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Capillary drainage of a sessile droplet through a hole
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In this paper, we investigate drainage and oscillation behaviors of sessile drops caused
by capillary drainage through a hole. When a water drop is deposited on a hole drilled on a
superhydrophobic plate in contact with a bath of water from the bottom side, the liquid in
the drop will transport into the bath and a jet is then produced. We focus on the evolution
of the drop diameter D(t ) with time t . For a small drop, a scaling relation D(t ) ∼ t2/7

is observed, arising from the competition between the surface tension and inertia. In
addition, due to the initial perturbation arising from the deposition, both the drop and the
jet show oscillation behaviors. It is observed that the amplitude of the drop oscillation
decreases with time while the frequency increases, and we attribute these behaviors to the
variable drop mass as well as the competition between the capillary force and the inertia.
Considering the present system as a damped harmonic oscillator with variable mass,
theoretical models are proposed, which predict well the experimental results. Moreover,
we develop a way to suppress the initial perturbation, which allows us to create drops
with very large volumes. Our results show that the scaling regime asymptotically reaches
D(t ) ∼ t1/2 when the drop becomes a puddle.

DOI: 10.1103/PhysRevFluids.5.104002

I. INTRODUCTION

Capillary-driven flows are ubiquitous in nature and industry. Investigating flows driven by
capillary forces through a hole is of fundamental importance to understand a variety of natural
and industrial processes, such as drinking strategies of animals [1,2], oil extraction [3,4], flows in
porous media such as soil science and powder technology [5–8], suspensions and emulsion stability
[9,10], pumps in plants [11,12], and energy applications [13], and micro- and nanofluidics [14,15].

One of the most classic phenomena of the capillary flows is the capillary rise [16]. When one
end of a capillary tube is put in contact with water, due to the capillary force, a meniscus liquid-air
interface appears in the tube and climbs along the inner wall of the capillary. This well-known
phenomenon results from a balance between surface tension and viscous resistance. As a conse-
quence, the length of the liquid column increases as the square root of time, generally referred as the
Lucas-Washburn law [17,18]. So far, researchers have developed more complete models to describe
the dynamics of the process. It showed that for inviscid liquid, the dynamic behavior deviates
from the Lucas-Washburn law at short time, due to inertia [6,19,20]; and moreover, deviations
were observed at long time due to gravity [18,21]. In addition, the contact line pinning is often
unavoidable for a real system, Lavi et al. [6] and Hamraoui et al. [22] showed that other deviations
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arise from the additional dissipation associated with the motion of a contact line at the top of the
moving liquid-vapor meniscus. In contrast with the traditional view, Delannoy et al. studied the
reverse capillary rise phenomenon, in which capillary descent with a linear velocity were observed
when a superhydrophobic capillary tube was immersed in water [23].

Beyond the transport stage, researchers have spent a lot of attention on the oscillation behaviors
close to the balance point. When a liquid of very low viscosity is contained in the capillary tube
and the Jurin’s height [16] is reached, it has been found that oscillations occur due to inertia. In this
case, the liquid-vapor meniscus is damped and the oscillation is nonlinear (parabolic) because of the
nonconstant mass of the oscillator [19]. Considering the dissipations resulting from the irreversible
energy loss at the entrance of the tube and the viscous friction inside it, the threshold in viscosity
above which oscillations disappear was calculated [19]. For the inverted capillary rise phenomena
[23], the combination of the viscous friction, gravity force and inertia of water could also lead to
oscillation behaviors, and the threshold for the oscillation was quantified by the tube length and
radius. Moreover, experimental investigations on capillary rise phenomena in closed capillary tubes
were also reported [24,25], but the oscillatory behavior of the meniscus was not observed due to the
friction of the moving contact line.

Despite the fact that the capillary-driven flows have been studied for a long time, there has been
a renewed interest in it because of its great importance in biological function, microfluidic devices
and materials processing. In recent years, researchers developed various physicochemical methods
to extend this phenomenon to much broader regimes. In very small scale, spontaneous absorption
driven by surface tension was studied in the context of metallic liquid droplets and carbon nanotubes
[26], because of carbon nanotubes filled with metal nanoparticles showing promising applications
in treatment of cancerous tumors [27,28]. By employing sessile drops and containers with holes,
power-free pumps having the functions such as spontaneous anti-gravity and long-distance water
delivery were realized thanks to the capillary force [29–31]. Because of the surface tension, small
bubbles always empty into the larger ones, which triggers the foam coarsening and instability, and
determines the foam’s useful lifetime [9]. Moreover, researchers employed the pressure difference
between small and large droplets to transport water to enhance dropwise condensation and water
harvesting [32].

Even though achievements are obtained, we report in this work, among others, drainage and
oscillation behaviors of drops driven by capillary forces through a hole. In our case, when a drop
is deposited on a hole drilled on a superhydrophobic plate in contact with a bath of water from the
bottom side, Laplace pressure will drive a flow that transports water from the drop to the bath and
meanwhile creates a jet in the bath. Despite all the efforts described aforementioned, the underlying
mechanism of this phenomenon has still been largely unexplored. To close the gap, we investigate
the drainage and the oscillation behaviors of drops driven by the capillary flow over a broad range
of parameters, such as the hole diameter and the size of the drops. We hope our results will enhance
the understanding of capillary phenomena and find practical applications in water harvesting and
filtering.

The paper is organized as following. In Sec. II, experimental procedures are described. In Sec. III,
theoretical models are proposed to explain the evolution of the drop, as well as the associated
oscillation behaviors. In Sec. IV, we carry out experiments by employing a way to suppress the
oscillation, and we focus on the two scaling regimes. Final concluding remarks are given in Sec. V.

II. EXPERIMENTS

A. Experimental setup

The experiment setup consists of a needle, a pump, a superhydrophobic aluminum (Al) plate
with a hole, and a container filled with water [Fig. 1(a)]. The horizontal section of the container is
7.4 × 4 cm, and its depth is 15 cm. The Al plate is machined into square shape with a width of 4 cm
and a thickness of 400 µm. To make the Al plate superhydrophobic, we follow a method reported in
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FIG. 1. Experimental setup and samples. (a) Schematic of the experimental setup, which consists of a nee-
dle, a pump, a superhydrophobic Al plate with a hole in the center, and a container filled with water. (b) Wetting
state of a 3.9 µl sessile drop on the superhydrophobic Al plate. The contact angle is θ∗ = 158 ± 2◦. The scale
bar represents 1 mm. (c) Scan Electronic Microscope (SEM, JSM-IT300) imaging of the superhydrophobic Al
plate with a hole. The diameter of the hole is d = 200μm.

Huang et al. [30], which leads to an apparent contact angle θ∗ ≈ 158 ± 2◦ [Fig. 1(b)]. After that, we
drill a hole in the center of the plate via a precision bench drill [Fig. 1(c)], which leaves a hydrophilic
inner wall since aluminum is exposed. Seven samples are prepared with hole diameters d ranging
from 100 to 700 μm.

In our experiments, we first fill the container with water, and then put the Al plate on the top of
water. Water is absorbed immediately into the hole because of the hydrophilic nature of the inner
wall of the hole. For a better visualization, water is dyed in advance using blue ink at a very low
concentration (ink/water <5% (v/v)), so the variation of the water surface tension σ is negligible.
By employing a pump and a needle with different diameters, we are able to quasistatically create
drops with various volumes �0. By an electronic balance, we first measure the total mass of 100
continuous drops, and then we calculate �0 based on the average value and the mass density of
water. The needle is placed on top of the hole. When the drop becomes big enough, it naturally
detaches from the needle tip. To suppress additional inertial force brought by the falling drop, we
try our best to shorten the distance between the hole and the bottom of the drop at the moment when
the drop is dripping.

B. Observations

As shown in Fig. 2(a) with a hole diameter of 200 µm, from the moment that the drop (�0 =
5.8μl) attaches the Al plate, its content is pushed into the lower bath through the hole (see movie
1 in the Supplemental Material [33]). We also observe oscillations of the drop during the drainage
(more details will be given in the next section), but in this case the oscillation is weak in the image
sequences of Fig. 2. Meanwhile, as shown in Fig. 2(b), a starting jet with a toroidal (mushroomlike)
vortex at its front is generated in the bath (�0 = 3.8μl, see movie 2 in the Supplemental Material
[33]). For a better visualization, we demonstrate these processes in Fig. 2(a) and Fig. 2(b) separately.
Even though the drop has totally disappeared (i.e., at 144.4 ms), the jet continues to move forward
and lasts a while.

Next, we check the influence of the hole diameter on the drainage dynamics of the drop. As
shown in Fig. 3 with a hole diameter of 600 µm, we observe similar dynamic phenomena as shown in
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FIG. 2. Evolution of the drop and the jet. The diameter of the hole is 200 μm. (a) Details of the drainage
of the drop. The video is recorded at 4000 fps. The initial volume of the drop is 5.8 µl. (b) The evolution of the
jet. The video is recorded at 3200 fps. The initial volume of the drop is 3.8 µl. The scale bars represent 1 mm.

(b)

(a)

83.5 ms66 mssm 84sm 0 42 ms sm 87sm 9

44.7 ms24.1 mssm 2.71sm 0 10.3 ms sm 9.03sm 4.3

FIG. 3. Evolution of the drop and the jet. The diameter of the hole is 600 µm. (a) Details of the drainage
of the drop. The video is recorded at 4000 fps. The initial volume of the drop is 9.5 µl. (b) The evolution of the
jet. The video is recorded at 3200 fps. The initial volume of the drop is 3.8 µl. The scale bars represent 1 mm.
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FIG. 4. Inner flow fields of the drop captured by micro-PIV. (a) Inner flow with fluorescent particles under
a laser sheet. (b) Color time-lapse images during different stages. The color scale bar shows the frame varying
with time. The volume of the drop is 5.8 µl, corresponding to an initial diameter of 2.3 mm. The scale bars
represent 1 mm.

Fig. 2. However, Fig. 3(a) shows more obvious oscillations of the drop during the drainage process
(see movies 3 and 4 in the Supplemental Material [33]), which is remarkably different from the
typical oscillation of a sessile drop with a fixed volume [34–36]. Moreover, for drops with the same
volume (i.e., �0 = 3.8μl), the depletion time of the drop [∼40 ms, see Fig. 3(b)] is much smaller
than the smaller hole [∼140 ms, see Fig. 2(b)]. Here, the depletion time is defined as the duration
from the moment when the drop touches the hole to the moment that it totally disappears.

C. Inner flow fields

To understand the underlying mechanisms, as shown in Fig. 4(a), we carry out experiments
via a micro resolution particle image velocimetry (micro-PIV) to capture the inner flow field
of the drop. Fluorescent particles with a diameter of 1 µm are first added into the drops. The
fluorescent particles are polystyrene microspheres, and the mass density is 1.055 g/mm3 (Invitrogen
Corporation, F13082). A laser sheet from a semiconductor laser (1500 mW, 532 nm) is created and
focuses on the meridian plane of the drop. For a better visualization, the images of the drop and the
jet are acquired separately. Because of the oscillation of the fluid caused by the initial perturbation,
we can only obtain a vivid fluorescence observation of the drop with a hole diameter of 100 µm.
When the hole diameter d � 100 µm, the fluorescence observation is pretty scattered.

In Fig. 4(b), we present color time-lapse images of the phenomenon. Each image is a superpo-
sition of 30 time-lapse sequences, and the duration is 30 ms. In this way, we are able to visualize
the inner flow field of the drop at different stages (see movie 5 in the Supplemental Material [33]).
Because of the unavoidable perturbation when the drop touches the Al plate, the left and right sides
of the stream lines are not very symmetric at the initial moment. However, after a while (∼100 ms),
the inner flow field is quite smooth and symmetric.

Furthermore, we also capture the vivid fluorescence observation of the jet. Generally, we observe
three kinds of behaviors of the jets, that we attribute to different initial perturbations. As show in
Fig. 5(a) (see movie 6 in the Supplemental Material [33]), in the absence of any visible perturbation,
the front of the jet moves forward very steadily, and the axis of the jet is close to a straight
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(c)

FIG. 5. Three kinds of performance of the jets observed by employing the micro-PIV technique. The left
panels are sketches. (a) A steady motion of the jet when the oscillation is very small. (b) A plunging jet.
(c) A jet with its trace deviating from its axis. The diameter of the hole is 200 µm. The volumes of the drops are
5.8 µl, corresponding to initial diameters of 2.3 mm.

line. However, if the perturbation is more visible during the deposition of the drop, then the jet
demonstrates very different dynamics. As shown in Fig. 5(b) (see movie 8 in the Supplemental
Material [33]), if the drop oscillates vertically, then we observe a plunging jet moving forward along
its axis. Furthermore, as shown in Fig. 5(c) (see movie 7 in the Supplemental Material [33]), if there
are some lateral perturbations, then we observe that the trace of the jet deviates away alternatively
from its axis, and it seems that the jet undergoes periodic oscillations by constantly interchanging
its position with respect to its axis. Studying/explaining these complex flow phenomena (such as
the jet penetration depth, jet liquid column instability, and the deformation of the jet head) in their
entirety is a challenging and extensive work going beyond the scope of this paper. Instead, here our
attention will be focused on the drainage and the oscillation behaviors of the drop.

III. RESULTS

A. Drainage of the drop

In this section, we describe the underlying mechanisms which controls the drainage behavior of
the drop. Experiments are carried out from different views. We first fix the diameter of the hole but
vary the initial volume of the drop.
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FIG. 6. Evolution of the drop diameter with time. The diameter of the hole is 100 µm. Drops with volumes
of 3.8, 5.8, and 9.5 µl are employed, and five tests are carried out for each volume. (a) Evolutions in the normal
plot. The inset is an enlargement of the oscillation of the early time. (b) Log-log plot of (a), showing a scaling
relation D(t ) ∼ (t0 − t )2/7.

As shown in Fig. 6 with a hole diameter of 100 µm, the evolutions of the drop diameters
(corresponding to initial volumes of 3.8, 5.8, and 9.5 µl) with time are plotted in the linear and
log-log plots, respectively. Here, D(t ) is defined as the instantaneous lateral diameter of the drop,
and t represents the elapsed time starting from the moment that the drop touches the hole. For each
volume, five tests are carried out, and we can see there is a very good repeatability and the five
curves well overlap each other. For the sake of simplicity, we mark the data of different volumes
using the top color of each five tests. In Fig. 6(a), we can see there is an initial slope dD(t )/dt for
each volume and the initial slope is smaller when the initial drop volume is bigger. When plotting the
experimental data in the log-log diagram, as shown in Fig. 6(b), a scaling relation D(t ) ∼ (t0 − t )2/7

is observed. Here, we define t0 as the depletion time, in other words, D(t = t0) = 0.
To deepen our understanding, as shown in Fig. 7, we monitor the evolution of the drop diameter

by using hole diameters ranging from 200 to 700 µm. For each hole diameter, drops with two to four
different volumes are tested, and we carry out five experiments for each volume. We can notice the
remarkable repeatability for all the cases of the hole diameter and the drop volume.

As seen from Figs. 6 and 7, the experimental curves exhibit the following features. (i) For a
fixed value of the hole diameter, the depletion time of the drop increases with its initial volume. For
example, when d = 200μm, t0 increases from ∼140 ms for �0 = 3.8μl to ∼1.22 s for �0 = 25μl.
However, for a fixed value of the drop volume, the depletion time of the drop decreases with
the hole diameter. For example, when �0 = 9.5μl, t0 decreases from ∼6.6 s for d = 100μm to
∼70 ms for d = 700μm. (ii) For each case, oscillations are observed during the drainage of
the drop, and the frequency increases with time while the amplitude decreases. Generally, the
oscillations are more pronounced for larger initial drop volume (for a fixed hole diameter) or
larger hole diameter (for a fixed drop volume). This phenomenon is remarkably different not only
from the oscillation behaviors of sessile drops with fixed volumes [34–36], but also from the
meniscus oscillations in capillary tubes around a fixed value of equilibrium height/depth [19,23,37].
(iii) Based on the five curves for each case with a fixed hole diameter and a fixed drop volume,
Figs. 6 and 7 show that the repeatability of the experiment is extremely good, even though we could
not quantitatively characterize the initial perturbation.

B. Theory

In this section, we put forward theoretical analyses to understand the drainage dynamics we have
observed in the above. Here, we want to emphasize that, we first take D(t ) as the average value of the
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FIG. 7. Evolution of the drop diameter by employing Al plates with hole diameters ranging from 200 to
700 µm, as shown in panels (a)–(f), respectively. Drops with different volumes are tested, and there are five
experiments carried out for each volume.

instantaneous diameter of the drop, and we will take the oscillation behaviors into consideration in
the next section. Because of the surface tension and the curvature of the drop surface, the pressure
difference (i.e., the Laplace pressure �P = Pin − P0) between the liquid in the drop Pin and the
environment P0 exists [16]. Since the surface of water in the container is flat, the pressure on the
top of the bath is equal to the ambient pressure P0. When the drop touches the hole, the Laplace
pressure �P drives a flow, which accounts for the drainage of the drop and the appearance of the
jet. For the sake of simplicity, we adopt the shape of the drop as spherical, and we obtain

�P = 2σ

R(t )
, (1)

where R(t ) = D(t )/2 represents the average value of the instantaneous radius of the drop on its
equatorial plane.

Assuming that the viscous dissipation could be neglected, for a certain moment t , we can describe
the dynamics using the Bernoulli’s principle at a given time t , i.e., Pin = P0 + [ρU (t )2)]/2, in
which ρ is the mass density of water and U (t ) is the instantaneous velocity of water through the
hole. However, strictly speaking, the flow of our study is not perfectly inviscid. As a consequence,
although the Al plates are very thin, U (t ) is not uniform around the hole. Therefore, we use a
modified version of Bernoulli’s principle to connect Pin, P0, and U (t ),

Pin = P0 + 1
2αρU (t )2, (2)

where α is an unknown factor to correct the relationship, and we assume α to be constant during
the drainage with given values of the initial drop diameter and the hole diameter. Based on these
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analyses, the dynamic equation could be built by balancing the capillary and inertia effects,

2σ

R(t )
= 1

2
αρU (t )2. (3)

Moreover, the conservation of volume flux during the drainage of the drop can be written as

−4πR2(t )
dR(t )

dt
= AU (t ), (4)

where A = π (d/2)2 is the cross-section of the hole. A combination of Eqs. (3) and (4) leads to

−dR(t )

dt
= c1 · 1

R5/2(t )
, (5)

in which c1 = [σA2/(4π2αρ )]1/2 is a coefficient. With respect to the boundary condition
R(t = 0) = R0, a further integration of Eq. (5) leads to

R(t ) =
(

R7/2
0 − 7

2
c1t

)2/7

=
(

7

2
c1

)2/7

· (t0 − t )2/7, (6)

where we have t0 = (2/7)R0
7/2/c1 from the boundary condition R(t = t0) = 0. Moreover, based on

the expression we have found for c1, we further obtain

t0 = 4π

7

(ρ

σ

)1/2 α1/2R7/2
0

A
≈ 1.8

(ρ

σ

)1/2 α1/2R7/2
0

A
. (7)

From a theoretical point of view, Eqs. (6) and (7) are closed-form solutions of the drainage of
the drop, and α is the sole unknown factor (but may relate to R0 and A). Since σ , A, ρ, and R0

are known, and t0 can be measured directly from the experiments, we could determine the values
of α, as well as c1. Moreover, based on an estimation of α, we could predict the depletion time
t0. However, in actual experiments, neither α nor t0 could be precisely determined. The value of α

would vary with time because of the time-dependent influence of the viscous dissipation and the
velocity distribution around the hole. Moreover, when the diameter of the drop reaches the diameter
of the hole, the solid-liquid-vapor three-phase contact line pins at the edge of the hole, such we
cannot measure R(t ) and t0 directly. For each curve in Figs. 6 and 7, we end the measurement of
D(t ) when the drop is close to a hemisphere. Finally, we find α and t0 by fitting the experiment data
with Eq. (6). To exhibit the scaling nature of the problem, we reorganize Fig. 7 into Fig. 8 using the
log-log plots. All the data follow the scaling D(t ) ∼ (t0 − t )2/7 very well, and the oscillations do
not change this conclusion.

Here, we discuss further about the rationalization of our understandings in the above discussion,
especially the modified version of Bernoulli’s principle we have used. First, we define the Reynolds
number as Re = ρUd/η, where η ≈ 0.001 Pa·s is the dynamic viscosity of water. Strictly speaking,
Re varies with time because of the nonconstant volume flux through the hole. Here, by calculating
the characteristic velocity through U ≈ �0/(At0), we give an estimation of the characteristic value
of Re, where we approximate t0 as the moment that the experimental data ends (see Figs. 6 and 7).
In this way, and meanwhile considering the drop volume we use, we estimate that Re > 200 when
d ∈ [500μm, 700μm], Re > 100 when d ∈ [200μm, 400μm], and Re ≈ 20 when d = 100μm.
So, we conclude that the viscous force does not play a significant role when the liquid flows through
the hole. For a certain volume (i.e., �0 = 9.5μl, see Fig. 9 in the next section and Table S1 in the
Supplemental Material [33]), the values of α are obtained by fitting, and for most cases, the values
of α are very close to 1.0, which suggests that the model we have constructed is acceptable.

C. Oscillation of the drop

We are interested in the oscillation behaviors because of their ubiquity during the drainage of
the drop (see movies 1–4 in the Supplemental Material [33]). Here, we quantify the oscillation
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FIG. 9. Comparisons between the experimental data (in black) and the theoretical model (in red). The hole
diameter ranges from 200 to 700 µm, as shown in panels (a)–(f), respectively. The volumes of the drops are
fixed at 9.5 µl.
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behavior by a combination of the mechanism of a damped harmonic oscillator and a scaling analysis.
Such an attempt has been widely employed to understand the oscillation phenomena of liquids,
such as coalescence of bubbles and drops [38–42], pending and sessile drops [36,43,44], liquids in
confinements [24,45], etc.

For convenience, we use the theoretical models employed in previous works [36,38,39,42,45],
but with necessary modifications considering the variable mass of the drop in our problem. The
differential equation of a damped harmonic oscillator is as follows:

m�̈(t ) + b�̇(t ) + k�(t ) = 0, (8)

where �(t ) = Dosc(t ) − D(t ). We use Dosc(t ) to denote the instantaneous diameter of the drop in
its equatorial plane and to differentiate it from its average value D(t ) at a certain moment. m is the
drop mass, b is the damping coefficient, and k is the spring constant. The magnitude of the relevant
parameters could be identified by a scaling analysis, i.e., m ∼ ρR3, b ∼ ηR, and k ∼ σ . Here, we
have to emphasize that the drop mass is changing with time, so our problem is quite different from
the previous works in which certain values of the liquid mass were considered [38–45]. Face such
a situation, we solve the problem along the following line of thought: we assume that Dosc(t ) could
be decoupled by a steady flow (i.e., D(t ) in the last section) and a damped harmonic oscillator �(t )
with a certain volume. As a result, we write the approximate solution of Eq. (8) in dimensionless as

D̄osc(t ) = D̄(t ) + a1 exp (−a2 · Oh · t̄ ) · sin

(
2π

a3
· t̄ + ϕ

)
, (9)

where D̄osc(t ) = Dosc(t )/D0, D̄(t ) = D(t )/D0, t̄ = t/t∗. t∗ is the capillary time and defined as
t∗ = (ρ�0/σ )1/2 [46]. The Ohnesorge number is defined as Oh = [η2/(ρσR0)]1/2 and its value
is quite small (see Table S1 in the Supplemental Material [33]). a1, a2, a3, and ϕ are coefficients.
Strictly speaking, since the drop mass is time-dependent, the values of Oh and t∗ might be also
time-dependent, as well as the coefficients a1, a2, and a3. To make the problem simpler, we use
constant values of Oh and t∗ as defined, and we also assume the values of a1, a2, and a3 are
constant in each case and we determine them by fitting the experimental data (see the Supplemental
Material [33]).

To check the generality of our model, as shown in Fig. 9, we give comparisons between the
experimental (black curves) and the theoretical results [red curves, Eq. (9)] with the hole diameters
ranging from 200 to 700 µm. The initial volumes of all the drops are �0 = 9.5μl. We can see that
Eq. (9) reproduces the experimental results reasonably well in the first several periods, and it is not
surprising that deviations happen at the later stage. To more closely capture the oscillation behaviors
in the later stage, the time-dependent property of the parameters such as Oh, t∗, a1, a2, and a3 has to
be considered. The approximate models we have built for the oscillation analyses could be treated
as a preliminary trying. More elaborate theories on the basis of the Navier-Stokes equation need to
be developed in the future, and then the oscillation problem would be solved from the source.

Moreover, we also measure the value of the depletion time experimentally, denoting as t0_ exp.
Then, we put t0_ exp and t0 (obtained via Eq. (7) based on the value of a found through a fitting from
the experimental data, see the Supplemental Material [33]) into Fig. 10 to make a comparison. The
black straight line represents the equality of the axes of the plot, and is used to guide the eye. We can
see that the quantities obtained theoretically follow very well with the experimental measurements.

IV. LIQUID PUDDLES

In the previous experiments, the drop was small when compared with the capillary length and
its shape was therefore spherical. We now focus on drops of large volume, i.e., puddles. However,
the method presented before cannot be used in this case. On the one hand, when the volume of the
drop is large enough, it will detach the needle because of the Rayleigh-Plateau instability [47]. On
the other hand, when the falling drop touches the hole, drainage starts and we could not continue
to statically add water into the drop to create a very large volume. To solve the problem, we herein
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FIG. 10. Comparison between the depletion time of the theoretical results t0 and the experimental mea-
surements t0_ exp. The black line is used to guide the eye. Error bars are smaller than the symbol size.

employ a different way. First, we lift the Al plate to guarantee there is a gap between it and the bath
of water. Then, we deposit sufficient water around the hole on the upper side of the Al plate. Since
the hole is very small and both sides of the Al plate are superhydrophobic, there is no leakage of
water from the hole. After that, we wait a while until the drop is steady. Then we carefully lower the
position of the Al plate to let it touch the bath of water in the container. From this moment, drainage
of the drop starts to happen. By employing this method, we could not only significantly increase
the drop volume and create big puddles, but we could also largely suppress the initial perturbation
and the oscillation of the liquid during the drainage (see movies 9 and 10 in the Supplemental
Material [33]).

In Fig. 11, we show the new results obtained with large puddles, and compare them with the
results of small drops. Six drops/puddles with initial diameters D0 on their equatorial plane ranging
from 2.66 to 17.72 mm are employed, and the hole diameter is kept at 200 µm. For the big puddle
as shown in the second panel of Fig. 11(a), when drainage starts, the variation of its height is not
obvious compared with its width. After some time (∼75 s), it gradually approaches a spherical
shape like a drop with a small initial volume as shown in the first panel of Fig. 11(a). We give
the evolution of the diameters of the drops and puddles in Figs. 11(b) and 11(c) linear and log-
log plots, respectively. It is interesting to see that the drainage of the big puddle obeys a scaling
relation D(t ) ∼ (t0 − t )1/2 in the early stage, and then follows D(t ) ∼ (t0 − t )2/7 when it becomes
small enough. Moreover, during the whole drainage process, the oscillation behavior is significantly
suppressed.

The new scaling relation D(t ) ∼ (t0 − t )1/2 could be obtained by the following arguments. For
big puddles, its height is close to 2lc, where lc is the capillary length defined by lc = (σ/ρg)1/2

[16], denoting g the gravitational acceleration. For water at the ambient environment, lc ≈ 2.73 mm.
Similar to the analyses in the last section, the pressure difference which drives the liquid could be
written as

�P = σ

lc
, (10)

and then we build the dynamic equation

σ

lc
= 1

2
αρU (t )2. (11)
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FIG. 11. Evolution of drops/puddles with different initial sizes. (a) Comparison of the drainage processes
between a small drop and a big puddle. The scale bars represent 1 and 5 mm, respectively. Linear (b) and
log-log (c) plots showing the relationships between D(t ) and t , and between D(t ) and (t0 − t ), respectively.
The inset in (b) is an enlargement for the small drops. The solid lines in (c) represent D(t ) ∼ (t0 − t )2/7 and
D(t ) ∼ (t0 − t )1/2, respectively. Legend numbers 1–6 represent the initial diameter of the puddles/drops, i.e.,
D0 = 17.72, 17.27, 13.57, 10.97, 2.66, 2.27 mm, respectively.

In this case, we have the following conservation of volume flux during the drainage of the puddle:

−4π lcR(t )
dR(t )

dt
= AU (t ). (12)

Here, we emphasize that R(t) is the instantaneous radius of the puddle on its equatorial plane. A
combination of Eqs. (11) and (12) leads to

−dR(t )

dt
= c2 · 1

R(t )
, (13)

where c2 = [σA2/(8π2lc
3αρ )]1/2 is a factor. Regarding the boundary condition R(t = 0) = R0, a

further calculation of Eq. (13) leads to

R(t ) = (
R2

0 − 2c2t
)1/2 = (2c2)1/2(t1 − t )1/2, (14)

where we define a factor t1 = R0
2/(2c2). However, Eq. (14) only represents the early time of the

drainage process, c2 (or α) are found out through fitting a part of the experimental data. Then, on
the basis of c2 and R0, we could calculate t1, and the physical meaning of t1 is the moment that the
1/2 scaling ends up.

As shown in Fig. 11(c), the experimental data of large puddles in the early time follow the 1/2
scaling as Eq. (14) predicts. However, the 1/2 scaling law in the log-log plot is not so remarkable
when compared with the 2/7 one. To extend the 1/2 scaling regime to more decades, extremely
large puddles are needed to prepare, which is challenging for the present experiment.
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V. CONCLUDING REMARKS AND OUTLOOK

In summary, we have investigated the drainage and oscillation behaviors of drops driven by
capillary flow through a hole. Due to the size-dependent Laplace pressure resulting from the variable
mass of the drop, scaling relations of the drainage of the drop diameter with time have been
identified. For small drops, we reveal that D(t ) ∼ t2/7 is obeyed globally during the whole drainage
process, whereas for big puddles, we reveal that the drainage obeys D(t ) ∼ t1/2 and D(t ) ∼ t2/7 in
the early and latter stages, respectively. Experimental and theoretical results are in good agreement.
Moreover, based on scaling analyses, we have modeled the drop as a damped harmonic oscillator
under the initial perturbation and with variable mass, and the theoretical results finely follow the
experimental data. We expect our results will find practical applications, for instance, in the field
of liquid transport, oil extraction, interstitial flow, oil/water separation and so on. Furthermore, we
hope our work will deepen our knowledge about the damped oscillator with variable mass driven by
capillary forces. It would be interesting to extend our results to the case of viscous or non-Newtonian
liquids. Further studies should be devoted to examining the complex dynamics and instability of the
jet inside the bath of water.
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