-line friction, ζF , can be
obtained from the fluctuations via Eq. (7). The resulting values are also shown in Table I.

It is interesting that unlike the amplitude of the fluctuations, the correlation decay parameter b
(the units of which are frequency) decreases continuously as the coupling is increased. Given that
the fluctuations of the contact line must reflect the collective behavior of the atoms that comprise it,
both trends are consistent with the MKT. While the characteristic distance of individual molecular
displacements within the three-phase zone, λ, tends to have a fixed value for a given system,
assumed to be related to the distribution of S-L interaction sites (the potential energy wells in
our simulation), both experiment and simulation confirm that the characteristic frequency of the
displacements κ0 decreases continuously with the increasing S-L interaction and therefore with
decreasing θ0 [28].

V. DISCUSSION

Our paper has focused on the use of MD simulations to determine the coefficients of contact-line
friction of a waterlike liquid on a molecularly smooth carbonlike solid surface. We have taken
two different approaches. The first involved dynamic contact angle measurements during both
spontaneous spreading and forced steady wetting. The second was based on a Langevin treatment of
the fluctuations of a contact line at equilibrium. The results are compared in Fig. 9. Both approaches
yield values that are compatible within the probable errors. This is convincing evidence that both
measure the same thing and that the concept of contact-line friction is well founded and capable of
being extended to explore a broad range of wetting problems.

Contact-line friction is an essentially simple concept, not unlike the Navier slip condition. The
proposition is that for a contact line to move at a velocity Ucl , a force Fcl must be applied proportional
to the velocity to overcome resistance to motion along the solid surface, i.e., Fcl = ζUcl . The
prefactor ζ contains no details regarding its origin. It arose, initially, as the linear, low-speed
limit of the molecular-kinetic theory of dynamic wetting discussed in Sec. II A, in which Fcl is
identified with the out-of-balance capillary force γL(cos θ0 − cos θD) that arises when the contact
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FIG. 9. Comparison of the contact-line friction coefficients measured by our three different simula-
tion methods vs the equilibrium contact angle θ0: spontaneous spreading ζSP, moving plates ζMP, and
fluctuations ζF .

angle deviates from its equilibrium value. As envisaged at its inception [46], the MKT encompasses
all dissipative events at the contact line that are susceptible to Maxwell-Boltzmann statistics. Thus
κ0 and λ are effective quantities, not necessarily linked to one type of event. As such, it has proved
effective in describing dynamic wetting in both experiment and simulations.

However, the existence of contact-line friction is not necessarily tied to this explanation.
Equation (2), used to fit our dynamic contact angle data to obtain ζ , contains no molecular
information, and, as we have shown here and previously [22], one can measure ζ simply from
the damping of contact-line fluctuations, without any reference to a particular molecular model.
Thus it is very general. For example, in addition to solid-liquid interactions at the level of individual
molecules, contact-line friction may also occur as a result of microscopic pinning or depinning
events on rough or heterogeneous surfaces [47–49]. More collective events such as these would
have a natural influence on the fluctuations and so would be reflected in the values of σ 2Ly and
b, and hence in ζ . The individual events would go unnoticed in experiments until the scale was
sufficient to cause contact angle hysteresis. Furthermore, in many practical systems other factors
such as insoluble surfactants, colloidal particles, complex rheological effects, or local viscoelastic
deformation of soft substrates might well play a part.

Despite this range of possibilities, the idea that the low-speed regime of dynamic wetting can
be described by a unique prefactor ζ retains within it the powerful idea that the contact region,
however one wishes to model it, is a special place with special properties, which cannot move across
a solid surface without incurring energy loss. Moreover, the Langevin treatment of the contact-
line fluctuations proves that contact-line friction is a function of only the equilibrium properties of
the system. The fluctuations are just the collective result of the thermal motion of the constituent
molecules, and the damping friction they experience arises simply because of their interaction with
the energy landscape of the solid surface.

Our studies have also confirmed the close relationship between contact-line friction and slip at
the solid-liquid interface far away from the contact line. Both appear to be linked by a common
molecular mechanism, as demonstrated in Fig. 5(b) by the close agreement between the measured
and predicted slip lengths. Interestingly, the full sinh form of Eq. (1) has been shown to account very
well for the nonlinear dependence of slip length on shear stress found in MD simulation of simple
liquids on smooth solids [50–52]. Convincing evidence of the nonlinearity predicted by Eq. (1) has
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not yet been reported for dynamic contact angle simulations, but in none of the model systems so
far studied has the argument in the sinh function of Eq. (1), γLλ2/kBT , significantly exceeded unity.
However, the success of the sinh relationship for slip at very high shear stresses is encouraging.

The clear link between contact-line friction and slip serves to emphasize that Eq. (2) may be
regarded as a Navier slip boundary condition specific to the contact line [25,53–56]. This boundary
condition contains not only the required length and energy scales defining slip but also yields the
necessary geometric boundary condition, namely, the local, microscopic contact angle. As such, it
could reasonably be integrated within the continuum hydrodynamic model [56]. Indeed, a recent
multiscale study of droplet spreading has combined the MKT with both MD and computational
fluid mechanics with considerable success [57]. Similarly, a contact-line friction model based on
the general slip model of Thompson and Troian has been successfully used in combination with
computational fluid mechanics. The results compare favorably with MD simulations [58]. In the
same spirit, diffuse interface treatments of the moving contact line have been combined with
numerical modeling to reproduce results that align with MD studies. This has led to a generalization
of the Navier slip boundary condition to include the stress inside the diffuse interface (the GNBC)
[59–62]. Slip at the contact line is then proportional to the sum of the tangential viscous stress
and the uncompensated surface tension stress arising from the deviation in the microscopic contact
angle from its equilibrium value. Thus it seems that our understanding of dynamic wetting is
gradually converging to a more unified view. Ultimately, however, the goal must be to incorporate
the stochastic nature of the moving contact line into continuum mechanics. A move in this direction
has been made by Perrin et al., who used a Langevin description of contact-line motion over
nanoscale defects to construct a multiscale model of dynamic wetting [49].

Finally, we note that the simple linear relationship between force and velocity has potentially
wide applications to wetting processes in nanotechnology, where speeds are likely to be small.
For example, it has recently been applied to the movement of nanodrops across a solid surface
[63]. Here the simulations showed that the same coefficient of contact-line friction could be used
to predict the dynamic contact angle at all points around the liquid drop. It is also worth pointing
out that ζ is demonstrably proportional to viscosity [28]; hence we may also write an equivalent
linear relationship between the capillary number Ca = UclηL/γL and a dimensionless driving force
(cos θ0 − cos θD) [25,56].

VI. CONCLUSIONS

Previous molecular-dynamics investigations of dynamic wetting have, for reasons of computa-
tional economy, usually involved rather simple Lennard-Jones solids and liquids [5–9,20,21,60,64].
Useful insight has been gained regarding the behavior of the local microscopic contact angle and
related phenomena such as slip between liquids and solids. However, questions remain regarding
the generality of the findings when translated to real systems with more complicated structures and
potentials.

To begin to address these questions, we have used large-scale MD simulations to investigate
the velocity dependence of the dynamic contact angle of a waterlike liquid on a flat carbonlike
solid surface. Two configurations have been studied: a liquid drop spreading spontaneously on a
stationary solid surface and a liquid bridge in Couette flow between two solid surfaces moving in
opposite directions at a range of steady speeds. To determine the influence of the intrinsic wettability
of the solid surface, we have systematically varied the solid-liquid attraction, yielding a range of
equilibrium contact angles from 38 to 126 deg. The resulting dynamic contact angle behavior was
found to fall into the linear region governed by Eq. (2), ζUcl = γL(cos θ0 − cos θD), from which we
extracted the relevant coefficients of contact-line friction ζ , which characterize the frictional losses
when the contact line moves across a solid surface. Perhaps more significantly, we have extended
very recent work with L-J liquids [22] to the water system and applied a Langevin formalism to
extract the coefficients of contact-line friction directly from the equilibrium fluctuations of the
contact line, without any additional theoretical interpretation or model.
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The principle conclusion to be drawn from all these different studies using a realistic liquid
simulation is that all three methods measure the same quantity. All three yield values for the
coefficient of contact-line friction that are compatible within the probable errors. Taken together,
our results show that the linear regime of dynamic wetting can be described by a unique prefactor
ζ that is a function of only the equilibrium properties of the system. Contact-line friction is a real
phenomenon that must be accommodated by any complete theory of dynamic wetting [65]. Thus
our general approach to dynamic wetting is consistent and capable of being used to expand our
understanding and explore a broad range of practical wetting problems. These include problems
encountered in areas such as nanotechnology, where the concept of a linear relationship between
driving force and velocity may provide a very useful simplification.

Another finding from our study is that slip between water and a molecularly flat, partially wetted
solid surface is minimal, with slip lengths of little more than the diameter of a water molecule
for equilibrium contact angles of 90 deg or less. Furthermore, we have confirmed a mechanistic
link between the coefficients of slip and contact-line friction. This means that measurements of the
dynamic contact angle or contact-line fluctuations may potentially be used to predict slip and vice
versa. It also opens the way to a more unified hydrodynamic treatment.

In future work we hope to extend these studies to more complex surfaces and explore whether
or not it is possible with MD simulations to demonstrate the nonlinearity predicted by Eq. (1) and
readily seen in experiments. Another goal is to measure both the microscopic and apparent dynamic
contact angles in a single simulation. This could illuminate the crossover between thermally
activated wetting and hydrodynamics.
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