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Instability of steady flows in helical pipes
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A parametric numerical study of three-dimensional instability of steady flows in a helical
pipe of arbitrary curvature and torsion is carried out. The computations are performed by
a numerical approach verified against independent experimental and numerical results in
a previous study. A possible power dependence of the friction factor on the Reynolds and
Dean numbers is examined. The stability results are reported as dependences of the critical
Reynolds number, critical wave number and the critical frequency on the dimensionless
pipe curvature and torsion. A multiplicity of different disturbance modes becoming most
unstable at different values of the governing parameters, is observed. Patterns of the most
unstable modes are reported and classified. Different routes to instability including viscous
and inviscid mechanisms, locally developing boundary and mixing layers, interaction
between the Dean vortices, and the through flow are described.
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I. INTRODUCTION

Instabilities of pressure gradient driven flows in helical pipes have been studied since the
pioneering works of White and Taylor [1,2]. The fully developed steady flow in a helical pipe is
noticeably more complicated than in a straight one, since the centrifugal and Coriolis forces induce
additional spanwise vortical motion known as the Dean vortices. The Dean vortices necessarily
appear in the helical pipe flow at any, even very small, pressure drop [3]. These vortices effectively
mix either heat or mass without any need of additional mixing means, which resulted in their wide
usage in various applications (see, e.g., Ref. [4]). Contrarily to flows in straight ducts, circular or
rectangular, the helical pipe flow does not allow for an analytical solution for the steady base flow
state, so that the numerical modeling is called for, even at low and moderate values of the Reynolds
number. In this paper, we focus on examination of the stability of the calculated steady flows and
computation of critical parameters at which the primary transition from steady to oscillatory flow
takes place.

A particular interest in instabilities of the helical pipe flows is connected with the fact that unlike
straight circular pipe flows, which have no linear stability limit [5], the helical pipe flows become
linearly unstable at finite Reynolds numbers even at very small curvatures. Moreover, the computed
and measured critical Reynolds numbers are very close starting from dimensionless curvature 0.01
[6,7], which shows that the transition takes place owing to the linear instability.

Assuming that helical pipe is infinite and has a uniform torsion, the flow is invariant regarding
a position along the pipe center line. The latter allows for a two-dimensional solution for the base
flow. The corresponding curvilinear orthogonal coordinates were proposed by Germano [8], which
made fully nonlinear computations of steady helical pipe flows affordable [9–13]. Formulation in
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the Germano coordinates [8] is applied also in this study, which makes the base state dependent on
only two coordinates. Periodicity of perturbations along the third coordinate is assumed. Calculation
of the steady base flow and the linear stability analysis is carried out using the numerical approach
described in Ref. [14], which is quite general for a two-dimensional steady base flow subject to
three-dimensional infinitesimal disturbances that are periodic in one spatial direction.

Several researchers have studied instability onset in different helical pipes experimentally
[1,2,15–20]. Most of the numerical studies of stability of helical pipes flows addressed either only
two-dimensional disturbances [17], or only toroidal geometry [6,20,21], which is a limit case of a
helical pipe with the zero torsion.

In our recent paper [7] we applied the numerical approach of Ref. [14] and established conver-
gence of steady flows and eigenvalues of the linearized problem associated with their linear stability.
An additional validation of calculated steady flows was obtained by comparison with the friction
factors measured in Ref. [22]. Then we reviewed all cited above stability results and compared
between them. It was shown that the results obtained using the present numerical technique agree
well with the numerical results of Ref. [6] computed for a toroidal pipe, as well as with the
experimental results of Refs. [18,19] obtained for the toroidal pipes and the helical pipes with
small torsion. All the other experimental and numerical results cited above exhibit a considerable
scatter and the reported critical Reynolds numbers are considerably larger than those reported in
later experiments of Refs. [18,19]. In Ref. [7] we also could partially reproduce the experimental
results of Ref. [17] obtained for large torsions, much larger than those applied in other experimental
studies. Additionally, two examples of neutral stability curves for fixed values of the curvature and
torsion were reported.

In this study we recall the convergence and validation studies reported in Ref. [7] and present
an additional independent comparison with the friction factors measured in Ref. [23]. A computed
series of dependencies of the friction factor on the Reynolds number allow us to address a “paradox”
described in Ref. [24] and to show that there is no a “universal” power dependence of the friction
factor on the Reynolds or Dean number. Then, basing on the established in Ref. [7] convergence of
the steady flows and the eigenvalues of the linearized governing equations, we focus on parametric
studies of instabilities of the helical pipe flows. These flows are defined by three governing
parameters, the Reynolds number Re, the dimensionless curvature ε, and the dimensionless torsion
τ of the pipe. As mentioned above, the linear stability of this flow in a toroidal pipe (τ = 0) was
studied in Ref. [6] and the results were verified against the experiments [18], and later numerically
in Ref. [7]. Several examples of stability results for a nonzero torsion were presented in Ref. [7];
however, no systematic study where the torsion and the curvature are varied independently was
ever published. In this study we expand the parameters range and report the stability results for the
dimensionless pipe curvature and torsion varying in the intervals 0.01 � ε � 0.6 and 0 � τ/ε � 5.
To the best of the author’s knowledge, such a parametric study is carried out for the first time.

The previous [6,7,17] and present studies of the linear stability of helical pipe flow showed that
the primary instability sets in at the critical Reynolds number as a transition to a three-dimensional
oscillatory flow. The instability is characterized additionally by the oscillation frequency ωcr,
the wave number kcr that defines periodicity along the pipe center line, and the most unstable
perturbation represented by the leading eigenvector of the linearized governing equations. It is a
common place nowadays that in the course of a linear stability study, one observes several most
unstable disturbances (perturbation modes) that replace each other with variation of the governing
parameters. Several examples of that for convective and rotating flows can be found in Ref. [25].
In the considered ranges of the curvature and torsion, this study revealed 13 different most unstable
perturbation modes replacing each other in the (ε, τ ) plane.

In this study we make an attempt to classify the computed perturbation modes, to describe their
features, and to offer, at least hypothetically, an explanation for possible physical mechanisms that
lead to the onset of instability. Slightly supercritical three-dimensional flows are visualized in the
cross-pipe planes using the divergence free projection approach of Ref. [26]. We observe that in
different flow configurations, the instability sets in either in both Dean vortices, or only one of
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FIG. 1. Sketch of a helical pipe (left) and illustration of helical coordinates introduced by Germano [8].
Directions of the coordinate axes x, y, r, and θ correspond to those introduced in Refs. [8,28].

them, sometimes altering the whole vortex and sometimes only in a boundary layer. In some cases
we observe instabilities arising in locally developing viscous boundary layers, while in other cases
we observe an inviscid instability of local mixing layer configurations. The number of possible most
unstable modes grows with the increase of the pipe curvature. This multiplicity of different patterns
necessitates a large amount of graphical representations, which are supplied by animation files [27].
The latter helps to understand the structure of most unstable perturbations, and to visualize slightly
supercritical flows.

II. FORMULATION OF THE PROBLEM

A. Coordinate system

To orthogonal coordinates of Germano [8] are based on the parametric definition of a helical
curve

R0(t ) = {x(t ), y(t ), z(t )} = {ccos(t ), csin(t ), bt}, (1)

where c is the radius of the helix, 2πb is distance between coils (see Fig. 1), and t is a parameter.
Its curvature κ and torsion τ are defined as

κ = c

b2 + c2
, τ = b

b2 + c2
. (2)

Their ratio is λ = τ/κ = b/c.
Starting from a toroidal pipe, which is a particular case of the helical pipe with zero torsion, we

note that the same local polar coordinates can be defined in every cross section [6,11]. The third
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orthogonal coordinate is a position along the pipe center line s. To preserve this orthogonality for an
arbitrary helical pipe of the uniform torsion τ , position of the zero polar angle θ = 0 (Fig. 1) must
be varied along the pipe center line as

ξ = θ −
∫ s

s0

τ ds = θ − τ (s − s0). (3)

The resulting coordinate system (r, ξ , s) is orthogonal. The Lamé coefficients of these coordinates
are Hr = 1, Hξ = r, Hs = 1 + krsin(ξ ). Assuming that the three fluid velocity components and the
pressure are independent of the position at the pipe center line, i.e., independent of s, we arrive at a
two-dimensional formulation for the velocity and the pressure of the base flow dependent only on r
and ξ .

Consider a flow of incompressible fluid in a helical pipe of inner radius a, radius of coil c, and a
constant distance between the coils equal to 2πb. The pipe is sketched in Fig. 1(a). Figures 1(b)
and 1(c) help to understand the arrangement of the coordinate system for a helix [Fig. 1(b)]
and for a particular case of torus [Fig. 1(c)]. In the plane occupied by the torus center line we
define a system of polar coordinates (R, φ), which produces also a system of Cartesian coordinates
X = Rcos(φ), Y = Rsin(φ). The latter is not shown in the figure, but its location is obvious.
The tangent to the center line is defined by T = dR/ds = −eX sin(φ) + eY cos(φ), and the normal
N = RdT/ds = −eX cos(φ) − eY sin(φ). These vectors are shown in Fig. 1(c). Now, in the normal
to the center line cross section of the torus, we define a local Cartesian system so that the axes x
and y are parallel to the vectors N and T , respectively. This brings us to the system of coordinates
introduced by Wang [28] and then used by Germano [8]. The resulting system of coordinates is the
position along the center line s, and the polar coordinates r and ξ in the pipe cross section, where
the zero position of ξ depends on the position s according to Eq. (3). It is depicted in Fig. 1(b).

B. Governing equations

The flow is driven by a pressure gradient dP/ds = G, which is constant along the pipe center line
and is governed by the continuity and momentum equations. The three dimensionless parameters
defining the problem are the dimensionless curvature ε = aκ , the torsion to curvature ratio λ, and
the Reynolds number Red = Ūd/ν, where d = 2a is the pipe diameter, ν is the kinematic viscosity,
and Ū is the flow mean velocity. The Dean number Ded = Red

√
ε sometimes replaces the Reynolds

number.
As explained in Refs. [7,11], the above definition of the Reynolds number requires the mean

velocity value. This is convenient for experimental studies, however, in a numerical study, the
mean velocity can be found only after calculation of the flow. For an alternative nondimension-
alization, the pressure gradient based scales introduced in Refs. [7,11] are applied. The scales of
length, time, velocity, and pressure are defined as a, (ρa/G)1/2, (Ga/ρ )1/2, and Ga, respectively.
The resulting system of the dimensionless continuity and momentum equations reads [recall that
Hs = 1 + krsin(ξ )]

∇ · v = 0,
∂v

∂t
+ (v · ∇ )v = − 1

Hs
es − ∇p + 1

RG
�v, (4,5)

where the dimensionless parameter RG = (Ga3/ρν2)1/2 replaces the Reynolds number. The no-slip
condition is posed on the pipe wall. The resulting Reynolds number is calculated as Red = 2V̄GRG,
where V̄G is the dimensionless average velocity obtained using the above formulation. All further
details can be found in Ref. [7]. The governing equations for each velocity component are listed
in Appendix. For the further visualization purposes we mention only the pseudo-streamfunction ψ

defined as

vr = 1

rHs

∂[Hsψ]

∂ξ
, vξ − ελr

Hs
vs = − 1

Hs

∂[Hsψ]

∂r
. (6)
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In the following, the velocity component vs is called center line velocity, and part of the flow
described by the pseudo-streamfunction is called cross-sectional flow. The Dean vortices corre-
sponding to the negative and positive values of ψ are called “negative vortex” and “positive vortex,”
respectively. In the plane chosen for plots, the motion in negative vortices is counter-clockwise,
while the motion in positive vortices is clockwise. Also, in all plots and animations below the blue
color corresponds to the smallest values of depicted functions, and the red color to the largest values.
Thus, negative and positive vortices can be distinguished by the blue or the red in their cores.

The linear stability of the calculated steady flows is studied assuming three-dimensional infinites-
imally small disturbances that are periodic along the pipe center line direction s. The perturbations
were represented in the form {ṽ(r, ξ ), p̃(r, ξ )}exp[σ t + iks], where σ is the complex growth rate, k
is the wave number along the center line, and tildes denote the infinitesimally small variables. The
linearization procedure is straightforward and is described in Ref. [7]. The corresponding linearized
equations are listed in Appendix.

The linear stability problem reduces to the generalized eigenvalue problem

σB(ṽ, p̃)T = J(ṽ, p̃)T , (7)

where J is the complex Jacobian matrix and B is the diagonal matrix such that its diagonal elements
corresponding to the time derivatives of ṽ are equal to one, while the elements corresponding to p̃
and the boundary conditions are zeros. Since the matrix B is singular, the generalized eigenproblem
(7) is treated in the shift-and-inverse formulation, as described in Ref. [14].

III. NUMERICAL TECHNIQUE AND TEST CALCULATIONS

The continuity and momentum equations were discretized on staggered grids using central
finite differences with linear interpolation between the nodes where necessary. Steady flows were
calculated by Newton iteration in the same way as in Ref. [14].

Study of the stability of an s-independent two-dimensional steady flow for a given set of the
governing parameters proceeds in the following way. For a fixed value of the wave number k
we vary the complex shift σ0, calculating each time 10–20 eigenvalues closest to the shift, until
the eigenvalue σ of the eigenproblem (7) having the largest real part is found. This process is
repeated for different values of the wave number k until the eigenvalue σ̂ having the largest real
part for all real wave numbers k is computed. This eigenvalue is called the leading eigenvalue.
If Real[σ̂ ] = maxk{Real[σ (k)]} > 0 then the steady flow is unstable. Our purpose is to find the
critical value of the number RG,cr, dependent on ε and λ, at which Real[σ̂ (kcr )] = 0, where kcr

is the critical wave number, at which the above equality holds. In all the calculations described
below the imaginary part of σ̂ was nonzero. It estimates the frequency of appearing oscillations, is
called critical frequency, and is denoted as ω̂cr = Im[σ̂ (RG,cr )]. The corresponding eigenvector of
(7) is called the leading eigenvector. It defines the most unstable perturbation of the base state
and is used below for visualization of slightly supercritical flow states. Thus, the result of the
stability study is given by the three critical values RG,cr, kcr, ω̂cr and the leading eigenvector, all
dependent on the geometrical governing parameters ε and λ. To fit the traditional scaling, the
results below are reported for Recr = 2V̄GRG,cr, and the dimensionless critical frequency scaled
by (2a)/Ū , ω̄cr = 4ω̂crRG,cr/Recr. Since the perturbation at the critical point is proportional to
exp[iω̂crt + ikcrs] = exp[ikcr (s − ct )], where c = −ω̂cr/kcr is the phase speed of the developing
traveling wave. Assuming kcr > 0, the wave propagates downstream when ω̂cr < 0 and c > 0, and
upstream if ω̂cr > 0 and c < 0.

The eigenproblem (7) is solved by the Arnoldi method. The shift-and-inverse formulation is
provided by the ARPACK package [29] of Lechouq et al. Following Ref. [14], we calculate LU
decomposition of the complex matrix (J − σ0B)−1, so that calculation of the next Krylov vector for
the Arnoldi method is reduced to one backward and one forward substitution. It should be noted
that the Jacobian matrices for the Newton iteration and the stability analysis are different, since the
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FIG. 2. Comparison of the friction factors measured in Ref. [23] and calculated in the present study.
The experiment denoted as Coil_02, with ε = 0.059256 and λ = 0.050128 is chosen for the comparison.
Inserts show isolines of the s velocity vs (color plots) and pseudo-streamfunction ψ (black lines) at several
characteristic points. The corresponding values of RG and Re, as well as maximal values of vs and maximal
and minimal values of ψ , are shown in the table. All the isolines are equally spaced.

latter contains the terms depending on the wave number k that can also be complex. The Jacobian
matrices were calculated directly from the numerical schemes.

The test calculations are reported in Ref. [7]. Below we report an additional independent
comparison with the experimental results of Ref. [23] and address the paradox discussed in Ref. [24]
regarding a possible power dependence of the friction factor on the Reynolds or Dean number.
Comparing the calculated critical Reynolds numbers with the experimentally measured ones [7],
we obtained a good agreement with the recent experiments [18,19] done for ε < 0.1 and λ < 0.05.
Several earlier experiments that studied the instability onset for similar pipe curvatures and small
torsions [1,2,14,16] found noticeably larger critical Reynolds numbers, and possibly missed the
primary instability. A possible overestimation of the critical Reynolds number can be observed by
comparison of Fig. 2 and the results reported below. The critical Reynolds number calculated for the
parameters of Fig. 2 by the above described linear stability analysis is approximately 3525, while
judging by the friction factor dependence (Fig. 2), it can be estimated to be above 8000.

IV. RESULTS

A. Steady flows and friction factors

Figures 2 and 3 compare the friction factors f of the helical pipe flows measured in Refs. [22,23]
and computed in the present study. Similarly to the comparison with the measurements of Ref. [22]
reported in Ref. [7], an example shown in Fig. 2, showing the comparison with the measurements
of Ref. [23], we observe that the measured and calculated friction factors are close up to Re � 8000
and start to diverge at larger values. This disagreement is due to the turbulent flow regime, at which
the friction factor is expected to be larger than that yielded by the laminar model. To illustrate how
the flow pattern changes with the increase of the Reynolds number, several calculated steady flows
are included in Fig. 2 as inserts. In these frames, as well as in all the figures below, it is assumed that
the central axis of the helix (Fig. 1) is located on the left-hand side from every pipe cross section
plotted, so that the inner pipe boundary corresponds to the left point of a plot border. For more
information on the steady flow patterns the reader is referred to Ref. [7] and references therein.
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TABLE I: Ranges of λ, at which the modes denoted on Figs. 5(b) and 5(c) were found.

Mode ε Range of λ Mode characteristics Perturbation animation Flow animation

1 0.01 0 � λ �
2.87

Antisymmetry-
breaking
Dean vortices oscillate
in counter phase
Zero pseudo
streamline is strongly
perturbed
An increase of through
flow intensifies the
Dean vortices, which
slow down the through
flow and consequently
weaken by themselves

Perturbation_e=0p01_l=0.avi
Perturbation_e=0p01_l=2.avi

Flow_e=0p01_l=0.avi
Flow_e=0p01_l=2.avi

2 0.01 2.87 � λ �
5

Perturbations are
located inside

Perturbation_e=0p01_l=4.avi Flow_e=0p01_l=4.avi

0.03 1.1 � λ � 5 a weaker vortex and
are advected

Perturbation_e=0p05_l=4.avi Flow_e=0p05_l=4.avi

0.05 1 � λ � 5 along the streamlines Perturbation_e=0p1_l=3p5.avi Flow_e=0p1_l=3p5.avi

0.075 1.9 � λ � 5 Zero pseudo
streamline is strongly

0.1 2.8 � λ �
4.2

perturbed
Instability of Vξ

boundary layer is
assumed

3 0.03 0 � λ � 1.1 Antisymmetry-
preserving

Perturbation_e=0p03_l=0.avi Flow_e=0p03_l=0.avi

0.05 0 � λ � 1 Zero pseudo
streamline is not
perturbed

Perturbation_e=0p03_l=1.avi Flow_e=0p03_l=1.avi

0.075 0 � λ � 0.9 Dean vortices oscillate
in phase and do not
interact

Perturbation_e=0p05_l=0.avi
Perturbation_e=0p075_l=0.avi

Flow_e=0p05_l=0.avi
Flow_e=0p075_l=0.avi

0.1 0 � λ � 0.6 Instability of Vξ

boundary layer is
assumed

Perturbation_e=0p1_l=0.avi Flow_e=0p1_l=0.avi

4 0.075 0.9 � λ �
1.9

Small circumferential
wavenumber

0.1 0.6 � λ �
2.8

downstream cross-flow
wave located inside

Perturbation_e=0p1_l=1p5.avi Flow_e=0p1_l=1p5.avi

0.2 0.4 � λ �
2.55

a weaker vortex
Zero pseudo
streamline is strongly
perturbed

Perturbation_e=0p2_l=1p5.avi Flow_e=0p2_l=1p5.avi
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TABLE I: (Continued.)

Mode ε Range of λ Mode characteristics Perturbation animation Flow animation

5 0.1
0.2
0.3
0.4

4.2 � λ � 5
2.55 � λ �
5 2.6 � λ �
2.88 2.2 �
λ � 2.35

Large circumferential
wavenumber
upstream cross-flow
wave
Zero pseudo
streamline, if exists, is
strongly perturbed

Perturbation_e=0p1_l=4p5.avi
Perturbation_e=0p2_l=3.avi
Perturbation_e=0p2_l=4.avi
Perturbation_e=0p2_l=5.avi
Perturbation_e=0p3_l=2p7.avi
Perturbation_e=0p4_l=2p3.avi

Flow_e=0p1_l=4p5.avi
Flow_e=0p2_l=3.avi
Flow_e=0p2_l=4.avi
Flow_e=0p2_l=5.avi
Flow_e=0p3_l=2p7.avi
Flow_e=0p4_l=2p3.avi

6 0.2 0 � λ � 0.4 Antisymmetry-
breaking

Perturbation_e=0p2_l=0.avi Flow_e=0p2_l=0.avi

0.3 0 � λ �
1.37

Dean vortices do not
interact

Perturbation_e=0p3_l=0.avi Flow_e=0p3_l=0.avi

0.4 0 � λ � 0.7 Zero pseudo
streamline is weakly
perturbed

Perturbation_e=0p3_l=1.avi Flow_e=0p3_l=1.avi

0.5 0 � λ �
0.81

At larger \lambda
perturbations are
located

Perturbation_e=0p4_l=0.avi Flow_e=0p4_l=0.avi

0.6 0 � λ � 0.3 inside a stronger vortex
An inviscid instability
of through flow is
assumed

Perturbation_e=0p5_l=0.avi
Perturbation_e=0p6_l=0.avi

Flow_e=0p5_l=0.avi
Flow_e=0p6_l=0.avi

FIG. 3. Comparison of the friction factors measured in Refs. [22,23] in pipes with different curvature and
torsion with those calculated in the present study.
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FIG. 4. Dependence of the exponent a on the Reynolds number for the cases shown in Fig. 2.

Figure 3 collects all the comparisons made with additional calculations for the toroidal pipe with
ε = 0.1, 0.3, 0.5 and λ = 0. To address the “paradox” discussed in Ref. [24], the results are shown
in the logarithmic scale and the Reynolds number is replaced by the Dean number. Comparing
the experimental and numerical results we arrive to the above made conclusion: the measured and
calculated friction numbers are in a good agreement until the Reynolds (Dean) number exceeds the
value corresponding to the laminar-turbulent transition. A good agreement between the calculated
and measured friction factors observed at moderate Dean and Reynolds numbers, Red � 5000 and
Ded � 700, allows us to derive some more conclusions on the friction factor dependence on the
Dean and Reynolds numbers.

The authors of study [24] questioned whether the ratio of friction factors in the coiled and the
straight pipe f / fs vary proportionally to De0.25

d , as was predicted by several analytical studies, or
proportionally to De0.5

d , as resulted from several experiments and numerical studies. Since fs =
64/Red , we have to examine whether at constant dimensionless curvature ε the calculated friction
factor behaves as Re−a

d , and what is the value of the exponent a. For each ε = const, the Dean
number would exhibit the same power dependence, and according to the predictions discussed in
Ref. [24] is expected to be either De−0.5

d or De−0.75
d .

The lines f (Ded ) depicted in Fig. 3 are quite close to straight ones and have quite similar
inclination to the horizontal axis. The exponent a can be estimated using the values of the friction
factor f1 and f2 at two arbitrary values of the Dean number Ded,1 and Ded,2 as

a = − ln( f1) − ln( f2)

ln(Ded,1) − ln(Ded,2)
. (8)

Calculation by Eq. (8) between two points corresponding to Red ≈ 1000 and Red ≈ 5000 for all
numerical lines shown in Fig. 3 yielded values close to 0.6, which would mean that the previous
result reporting a = 0.5 are more accurate. However, monitoring how the exponent a varies between
every two consequent points obtained for Fig. 3, we arrive to the dependences shown in Fig. 4. We
observe that at very small Reynolds numbers the effect of curvature is weak, so that the exponent a
tends to unity (the straight pipe result) when the Reynolds number tends to zero. With the growth
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of the Reynolds number from Red ≈ 200 to Red ≈ 500 and ε < 0.05, the exponent a steeply
decreases and then switches to a much slower decay slightly above the value of a = 0.6. At larger
supercriticalities the slower decay starts from larger Reynolds number and the exponent attain the
values slightly below a = 0.6. We arrive to a conclusion that an accurate power dependence of
the friction factor on the Dean or Reynolds number does not exist. At the same time between
Red ≈ 2000 and Red ≈ 5000 the value a = 0.6 can be used as a “rule of thumb” for quite wide
interval of the curvatures.

B. Stability diagrams

Study of the primary instability of the helical pipe flow was carried out for 0 < ε � 0.6 and
0 � λ � 5. The study can be extended to larger curvatures and torsions, however, such values are
unusual for most of applications, as well as for most of academic studies. The computations were
carried out on a uniform grid of 100 × 200 nodes. Several characteristic points on the stability
diagram reported below were verified with calculations on a uniform 200 × 400 and finer grids to
ensure that the results coincide at least within the two decimal places, i.e., the disagreement between
results obtained on the two grids is less than 1%.

The critical points corresponding to transition from steady to oscillatory flow are reported in
Fig. 5. Figure 5(a) shows the dependence of the critical Reynolds number on the torsion-to-curvature
ratio for all the values of curvature considered. The flows are stable below and to the left of the
curves, and are unstable above and to the right of them. The corresponding critical frequencies and
critical wave numbers are shown in Figs. 5(b) and 5(c).

The results reported in Fig. 5 need several additional comments. First, as explained above, ωcr <

0 means that the instability sets in as a traveling wave propagating downstream. It follows from
Figs. 5(b) and 5(c) that for λ � 1 all the most critical disturbances are downstream propagating
waves. Only at larger torsions ε > 0.2, and not at all the curvatures considered, does the instability
set in as an upstream propagating wave.

Second, the linearized stability problem is invariant under the replacement k → −k and ω →
−ω. For each positive value of kcr we found a single eigenvalue with zero real part. No multiple
eigenvalues were observed. Also, the real part of leading eigenvalues always crossed the zero axes
when the Reynolds number was varied to find the critical point. It allows us to conclude that at
calculated critical points dσ/dRe �= 0. Since the wave number k can attain positive and negative
values, the whole stability problem has a pair of complex conjugated eigenvalues (0,±ωcr ) that
correspond to the wave numbers ±kcr, and their eigenvectors are complex conjugate functions
representing the same traveling wave. Thus, we conclude that the steady-oscillatory transition takes
place as a Hopf bifurcation [30].

Third, we observe several most unstable modes that replace each other when the curvature and
the torsion are varied. These modes are represented by separate lines in Figs. 5(b) and 5(c). A
replacement of an unstable mode by another one causes more or less noticeable breaks of the Recr (λ)
curves shown in Fig. 5(a). Note that an existence of many most unstable modes is quite usual for
parametric stability studies (see, e.g., [25] and references therein).

In Figs. 5(b) and 5(c) the different most unstable eigenmodes are numbered according to their
appearance in the calculations. The same number is attained to modes with similar eigenvector
patterns. A Table I summarizes the curvature values and intervals of λ where all the numbered
eigenmodes are observed. The third column contains a short description of the observed features
of the corresponding disturbance. The two last columns of the table contain links to animations, in
which time dependencies of perturbation patterns and slightly supercritical flows are visualized to
help understand the descriptions given in Sec. V 3.

C. Visualization of slightly supercritical flows

Recalling that all the disturbances are proportional to exp(ikcrs + iωcrt ), we note that for a single-
frequency time-periodic flow, oscillations in time at fixed s are similar to oscillations along the
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FIG. 5. (a) Critical Reynolds number versus the torsion to curvature ratio at different dimensionless
curvatures; (b) critical oscillations frequency versus the torsion to curvature ratio at different dimensionless
curvatures; (c) critical wave number versus the torsion to curvature ratio at different dimensionless curvatures.
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spatial period s0 � s � s0 + 2π/kcr at fixed time. Therefore, in the following we visualize only
oscillations in time at an arbitrary fixed location s.

Each most unstable eigenmode can be plotted as a time-dependent function, or just as its
absolute value showing the distribution of the oscillations amplitude. In this section we discuss how
oscillations of the Dean vortices, i.e., oscillations of the secondary cross-pipe flow can be visualized.
To do this we use the visualization method described in Ref. [26], and calculate a divergence free
projection of velocity on the plane (r, ξ ). For the base flow, which is independent of s, this projection
is given by Eq. (6) and is V 2D = (vr, vξ − ελrvs/Hs, 0 ), divV 2D = 0. In the toroidal pipe, at λ = 0,
the pseudo-streamfunction becomes the true stream function, so that its isolines are the streamlines
in the polar plane (r, ξ ). In the helical pipe with a nonzero torsion, the pseudo-streamlines deviate
from the spiraling streamlines, however still describe the vortical motion in the cross-flow planes
[7,9].

Since there is no analytical expression for the divergence free projection of an arbitrary three-
dimensional disturbance, it is calculated by the iterative SIMPLE-like procedure described in
Ref. [26]. As a result, the disturbance in the fixed plane s = s0 is expressed as ṽ = ṽ2D + ∇ϕ,
where ṽ2D = (ṽr,2D, ṽξ,2D, 0), and ∇ · ṽ2D = 0. The vector ṽ2D is the divergence-free projection of
the three-dimensional disturbance vector on a plane (r, ξ ). It can be represented as ṽ2D = rotψ̃2D,
where the vector potential ψ̃2D has a form ψ̃2D = (0, 0, ψ̃2D ), so that ψ̃2D is an analog of a
two-dimensional stream function. The difference between the vectors ṽ and ṽ2D can be roughly
estimated using the three-dimensional continuity (A8) and is expected to be of the order k|ṽs|. Now
a slightly supercritical oscillatory flow can be visualized using

vs = Vs(r, ξ ) + εReal[ṽs(r, ξ )exp(ikcrs + iωcrt )], (9)

� = ψ (r, ξ ) + εReal
[
ψ̃2D(r, ξ )exp(ikcrs + iωcrt )

]
, (10)

where Vs and ṽs are the center line s components of the base flow and the disturbance, respectively, ψ
is the pseudo-streamfunction of the base flow defined in Eq. (6), and � is the pseudo-streamfunction
of the divergence free projection of the slightly oscillatory flow state. The amplitude ε is a function
of the super-criticality (Re − Recr ), which cannot be found within the linear stability approach.
Its finding requires either a nonlinear analysis of bifurcation, or a fully three-dimensional time-
dependent solution, both of which are beyond the scope of this study. Here we are interested only
in qualitative visualization of patterns of slightly supercritical flows. For this purpose, we choose
the value of ε so that the amplitude of the second terms of Eqs. (9) and (10) do not exceed 10%
of the amplitude of the first terms, while the oscillations of both the center line velocity and the
cross-sectional flow are visible.

An example of this visualization is presented in Figs. 6 and 7 and the corresponding animations.
Color plots in Fig. 6 show snapshots of the leading perturbation of the three velocity components
distanced by a quarter of the time oscillation period. The isolines of the center line velocity
and the pseudo-streamfunction of the base flow are shown by lines. This figure shows that the
velocities vs and vr are perturbed antisymmetrically with respect to the pipe diameter = 0, π , while
the perturbation of vξ is symmetric. However, these perturbation patterns are not very helpful in
understanding of how the flow changes in a slightly supercritical regime. The answer to this question
is presented in Fig. 7, where snapshots of the functions defined in Eqs. (9) and (10) are shown.
In this figure and the corresponding animation we observe slight oscillations of the center line
velocity, and oscillations of the Dean vortices that oscillate in a counterphase. Below, based on
the described visualization of disturbances and slightly supercritical flows, we make an attempt to
classify the eigenmodes and to gather some more understanding in the processes leading to the onset
of different instability modes. For this purpose all 13 modes observed are presented as animations in
the Supplemental Material [27]. The guidance is given in the table there, where all visualized cases
are listed. In the figures below we illustrate only most characteristic modes in the same way as it
was done in Figs. 6 and 7.
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FIG. 6. Oscillations of the most unstable perturbation at ε = 0.01, λ = 0, Recr = 4181 (mode 1). Left
frames: perturbation of the center line velocity superimposed with isolines of the base flow center line
velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed with the
pseudo-streamlines of base flow (lines). All the levels are equally spaced between the minimal and maxi-
mal values. Perturbation: max|ṽs| = 0.0192, max|ṽr | = 0.00561, max|ṽξ | = 0.00795. Base flow: max|vs| =
1.696, max|ψ | = 0.0101. Animation files: Perturbation_e=0p01_l=0.avi, Perturbation_e=0p01_l=2.avi.

D. Classification and description of the unstable eigenmodes

In the discussion below we make an attempt to classify the most unstable modes and to discuss
which physical mechanisms can be responsible for onset of instabilities and for appearance of self-
sustained oscillations of supercritical states. Clearly, such descriptions are mostly qualitative and
sometimes even speculative, but nevertheless, we are making an attempt to provide some more
insight into this question. First we note that results obtained for instabilities of inviscid vortices
[31–33], as well as for inviscid vortex pairs [34–36], in an unbounded domain, cannot be applied to
the bounded viscous flow considered here. Moreover, in the present helical pipe configuration, the
flow through the pipe and the secondary Dean vortices are already interconnected in the base flow,
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FIG. 7. Snapshots of a slightly supercritical oscillatory flow at at ε = 0.01, λ = 0, Recr = 4181.
The levels are equally spaced between 0 and 1.6 for vs and between ±0.1 for ψ . Animation files:
Flow_e=0p01_l=0.avi, Flow_e=0p01_l=2.avi.

contrarily to inviscid vortices superimposed with axial flow (e.g., Ref. [35]) or with background
rotation (e.g., Refs. [31,37]).

To examine which terms of the linearized equations contribute or do not contribute to the
instability onset, we eliminate them individually and monitor the leading eigenvalue and pattern
of the leading eigenvector. This simple computational experiment, successfully applied in Ref. [38]
and later studies, allows us to focus only on the terms responsible for the disturbances growth
and to avoid discussing the irrelevant ones. In the text below we call it “zeroing terms numerical
experiment.”

1. Critical modes at zero torsion

We start from the limiting case of zero torsion, τ = λ = 0, which corresponds to a toroidal pipe
[6,18]. In this case the isolines of the center line velocity are always symmetric with respect to
the diameter line = 0, π , while the Dean vortices are always antisymmetric (Figs. 5–11). The s
component of flow vorticity and the pseudo-streamfunction ψ are also antisymmetric, so that, e.g.,
ψ (ξ ) = −ψ (2π − ξ ). The instability can break this symmetry or preserve it, which allows us to
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FIG. 8. Oscillations of the most unstable perturbation at ε = 0.075, λ = 0, Recr = 3357 (mode 3). Left
frames: perturbation of the center line velocity superimposed with isolines of the base flow center line
velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed with the
pseudo-streamlines of base flow (lines). All the levels are equally spaced between the minimal and maxi-
mal values. Perturbation: max|ṽs| = 0.0245, max|ṽr | = 0.0646, max|ṽξ | = 0.00567. Base flow: max|vs| =
1.619, max|ψ | = 0.0195. Animation file: Perturbation_e=0p075_l=0.avi.

make the first distinction between the eigenmodes. With the increasing curvature, these symmetric
flows become unstable owing to the three modes 1, 3, and 6, described below.

At very small curvatures the instability breaks the symmetry, as is seen from Fig. 7 plotted for
ε = 0.01, λ = 0. This instability mode is denoted as mode 1. Note that the perturbations ṽs and ṽr

are antisymmetric and break the symmetry of the corresponding symmetric components vs and vr
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FIG. 9. Snapshots of a slightly supercritical oscillatory flow at ε = 0.075, λ = 0, Recr = 3357. The levels
are equally spaced between 0 and 1.5 for vs and between ±0.02 for ψ . Animation file: Flow_e=0p075_l=0.avi.

of the base flow (Fig. 6). The base flow component vξ is antisymmetric, while its perturbation is
symmetric and breaks its antisymmetry.

The above mentioned interconnection between the primary center line and the secondary Dean
vortex flow helps to understand the oscillatory mechanism of mode 1 (Figs. 6 and 7). We note first
that the through flow loses energy both owing to viscosity and to work of centrifugal and Coriolis
forces, which produce the Dean vortices. An increase in the center line velocity caused by a positive
value of perturbation in the lower part of the upper left frame of Fig. 6 (the first period quarter)
increases the centrifugal force, which leads to an intensification of the positive clockwise Dean
vortex in the right frame of the first period quarter in Fig. 7. As a result, the zero pseudo-streamline
is deformed inwards to the negative vortex, so that the positive vortex occupies a slightly larger
volume than the negative one. The intensification of the positive vortex causes larger energy losses
by the through flow in the part of the flow region it occupies, which slows down the through flow
there. The latter is observed at the third quarter of the oscillation period (Fig. 6), where perturbation
of the center line velocity in the lower part becomes negative, while attaining a large positive value
in the upper part. This leads to the intensification of the negative vortex, followed by decrease of
the center line velocity in the corresponding part of the flow region. Finally, the oscillations of both
vortices and of the center line velocity become self-sustained.
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FIG. 10. Oscillations of the most unstable perturbation at ε = 0.2, λ = 0, Recr = 3802 (mode 6). Left
frames: perturbation of the center line velocity superimposed with isolines of the base flow center line
velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed with the
pseudo-streamlines of base flow (lines). All the levels are equally spaced between the minimal and max-
imal values. Perturbation: max|ṽs| = 0.0531, max|ṽr | = 0.0167, max|ṽξ | = 0.0232. Base flow: max|vs| =
1.511, max|ψ | = 0.0260. Animation files: Perturbation_e=0p2_l=0.avi, Perturbation_e=0p3_l=0.avi,
Perturbation_e=0p4_l=0.avi, Perturbation_e=0p5_l=0.avi, Perturbation_e=0p6_l=0.avi.

The zeroing terms numerical experiment, performed for the parameters of Figs. 6 and 7, shows
that to obtain a similar eigenvalue and eigenvector one can leave in the perturbed momentum
equations (A4)–(A6) the terms ikVsũ/Hs, [2Vξ ũξ /r + 2εsin(ξ )Vsũs/Hs]er , 2εcos(ξ )Vsũseξ /Hs, and
ε

Hs
Vs[ũξ cos(ξ ) + ũrsin(ξ )]es, and to zero all the others. The first vector term shows that advection

of disturbances of all the three velocity components along the pipe center line is necessary for the
instability onset. The next two terms show that perturbation of the center line velocity us affects
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FIG. 11. Snapshots of a slightly supercritical oscillatory flow at ε = 0.2, λ = 0, Recr = 3802. The levels
are equally spaced between 0 and 1.4 for vs and between ±0.025 for ψ . Animation file: Flow_e=0p2_l=0.avi.

the radial and circumferential velocities via the centrifugal and Coriolis forcing. An additional
centrifugal forcing comes from the circumferential velocity perturbation. The last term is the
Coriolis forcing responsible for affecting the center line velocity perturbation by two other perturbed
components.

Unfortunately, considering other instability modes, we cannot point to a similar simple mecha-
nism of self-sustained oscillations.

At ε = 0.02, λ = 0 the instability mode 1 is replaced by another one preserving the symmetry
that persists until ε = 0.1. This symmetry preserving instability, denoted as mode 3, is illustrated in
Figs. 8 and 9. Contrary to the previous case, the perturbations ṽs and ṽr are symmetric, while the
perturbation ṽξ is antisymmetric (Fig. 8). The Dean vortices oscillate in phase (Fig. 9), so that the
zero pseudo-streamline separating the vortices remains nondeformed. It is easy to verify that when
the center line velocity increases, the intensity of vortices, measured by the maximal and minimal
values of the pseudo-streamfunction, decreases and vice versa. This rules out the oscillations
mechanism described above, where increase of center line velocity and intensification of the Dean
vortices takes place simultaneously. More likely, we observe here an exchange of energy between
the through flow and the Dean vortices. Another qualitative difference in both cases can be seen by
comparing the snapshots of the oscillatory flow (cf. Figs. 7 and 9, and corresponding animations).
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In the case of mode 1 (Fig. 7), the zero pseudo-streamline oscillates, and an intensification of one
vortex is followed by a weakening of the second one, so that the vortices affect each other. In the
case of mode 3, the zero pseudo-streamline at λ = 0 (Fig. 9) remains nondeformed, and the vortices
grow and diminish simultaneously, so that no interaction between the vortices is observed.

Several additional numerical experiments showed that if the terms ũr
∂Vr
∂r er , ũr

r
∂ (rVξ )

∂r eξ , and

(Vr
∂ ũs
∂r + Vξ

r
∂ ũs
∂ξ

)es are set to zero, then the eigenvalue and the eigenvector remain close to those
computed via the full equations. The unimportance of the last term shows that advection of the
center line velocity perturbation along the base flow Dean vortices does not affect the instability. The
unimportance of the first two terms means that advection of the mean flow Vr and Vξ components
along the r direction does not affect the instability, while this is not true regarding the ξ direction.
Advection in the s direction of all the flow components, base and perturbed, remains important. This
brings us to the problem of the stability of a pair of vortices superimposed on a through flow [35,39].
However, as it was already mentioned, in the considered problem the vortices and the through flow
are interconnected, and the flow is viscous, which makes the results obtained in the above studies
inapplicable. Thus, the perturbation patterns reported in Ref. [35] are qualitatively different from
those depicted in Fig. 8, as well as from all the others perturbation patterns reported below.

Continuing discussion and description of mode 3, we notice that the base flow component Vξ ,
changing between ±0.12, is noticeably larger than Vr changing between −0.04 and +0.02, so that
advection along the ξ direction is expected to be dominant. Also, the maximal and minimal values
of the perturbation us are located in the areas where the isolines of the center line velocity Vs are
strongly curved (Fig. 8). One-dimensional profiles of Vs in this region have inflection points, which
indicates on a possibility of an inviscid instability mechanism. Obviously, this criterion remains
only an indication and cannot be applied for the considered flow.

Another possibility follows from relatively large values of Vξ and the localization of the perturba-
tion uξ near the upper and lower borders (rightmost frames in Fig 8). The isolines of Vξ , not shown
in above figures, exhibit a boundary layer near these parts of the border. Some characteristic profiles
Vξ (r) plotted via the point where the base circumferential velocity attains its maximum are shown in
Fig. 12 for this and other modes, where a developed boundary layer of Vξ was observed, so that the
circumferential velocity steeply grows from the boundary point inside the pipe. Thus, in the case of
mode 3, and other cases when the perturbation uξ is localized near or inside the boundary layer of
Vξ , we can assume a boundary layer instability that also may interact with other destabilizing flow
features.

Starting from ε = 0.2 and keeping λ = 0, we observe the symmetry breaking instability again,
however it leads to a qualitatively different pattern of the slightly supercritical flow (Figs. 10
and 11 and the corresponding animations). This disturbance mode is denoted as mode 6. The
perturbations of all the velocity components are localized near the Dean vortices “centers,” where
the pseudo-streamfunction attains the minimal and maximal values. Oscillations of the Dean
vortices are noticeable only near their “centers,” while far from there the vortices remain almost
steady. Examining the corresponding animations, listed in the Supplemental Material [27], we
observe that the perturbations are advected along the pseudo-streamlines from the regions of
relatively large cross-flow velocities, where the streamlines are close, to the regions where the
pseudo-streamfunction attain its largest and smallest values, so that the cross flow velocities there
are small due to the small derivatives ∂ψ/∂r and ∂ψ/∂ξ . In these regions the disturbances fully
dissipate. This mode of instability persists in the toroidal pipe (λ = 0) up to ε = 0.6.

The above observations of the leading perturbation patterns characteristic for the symmetric flows
in the toroidal pipe, allow us to introduce some features that will help us to classify disturbances
of nonsymmetric flows at nonzero torsion. Thus, we can distinguish them by weak or strong
oscillations of the zero pseudo-streamline separating two Dean vortices, where strong oscillations
will correspond to the symmetry breaking mode 1, while weak oscillations will be compared
either with the symmetry preserving mode 3 or the symmetry breaking mode 6. We can examine
whether the Dean vortices oscillate in close phases, similar to the symmetry preserving mode, or
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FIG. 12. Radial profiles of the base flow circumferential velocity passing through its maximum located
inside the clockwise Dean vortex (modes 2, 3, 4, 9) or the minimum located in the counterclockwise Dean
vortex (modes 10, 13, 14).

at noticeably different phases, similarly to the symmetry breaking modes. The perturbations can be
characterized by their distribution over the whole bulk of the vortices or localization in certain flow
regions.

Thus, quite expected changes of the perturbations and slightly supercritical flows are observed
along the parts of neutral curves corresponding to modes 1 and 3 (not shown in the figures, only
in the animations; see the Supplemental Material [27]). For example, at ε = 0.01, λ = 2 the Dean
vortices oscillate in counterphases and are similar to those depicted in Fig. 7. At ε = 0.03, λ = 1,
the vortices oscillations are in close phases and are similar to those shown in Fig. 9.

2. Instabilities growing in the stronger counterclockwise negative vortex

Examining mode 6 at larger curvatures one observes that the supercritical flow changes quali-
tatively along the same eigenmode branch. This is seen in the animations of mode 6 for ε � 0.3.
With the increase of torsion, the negative vortex becomes more intensive than the positive one.
As a result, the instability sets in only inside the stronger negative vortex, located in the upper
part of the pseudo-streamlines plot. The flow oscillations are seen only inside the stronger negative
vortex, while the positive vortex remains almost unchanged along the oscillation period. This leads
us to a conclusion that interaction of the two Dean vortices play no role in the onset of this
mode of instability. Since the perturbations attain their largest values far from the boundaries, we
cannot assume here a boundary layer instability. At the same time, we observe again an inflection
point at the Vs(r) profile that passes through the minimum of the pseudo-streamfunction, in the
neighborhood of which we observe large perturbations of all the three velocity components. Thus,
we can assume here an inviscid instability of the through flow, which appears in both vortices in
the antisymmetric configuration, and only in a stronger counterclockwise vortex in a nonsymmetric
case (see corresponding animations listed in the table in the Supplemental Material [27]).

Mode 8 develops in a stronger counterclockwise vortex (Figs. 13 and 14) and is observed at
ε = 0.3, 1.37 � λ � 2, and ε = 0.4, 1.33 � λ � 1.7. In this case the torsion is moderate, so that
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FIG. 13. Oscillations of the most unstable perturbation at ε = 0.3, λ = 1.55, Recr = 1384 (mode 8).
Left frames: perturbation of the center line velocity superimposed with isolines of the base flow center line
velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed with the pseudo-
streamlines of base flow (lines). All the levels are equally spaced between the minimal and maximal values.
Perturbation: max|ṽs| = 0.0299, max|ṽr | = 0.0124, max|ṽξ | = 0.0136 Base flow: max|vs| = 1.375, ψmin =
−0.0711, ψmax = 0.0475. Animation files: Perturbation_e=0p3_l=1p55.avi.

both the clockwise and counterclockwise vortices of the base flow are well developed, while the
counterclockwise vortex is slightly stronger (Fig. 13). The structures of mode 8 are noticeably
larger than those of mode 6. Oscillations of this disturbance mode are seen in almost all bulk of
the counterrotating vortex, however, as is seen from the animations, they cannot be characterized
as an azimuthal traveling wave. Contrary to mode 6, we observe penetration of the perturbations ṽs

and ṽr into the weaker clockwise vortex, which results in quite visible oscillations of the clockwise
vortex and the zero pseudo-streamline (Fig. 14 and the corresponding animation).
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FIG. 14. Snapshots of a slightly supercritical oscillatory flow at = 0.3, λ = 1.55, Recr = 1384. The
levels are equally spaced between 0 and 1.3 for vs and between −0.06 and 0.04 for ψ . Animation files:
Flow_e=0p3_l=1p55.avi.

Neglecting of each term of the linearized equations leads to a noticeable change of the distur-
bances pattern or the eigenvalue. To estimate relative intensity of the Dean vortices of the flow
shown in Fig. 13, we note that the minimum and maximum of the pseudo-streamfunction are
approximately −0.071 and 0.047. The minimal value of the circumferential velocity in the stronger
counterclockwise vortex is ≈ −0.1, while in the weaker clockwise vortex the maximal value is
≈0.68. Nevertheless, the instability sets in in the counterclockwise vortex, but not in a weaker
clockwise one, as one could expect. Also, contrary to several examples below, we do not observe
here clear advection of the disturbances along or against the Dean vortices. An indication on a
possible instability mechanism is revealed from the radial profile of Vξ plotted through a point of
its minimum located near the upper pipe border, also shown in Fig. 12. Here we observe that the
circumferential velocity magnitude grows from the zero value at the wall to the minimum of Vξ .
Then the circumferential velocity steeply increases to, even larger in magnitude, positive maximal
value. Furthermore, changing the sign, the profile exhibits a clear inflection point, so that we observe
a configuration of the local mixing layer. The viscous mixing layer becomes unstable at rather small
Reynolds numbers [40], so that this locally developing mixing layer configuration can be a source
of the instability.
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Mode 9 appears in narrow intervals of λ at 0.4 � ε � 0.6 as an upstream wave developing
on the stronger counterclockwise vortex (see animations listed in the table in the Supplemental
Material [27]). This mode has smaller perturbation structures that can be interpreted as a smaller
pseudo-streamlines-wise wave number, and almost does not penetrate into the weaker vortex. The
smaller perturbation structures can be explained by a slightly steeper increase or decrease of the
circumferential velocity starting from the boundary (Fig. 12). We observe also that, unlike mode 8,
the disturbance structures propagate upstream the dominant counterclockwise Dean vortex. For the
flow at ε = 0.5, λ = 1, the minimal and maximal values of the stream function are −0.86 and 0.67,
while the minimal and maximal values of the circumferential velocity are −0.15 and 0.88, where
the minimal value is located inside the unstable dominant vortex and the maximal value inside the
weaker clockwise vortex. Since the circumferential velocity in the unperturbed clockwise vortex is
significantly larger, we cannot connect the instability with the boundary layer of Vξ . Taking into
account that the radial profile plotted through a point of minimum of Vξ located near the upper pipe
border is similar to the previous case (Fig. 12) and also contains the inflection point, we assume
again that the instability sets in due to an unstable local mixing layer flow. The zeroing terms
numerical experiment shows that we can neglect the terms proportional to the torsion ελ, but not
to the curvature itself. Thus, this instability is affected by the centrifugal forcing resulting from the
pipe bending, which also shows that the disturbances of all the three velocity components interact
on the route to instability onset.

In mode 12, observed only for ε = 0.4 and 0.6 and illustrated in Figs. 15 and 16, we again
observe an upstream cross flow wave with a relatively large cross flow wave number developing
on the stronger counterclockwise vortex. This mode corresponds to relatively small and moderate
torsions, so that both clockwise and counterclockwise Dean vortices remain well developed, and
as in the previous cases, the instability arises in the stronger counterclockwise vortex (Fig. 15).
The resulting slightly supercritical flow (Fig. 16) exhibits only oscillations of the counterclockwise
vortex, while the clockwise one remains almost stationary (see animations listed in the table in the
Supplemental Material [27]).

Mode 13, observed only for ε = 0.4 and shown only in animations, exhibits two downstream
cross flow waves developing along both Dean vortices. The wave arising along the stronger
counterclockwise vortex has a noticeably larger amplitude; however, oscillations of both vortices
are clearly seen in the slightly supercritical oscillatory regime.

The Vξ (r) profiles of modes 12 and 13 also exhibit inflection points near the upper pipe border,
and in the case of mode 13 also near the lower border (Fig. 12). Therefore, also in these two cases
we assume that the locally developing mixing layer leads to the flow destabilization. Similarly to
other flows at large curvatures, we could not find any term of the linearized equations that could be
neglected without a qualitative changes in the perturbation patterns. We observe again here that a
steeper growth of the circumferential velocity from the pipe wall towards its center, characteristic for
mode 13, leads to formation of smaller scale structures in the disturbance patterns, which indicate
also on a possible role of the boundary layer instabilities. It is possible also that the two, boundary
layer and mixing layer instabilities interact, which results in a self-sustained oscillatory mechanism,
yet to be studied and described.

3. Instabilities growing in the weaker clockwise negative vortex

The instability sets in inside a weaker clockwise vortex in the cases of modes 2 and 4. Mode 2
becomes most unstable at small curvatures ε � 0.1 and relatively large λ. This mode is illustrated
in Figs. 17 and 18 for ε = 0.05, λ = 4. We observe that the most unstable disturbance is located
mainly in the clockwise, positive and weaker vortex, and almost does not penetrate in the counter-
clockwise and stronger one (Fig. 17 and the corresponding animations). As a result, the oscillations
of the slightly supercritical flow are visible in the lower part of the snapshots shown in Fig. 18 (see
also the corresponding animations), while the upper parts remain almost unchanged. Oscillations of
the weaker vortex cause also noticeable oscillations of the zero pseudo-streamline.
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FIG. 15. Oscillations of the most unstable perturbation at ε = 0.4, λ = 1.1, Recr = 1658 (mode 12).
Left frames: perturbation of the center line velocity superimposed with isolines of the base flow center line
velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed with the pseudo-
streamlines of base flow (lines). All the levels are equally spaced between the minimal and maximal values.
Perturbation: max|ṽs| = 0.0267, max|ṽr | = 0.0241, max|ṽξ | = 0.0394 Base flow: max|vs| = 1.357, ψmin =
−0.0646, ψmax = 0.0491. Animation files: Perturbation_e=0p4_l=1p1.avi, Perturbation_e=0p6_l=0p5.avi.

The zeroing terms numerical experiment carried out for the parameters of Figs. 17 and 18 showed
that this instability can be reproduced after neglecting most of bilinear terms. The most interesting
is that in Eq. (A6), governing disturbance of the circumferential velocity, we have to leave only the
term −ikVsũξ and all the terms containing Vξ . A closer examination of the perturbation snapshots
(Fig. 17) and the corresponding animation reveals that along the path of the disturbance wave
propagation, the perturbations of ũξ appear slightly earlier than the two others. Assuming now that
the circumferential motion is a source of instability, we look at the isolines of Vξ , where we observe
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FIG. 16. Snapshots of a slightly supercritical oscillatory flow at = 0.4, λ = 1.1, Recr = 1658. The
levels are equally spaced between 0 and 1.3 for vs and between −0.065 and 0.045 for ψ . Animation files:
Flow_e=0p4_l=1p1.avi, Flow_e=0p6_l=0p5.avi.

boundary layers that possibly can be unstable. Surprisingly, the largest value of Vξ in the clockwise
Dean vortex is 0.28, while its smallest value in the more intensive counterclockwise vortex is
−0.067. Thus, in the lower clockwise vortex the circumferential velocity reaches about a four times
larger value, which can explain why the instability sets in inside this vortex only. The radial profile
of Vξ plotted for the value of ξ , corresponding to the location of the maximum of Vξ near the lower
boundary, is shown in Fig. 12 and exhibits a steep increase of the circumferential velocity magnitude
from the pipe wall inwards. It should be stressed that the advection along the pipe center line still
cannot be neglected. Therefore we observe here an instability of swirling motion, but not of some
locally rotational flow.

Another example for disturbance located inside the weaker vortex is shown in Figs. 19 and 20.
This perturbation mode, denoted as mode 4, replaces the symmetric mode 3 for 0.05 � ε � 0.2
[Figs. 5(b) and 5(c)], and is located inside the weaker clockwise lower vortex. Similarly to mode 2,
it arises in the regions of large cross flow velocities that are located now close to the pipe border,
where boundary layers form at large curvatures and Reynolds numbers. Compared to mode 2,
this mode forms noticeably smaller structures around its maximal and minimal values, which are
advected along the pseudo-streamlines (Fig. 19). Note, that the stronger counter-clockwise vortex
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FIG. 17. Oscillations of the most unstable perturbation at ε = 0.05, λ = 4, Recr = 837 (mode 2).
Left frames: perturbation of the center line velocity superimposed with isolines of the base flow cen-
ter line velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed
with the pseudo-streamlines of base flow (lines). All the levels are equally spaced between the mini-
mal and maximal values. Perturbation: max|ṽs| = 0.0268, max|ṽr | = 0.00724, max|ṽξ | = 0.0101. Base
flow: max|vs| = 1.610, ψmin = −0.0451, ψmax = 0.0286. Animation files: Perturbation_e=0p05_l=4.avi,
Perturbation_e=0p05_l=4.avi, Perturbation_e=0p1_l=3.5.avi.

is almost not disturbed and its oscillations are very weak compared to oscillations of the clockwise
vortex and the zero pseudo-streamline (Fig. 20 and the corresponding animation). This mode can be
characterized as a small circumferential wave number downstream wave.

Assuming that mode 4 triggers the instability inside the boundary layer formed by the circum-
ferential velocity, we notice again that the minimal value of the circumferential velocity in the
stronger counterclockwise vortex is ≈ − 0.13, while the maximal value in the weaker clockwise
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FIG. 18. Snapshots of a slightly supercritical oscillatory flow at ε = 0.05, λ = 4, Recr = 837. The
levels are equally spaced between 0 and 1.5 for vs and between −0.040 and 0.025 for ψ . Animation files:
Flow_e=0p05_l=4.avi, Flow_e=0p05_l=4.avi, Flow_e=0p1_l=3.5.avi.

vortex is 0.51. Then we examine the radial profile of Vξ passing through the maximum of Vξ located
near the lower border (Fig. 12). We observe that in the current case the circumferential velocity
grows steeper and reaches a smaller minimum value, which can be a reason for smaller-scale wavy
structures. The zeroing terms numerical experiment shows that bilinear terms proportional to the
dimensionless torsion ελ play no role in the instability onset. To keep the leading eigenvalue and
eigenvector almost unchanged we also can neglect the terms (ur

∂Vr
∂r + uξ

r
∂Vr
∂ξ

)er and uξ

r
∂Vξ

∂ξ
eξ . This

means that among all the terms describing advection of the base flow velocities Vr and Vξ by their
disturbances, only advection of Vξ in the radial direction contributes to the instability onset.

4. Instabilities growing in a dominant or single counterclockwise negative vortex at large torsions

At large torsions the counterclockwise vortex becomes dominating and with the further growth
of torsion suppresses the clockwise vortex completely [7,9]. It is not surprising, then, that the
instability in these flow sets in owing to qualitatively different most unstable disturbances. Thus,
following the neutral curve of ε = 0.2, we arrive to mode 5 illustrated in Figs. 21 and 22. This
mode appears at relatively large torsions (see the table in the Supplemental Material [27]), at
which the counterclockwise vortex becomes dominant, while the clockwise one is either noticeably
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FIG. 19. Oscillations of the most unstable perturbation at ε = 0.2, λ = 1.5, Recr = 1904 (mode 4). Left
frames: perturbation of the center line velocity superimposed with isolines of the base flow center line velocity
(lines); center and right frames, respectively: perturbations of vr and vξ superimposed with the pseudo-
streamlines of base flow (lines). All the levels are equally spaced between the minimal and maximal values.
Perturbation: max|ṽs| = 0.0442, max|ṽr | = 0.0152, max|ṽξ | = 0.0269. Base flow: max|vs| = 1.463, ψmin =
−0.0455, ψmax = 0.0340. Animation files: Perturbation_e=0p2_l=1p5.avi, Perturbation_e=0p1_l=1p5.avi.

weaker or completely disappears from the base flow (see animation for ε = 0.2, λ = 5). Thus, for
the parameters of Fig. 21, the minimum and maximum values of the pseudo-streamfunction are
approximately −0.15 and 0.06, so that the counterclockwise vortex is more than two times more
intensive than the clockwise one. As is seen from the figures, this perturbation mode is characterized
by two large-scale structures located in the dominant counterclockwise vortex. The perturbation of
the center line velocity ṽs rotates in the clockwise direction around the dominant counterclockwise
vortex (Fig. 20 and the corresponding animation), while evolution of the disturbances ṽr and ṽξ
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FIG. 20. Snapshots of a slightly supercritical oscillatory flow at ε = 0.2, λ = 1.5, Recr = 1904. The
levels are equally spaced between 0 and 1.4 for vs and between −0.04 and 0.04 for ψ . Animation files:
Flow_e=0p2_l=1.5.avi, Flow_e=0p1_l=1.5.avi.

cannot be easily connected to the direction of base flow motion. At larger torsions, however, the
clockwise motion of these two perturbation components is clearly seen. The slightly supercritical
flow at smaller torsions results in oscillation of both vortices and a weak clockwise rotational motion
of the maximum isolines of the center line velocity vs (Fig. 21 and the corresponding animations).
During the oscillations period the Dean vortices size noticeably changes, which results also in strong
oscillations of the zero pseudo-streamline. At larger torsions we observe oscillations of the single
counterclockwise cross flow vortex, whose center also performs a weak clockwise rotational motion.
Similarly to the previously described mode, we can characterize mode 5 as a large circumferential
wave number upstream cross-flow wave.

The zeroing terms numerical experiment conducted for mode 5 showed that the instability is
caused by interaction between disturbances uξ and us, and the base flow components Vs and Vξ ,
while the radial velocity and its disturbance play only a passive role. Therefore, in this case we
observe an instability of a swirling flow along the pipe center line.

An example of a similar, but downstream large circumferential wave number cross-flow wave
is observed at larger curvatures 0.3 � ε � 0.6, and large λ, and is characteristic for the rightmost
branches of the corresponding neutral curves (Fig. 5). This perturbation branch is denoted as mode
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FIG. 21. Oscillations of the most unstable perturbation at ε = 0.2, λ = 3, Recr = 449 (mode 5).
Left frames: perturbation of the center line velocity superimposed with isolines of the base flow cen-
ter line velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed
with the pseudo-streamlines of base flow (lines). All the levels are equally spaced between the mini-
mal and maximal values. Perturbation: max|ṽs| = 0.0154, max|ṽr | = 0.00984, max|ṽξ | = 0.0125. Base
flow: max|vs| = 1.904, ψmin = −0.148, ψmax = 0.0614. Animation files: Perturbation_e=0p2_l=3.avi,
Perturbation_e=0p2_l=4.avi, Perturbation_e=0p2_l=5.avi.

7 and is depicted in Figs. 23 and 24. At the governing parameters of Figs. 23 and 24, the clockwise
vortex is fully suppressed by the counterclockwise one, so that the base flow contains only a single
Dean vortex. The perturbation consists of the large-scale structures similar to those of mode 5
(cf. Fig. 21 and Fig. 22), but contrary to mode 5 they rotate counterclockwise. In the resulting
slightly supercritical flow we observe oscillations of the maximal values of both the center line
velocity and pseudo-streamfunction. The maximum of vs rotates counterclockwise together with the
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FIG. 22. Snapshots of a slightly supercritical oscillatory flow at ε = 0.2, λ = 3, Recr = 449. The lev-
els are equally spaced between 0 and 1.9 for vs and between −0.16 and 0.07 for ψ . Animation files:
Flow_e=0p2_l=3.avi, Flow_e=0p2_l=4.avi, Flow_e=0p2_l=5.avi.

perturbation, while the maximum of ψ remains almost motionless. The critical wave number and
the critical frequency have the same sign in this case [Fig. 5(a) and 5(b)], so that an above assumed
connection between the direction of the wave propagation along the center line and along the Dean
vortex is supported. Contrary to the previous case, we cannot point on either term of the linearized
equations that can be neglected without a change of the disturbances pattern or the eigenvalue. In
spite of the fact that the instability in this case results in a quite simple streamwise swirling motion,
its appearance includes interconnection of all the perturbations with all base flow components.

Perturbation mode 10 (not shown in figures) is characteristic for base flows in which the
maximum of the center line velocity is shifted towards the inner pipe boundary, located on the left,
due to advection by the dominant counterclockwise vortex (see corresponding animations). The
perturbation pattern is a counterclockwise downstream traveling wave, similar to those observed for
mode 7. Nevertheless, these modes are separated, as is clearly seen in Figs. 5(b) and 5(c), possibly
because of the different size of the counterclockwise vortex. Also, slightly supercritical regimes
of mode 10 involve oscillations of the weaker clockwise vortex, which is either too small or does
not exist in the flows subject to instability due to mode 7. The zeroing terms numerical experiment
shows that we cannot neglect any of the terms in the linearized equations. Also, the instability sets
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FIG. 23. Oscillations of the most unstable perturbation at ε = 0.5, λ = 4, Recr = 360 (mode 7). Left
frames: perturbation of the center line velocity superimposed with isolines of the base flow center line
velocity (lines); center and right frames, respectively: perturbations of vr and vξ superimposed with the
pseudo-streamlines of base flow (lines). All the levels are equally spaced between the minimal and maxi-
mal values. Perturbation: max|ṽs| = 0.0102, max|ṽr | = 0.00267, max|ṽξ | = 0.00362. Base flow: max|vs| =
2.082, ψmin = −1.092, ψmax = 0. Animation files: Perturbation_e = 0p3_l = 4.avi, Perturbation_e =
0p4_l = 4.avi, Perturbation_e = 0p5_l = 4.avi, Perturbation_e = 0p6_l = 4.avi.

in at relatively low Reynolds number, so that no thin boundary layers are observed. Noticing that
perturbations of the center line velocity rotate around the largest maximum of Vs, we examined the
radial profile Vs(r) passing through the maximum. This profile contains an inflection point, which
can be an indication for a destabilization mechanism here.

For 0.4 � ε � 0.6 modes 7 and 10 are separated by short intervals of λ, where the instability is
caused by mode 11 (not shown in figures). Mode 11 seems to be similar to mode 10, but arising at
larger torsions, so that the dominance of the counterclockwise vortex becomes more profound and
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FIG. 24. Snapshots of a slightly supercritical oscillatory flow at ε = 0.5, λ = 4, Recr = 360. The levels
are equally spaced between 0 and 2.0 for vs and between −1.0 and −0.1 for ψ . Animation files: Flow_e =
0p3_l = 4.avi, Flow_e = 0p4_l = 4.avi, Flow_e = 0p5_l = 4.avi, Flow_e = 0p6_l = 4.avi.

the vortices become aligned vertically, and not horizontally, as it was for the zero torsion (Fig. 6
–12). There are several qualitative differences between modes 10 and 11. First, mode 11 sets in
with the zero wave number, kcr = 0, so that the disturbances do not depend on the s coordinate.
The oscillations are the same in every pipe cross section, and do not form a wave. The second
difference follows from comparison of the perturbation amplitudes that form completely different
patterns in the two cases. The third difference is that there is no inflection point on the Vs(r) profile
passing through the maximum of the center line velocity. The zeroing terms numerical experiment
shows that we can neglect the terms ( uξ

r
∂Vs
∂ξ

+ εsin(ξ )
Hs

urVs)es and ελus
∂Vr
∂ξ

er , but this does not help to
understand the origin of this instability. A closer look at the base flow (see animations) shows that
the maximum of Vs and the minimum of the pseudo-streamfunction are located close to each other.
In the slightly supercritical regime the maximum of Vs makes a round motion around location of
these two extremum points. Thus, one can assume that the perturbation of center line velocity is
advected by the base flow around the dominant counterclockwise vortex, affecting in the same way
two other velocity components. This assumption is supported by the corresponding animations.
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V. CONCLUDING REMARKS

This study is based on the numerical approach validated in Ref. [7], and extends two particular
examples of neutral stability curves reported there to a wide range of varying curvatures and
torsions. The main result of this study is the map of stability of helical pipe flows reported in Fig. 5.
These parametric results showing the dependence of the critical Reynolds number, critical wave
number and critical frequency on the dimensionless curvature and torsion are presented for the first
time. In all the cases considered, the instability sets in as a steady-oscillatory transition via a Hopf
bifurcation.

The stability study needs an accurate calculation of the base steady flows. The convergence
studies and comparison with independent experimental and numerical results were reported in
Ref. [7] and are extended here by comparison with the experiments [23]. An accurate calculation of
base steady flows allowed us to address the paradox of Ref. [24] and to provide some new arguments
about dependence of the friction factor on the Reynolds and Dean numbers.

Along with this stability map, a graphical description of 13 distinct disturbance modes that
become most unstable at different values of the curvature and torsion is presented. With only one
exception of mode 10, these modes appear as traveling waves propagating downstream or upstream
the base through flow. At small curvatures ε � 0.2 the instability always sets in as a downstream
propagating traveling wave. With the increase of the pipe curvature we observe increase of the
number of distinct most unstable modes replacing each other in the interval 0 � λ � 5. These
modes sometimes propagate upstream and sometimes are s-independent. They are classified by
their symmetries, location, and direction of their propagation along the pipe and within its cross
sections. Possible physical mechanisms exciting different perturbations and leading to qualitatively
different supercritical oscillatory states are discussed. Based on examination of the perturbation
patterns, we offered some explanation of these destabilizing processes that include instability of
local viscous boundary, inviscid instability of mixing layers and/or shear through flow, as well as
another self-sustained oscillatory process based on the interconnection between the Dean vortices
and the through flow.

Two more comments should be made regarding current results on the stability of the helical pipe
flow. First, starting from quite small dimensionless curvatures, of the order of 0.01, the instability
develops in agreement with the linear stability theory, unlike the case of a straight circular pipe. This
difference was mentioned also in Ref. [6], where it was confirmed by comparison with the experi-
mental results for the zero torsion. The present results, together with comparisons with experiments
made in Ref. [7], extend this conclusion for a nonzero torsion. At smaller curvatures ε < 0.01, the
experimentally observed instability corresponds to a bypass transition similarly to the straight pipe
[15,22,23]. Thus, studying the flow in a helical pipe with a gradually decreasing/increasing curvature
may shed more light in physics of the bypass transition characteristic for the straight pipes and other
shear flows. There is also a possibility to study an exchange between linear and bypass transition
with variation of the pipe curvature.

The second comment relates to the multiplicity of possible perturbation modes. From the
viewpoint of the bifurcation theory, there are points corresponding to the different Hopf bifurcations
of codimension 2, e.g., Hopf-Hopf bifurcation [41] or tangent Hopf bifurcation [42]. These points
can be easily found by the present numerical approach. Using flexible plastic pipes, one can easily
alter the curvature and the torsion of a helical pipe in an experimental setup. Therefore, it yields a
quite unique possibility to study bifurcations of higher codimension numerically and compare them
with the experimental observations done at the prescribed governing parameters values.
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APPENDIX

For the “two-dimensional” flow depending only on the coordinates r and ξ , the momentum and
continuity equations read as follows:
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The equations linearized near the steady-state flow {Vr (r, ξ ),Vξ (r, ξ ),Vs(r, ξ ), P(r, ξ )} that govern
infinitely small disturbances {ur (r, ξ ), uξ (r, ξ ), us(r, ξ ), p(r, ξ )}exp[iσ t + iks] are the following:
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